Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hyperfactorial

From Wikipedia, the free encyclopedia
Number computed as a product of powers

Inmathematics, and more specificallynumber theory, thehyperfactorial of a positiveintegern{\displaystyle n} is the product of the numbers of the formxx{\displaystyle x^{x}} from11{\displaystyle 1^{1}} tonn{\displaystyle n^{n}}.

Definition

[edit]

Thehyperfactorial of a positive integern{\displaystyle n} is the product of the numbers11,22,,nn{\displaystyle 1^{1},2^{2},\dots ,n^{n}}. That is,[1][2]H(n)=1122nn=i=1nii=nnH(n1).{\displaystyle H(n)=1^{1}\cdot 2^{2}\cdot \cdots n^{n}=\prod _{i=1}^{n}i^{i}=n^{n}H(n-1).}Following the usual convention for theempty product, the hyperfactorial of 0 is 1. Thesequence of hyperfactorials, beginning withH(0)=1{\displaystyle H(0)=1}, is:[1]

1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequenceA002109 in theOEIS)

Interpolation and approximation

[edit]

The hyperfactorials were studied beginning in the 19th century byHermann Kinkelin[3][4] andJames Whitbread Lee Glaisher.[5][4] As Kinkelin showed, just as thefactorials can becontinuously interpolated by thegamma function, the hyperfactorials can be continuously interpolated by theK-function.[3]

Glaisher provided anasymptotic formula for the hyperfactorials, analogous toStirling's formula for the factorials:H(n)=An(6n2+6n+1)/12en2/4(1+1720n214337257600n4+),{\displaystyle H(n)=An^{(6n^{2}+6n+1)/12}e^{-n^{2}/4}\left(1+{\frac {1}{720n^{2}}}-{\frac {1433}{7257600n^{4}}}+\cdots \right)\!,}whereA1.28243{\displaystyle A\approx 1.28243} is theGlaisher–Kinkelin constant.[2][5]

Other properties

[edit]

According to an analogue ofWilson's theorem on the behavior of factorialsmoduloprime numbers, whenp{\displaystyle p} is anodd prime numberH(p1)(1)(p1)/2(p1)!!(modp),{\displaystyle H(p-1)\equiv (-1)^{(p-1)/2}(p-1)!!{\pmod {p}},}where!!{\displaystyle !!} is the notation for thedouble factorial.[4]

The hyperfactorials give the sequence ofdiscriminants ofHermite polynomials in their probabilistic formulation.[1]

References

[edit]
  1. ^abcSloane, N. J. A. (ed.),"Sequence A002109 (Hyperfactorials: Product_{k = 1..n} k^k)",TheOn-Line Encyclopedia of Integer Sequences, OEIS Foundation
  2. ^abAlabdulmohsin, Ibrahim M. (2018),Summability Calculus: A Comprehensive Theory of Fractional Finite Sums, Cham: Springer, pp. 5–6,doi:10.1007/978-3-319-74648-7,ISBN 978-3-319-74647-0,MR 3752675,S2CID 119580816
  3. ^abKinkelin, H. (1860), "Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechung" [On a transcendental variation of the gamma function and its application to the integral calculus],Journal für die reine und angewandte Mathematik (in German),1860 (57):122–138,doi:10.1515/crll.1860.57.122,S2CID 120627417
  4. ^abcAebi, Christian; Cairns, Grant (2015), "Generalizations of Wilson's theorem for double-, hyper-, sub- and superfactorials",The American Mathematical Monthly,122 (5):433–443,doi:10.4169/amer.math.monthly.122.5.433,JSTOR 10.4169/amer.math.monthly.122.5.433,MR 3352802,S2CID 207521192
  5. ^abGlaisher, J. W. L. (1877),"On the product11.22.33...nn",Messenger of Mathematics,7:43–47

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hyperfactorial&oldid=1213290356"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp