Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Holmium

This is a good article. Click here for more information.
Page semi-protected
From Wikipedia, the free encyclopedia

Chemical element with atomic number 67 (Ho)
Holmium, 67Ho
Holmium
Pronunciation/ˈhlmiəm/ (HOHL-mee-əm)
Appearancesilvery white
Standard atomic weightAr°(Ho)
Holmium in theperiodic table
HydrogenHelium
LithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon
SodiumMagnesiumAluminiumSiliconPhosphorusSulfurChlorineArgon
PotassiumCalciumScandiumTitaniumVanadiumChromiumManganeseIronCobaltNickelCopperZincGalliumGermaniumArsenicSeleniumBromineKrypton
RubidiumStrontiumYttriumZirconiumNiobiumMolybdenumTechnetiumRutheniumRhodiumPalladiumSilverCadmiumIndiumTinAntimonyTelluriumIodineXenon
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGoldMercury (element)ThalliumLeadBismuthPoloniumAstatineRadon
FranciumRadiumActiniumThoriumProtactiniumUraniumNeptuniumPlutoniumAmericiumCuriumBerkeliumCaliforniumEinsteiniumFermiumMendeleviumNobeliumLawrenciumRutherfordiumDubniumSeaborgiumBohriumHassiumMeitneriumDarmstadtiumRoentgeniumCoperniciumNihoniumFleroviumMoscoviumLivermoriumTennessineOganesson


Ho

Es
dysprosiumholmiumerbium
Atomic number(Z)67
Groupf-block groups (no number)
Periodperiod 6
Block f-block
Electron configuration[Xe] 4f11 6s2
Electrons per shell2, 8, 18, 29, 8, 2
Physical properties
Phaseat STPsolid
Melting point1734 K ​(1461 °C, ​2662 °F)
Boiling point2873 K ​(2600 °C, ​4712 °F)
Density (at 20° C)8.795 g/cm3[3]
when liquid (at m.p.)8.34 g/cm3
Heat of fusion17.0 kJ/mol
Heat of vaporization251 kJ/mol
Molar heat capacity27.15 J/(mol·K)
Specific heat capacity164.615 J/(kg·K)
Vapor pressure
P (Pa)1101001 k10 k100 k
at T (K)14321584(1775)(2040)(2410)(2964)
Atomic properties
Oxidation statescommon:+3
0,[4] +2[5]
ElectronegativityPauling scale: 1.23
Ionization energies
  • 1st: 581.0 kJ/mol
  • 2nd: 1140 kJ/mol
  • 3rd: 2204 kJ/mol
Atomic radiusempirical: 176 pm
Covalent radius192±7 pm
Color lines in a spectral range
Spectral lines of holmium
Other properties
Natural occurrenceprimordial
Crystal structurehexagonal close-packed (hcp) (hP2)
Lattice constants
Hexagonal close packed crystal structure for holmium
a = 357.80 pm
c = 561.77 pm (at 20 °C)[3]
Thermal expansionpoly: 11.2 µm/(m⋅K) (at r.t.)
Thermal conductivity16.2 W/(m⋅K)
Electrical resistivitypoly: 814 nΩ⋅m (at r.t.)
Magnetic orderingparamagnetic
Young's modulus64.8 GPa
Shear modulus26.3 GPa
Bulk modulus40.2 GPa
Speed of sound thin rod2760 m/s (at 20 °C)
Poisson ratio0.231
Vickers hardness410–600 MPa
Brinell hardness500–1250 MPa
CAS Number7440-60-0
History
NamingfromHolmia, the Latin name for the city of Stockholm, home town of its discoverer
DiscoveryPer Theodor Cleve,Jacques-Louis Soret andMarc Delafontaine (1878)
First isolationHeinrich Bommer (1939)
Isotopes of holmium
Main isotopes[7]Decay
Isotopeabun­dancehalf-life(t1/2)modepro­duct
163Hosynth4570 yε163Dy
164Hosynth28.8 minε164Dy
β164Er
165Ho100%stable
166Hosynth26.812 hβ166Er
166m1Hosynth1133 yβ166Er
167Hosynth3.1 hβ167Er
 Category: Holmium
| references

Holmium is achemical element; it hassymbolHo andatomic number 67. It is arare-earth element and the eleventh member of thelanthanide series of elements. It is a relatively soft, silvery, fairlycorrosion-resistant andmalleable metal. Like many other lanthanides, holmium is too reactive to be found in native form, as pure holmium slowly forms a yellowishoxide coating when exposed to air. When isolated, holmium is relatively stable in dry air at room temperature. However, it reacts with water and corrodes readily, and also burns in air when heated.

