Number computed as a product of powers
Inmathematics , and more specificallynumber theory , thehyperfactorial of a positiveinteger n {\displaystyle n} is the product of the numbers of the formx x {\displaystyle x^{x}} from1 1 {\displaystyle 1^{1}} ton n {\displaystyle n^{n}} .
Thehyperfactorial of a positive integern {\displaystyle n} is the product of the numbers1 1 , 2 2 , … , n n {\displaystyle 1^{1},2^{2},\dots ,n^{n}} . That is,[ 1] [ 2] H ( n ) = 1 1 ⋅ 2 2 ⋅ ⋯ n n = ∏ i = 1 n i i = n n H ( n − 1 ) . {\displaystyle H(n)=1^{1}\cdot 2^{2}\cdot \cdots n^{n}=\prod _{i=1}^{n}i^{i}=n^{n}H(n-1).} Following the usual convention for theempty product , the hyperfactorial of 0 is 1. Thesequence of hyperfactorials, beginning withH ( 0 ) = 1 {\displaystyle H(0)=1} , is:[ 1]
1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence
A002109 in the
OEIS )
Interpolation and approximation [ edit ] The hyperfactorials were studied beginning in the 19th century byHermann Kinkelin [ 3] [ 4] andJames Whitbread Lee Glaisher .[ 5] [ 4] As Kinkelin showed, just as thefactorials can becontinuously interpolated by thegamma function , the hyperfactorials can be continuously interpolated by theK-function .[ 3]
Glaisher provided anasymptotic formula for the hyperfactorials, analogous toStirling's formula for the factorials:H ( n ) = A n ( 6 n 2 + 6 n + 1 ) / 12 e − n 2 / 4 ( 1 + 1 720 n 2 − 1433 7257600 n 4 + ⋯ ) , {\displaystyle H(n)=An^{(6n^{2}+6n+1)/12}e^{-n^{2}/4}\left(1+{\frac {1}{720n^{2}}}-{\frac {1433}{7257600n^{4}}}+\cdots \right)\!,} whereA ≈ 1.28243 {\displaystyle A\approx 1.28243} is theGlaisher–Kinkelin constant .[ 2] [ 5]
According to an analogue ofWilson's theorem on the behavior of factorialsmodulo prime numbers, whenp {\displaystyle p} is anodd prime numberH ( p − 1 ) ≡ ( − 1 ) ( p − 1 ) / 2 ( p − 1 ) ! ! ( mod p ) , {\displaystyle H(p-1)\equiv (-1)^{(p-1)/2}(p-1)!!{\pmod {p}},} where! ! {\displaystyle !!} is the notation for thedouble factorial .[ 4]
The hyperfactorials give the sequence ofdiscriminants ofHermite polynomials in their probabilistic formulation.[ 1]
^a b c Sloane, N. J. A. (ed.),"Sequence A002109 (Hyperfactorials: Product_{k = 1..n} k^k)" ,TheOn-Line Encyclopedia of Integer Sequences , OEIS Foundation^a b Alabdulmohsin, Ibrahim M. (2018),Summability Calculus: A Comprehensive Theory of Fractional Finite Sums , Cham: Springer, pp. 5– 6,doi :10.1007/978-3-319-74648-7 ,ISBN 978-3-319-74647-0 ,MR 3752675 ,S2CID 119580816 ^a b Kinkelin, H. (1860), "Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechung" [On a transcendental variation of the gamma function and its application to the integral calculus],Journal für die reine und angewandte Mathematik (in German),1860 (57):122– 138,doi :10.1515/crll.1860.57.122 ,S2CID 120627417 ^a b c Aebi, Christian; Cairns, Grant (2015), "Generalizations of Wilson's theorem for double-, hyper-, sub- and superfactorials",The American Mathematical Monthly ,122 (5):433– 443,doi :10.4169/amer.math.monthly.122.5.433 ,JSTOR 10.4169/amer.math.monthly.122.5.433 ,MR 3352802 ,S2CID 207521192 ^a b Glaisher, J. W. L. (1877),"On the product11 .22 .33 ...n n " ,Messenger of Mathematics ,7 :43– 47