In nature, holmium occurs together with the other rare-earth metals (likethulium). It is a relatively rare lanthanide, making up 1.4parts per million of theEarth's crust, an abundance similar totungsten. Holmium was discovered through isolation by Swedish chemistPer Theodor Cleve. It was also independently discovered byJacques-Louis Soret andMarc Delafontaine, who together observed itspectroscopically in 1878. Its oxide was first isolated from rare-earth ores by Cleve in 1878. The element's name comes fromHolmia, the Latin name for the city ofStockholm.[8][9][10]

Like many otherlanthanides, holmium is found in the mineralsmonazite andgadolinite and is usually commercially extracted from monazite usingion-exchange techniques. Its compounds in nature and in nearly all of its laboratory chemistry are trivalently oxidized, containing Ho(III)ions. Trivalent holmium ions havefluorescent properties similar to many other rare-earth ions (while yielding their own set of uniqueemission light lines), and thus are used in the same way as some other rare earths in certainlaser and glass-colorant applications.

Holmium has the highestmagnetic permeability andmagnetic saturation of any element and is thus used for thepole pieces of the strongest staticmagnets. Because holmium strongly absorbsneutrons, it is also used as aburnable poison innuclear reactors.

Properties

Holmium is the eleventh member of thelanthanide series. In the periodic table, it appears inperiod 6, between the lanthanidesdysprosium to its left anderbium to its right, and above theactinideeinsteinium.

Physical properties

With a boiling point of 3,000 K (2,727 °C; 4,940 °F), holmium is the sixth mostvolatile lanthanide afterytterbium,europium,samarium,thulium anddysprosium. At standard temperature and pressure, holmium, like many of the second half of the lanthanides, normally assumes ahexagonally close-packed (hcp) structure.[11] Its 67electrons are arranged in the configuration [Xe] 4f11 6s2, so that it has thirteenvalence electrons filling the 4f and 6s subshells.[12]

Holmium, like all of the lanthanides, isparamagnetic at standard temperature and pressure.[13] However, holmium isferromagnetic at temperatures below 19 K (−254.2 °C; −425.5 °F).[14] It has the highestmagnetic moment (10.6 μB) of any naturally occurring element[15] and possesses other unusual magnetic properties. When combined withyttrium, it forms highlymagnetic compounds.[16]

Chemical properties

Holmium metal tarnishes slowly in air, forming a yellowish oxide layer that has an appearance similar to that ofiron rust. It burns readily to formholmium(III) oxide:[17]

4 Ho + 3 O2 → 2 Ho2O3

It is a relatively soft andmalleable element that is fairlycorrosion-resistant and chemically stable in dry air atstandard temperature and pressure. In moist air and at higher temperatures, however, it quicklyoxidizes, forming a yellowish oxide.[18] In pure form, holmium possesses a metallic, bright silvery luster.

Holmium is quite electropositive: on the Paulingelectronegativity scale, it has an electronegativity of 1.23.[19] It is generally trivalent. It reacts slowly with cold water and quickly with hot water to form holmium(III) hydroxide:[20]

2 Ho (s) + 6 H2O (l) → 2 Ho(OH)3 (aq) + 3 H2 (g)

Holmium metal reacts with all the stablehalogens:[21]

2 Ho (s) + 3 F2 (g) → 2HoF3 (s) [pink]
2 Ho (s) + 3 Cl2 (g) → 2HoCl3 (s) [yellow]
2 Ho (s) + 3 Br2 (g) → 2HoBr3 (s) [yellow]
2 Ho (s) + 3 I2 (g) → 2HoI3 (s) [yellow]

Holmium dissolves readily in dilutesulfuric acid to formsolutions containing the yellow Ho(III) ions, which exist as a [Ho(OH2)9]3+ complexes:[21]

2 Ho (s) + 3 H2SO4 (aq) → 2 Ho3+ (aq) + 3SO2−
4
(aq) + 3 H2 (g)

Oxidation states

As with many lanthanides, holmium is usually found in the +3oxidation state, forming compounds such asholmium(III) fluoride (HoF3) andholmium(III) chloride (HoCl3). Holmium in solution is in the form of Ho3+ surrounded by nine molecules of water. Holmium dissolves inacids.[15] However, holmium is also found to exist in +2, +1 and 0 oxidation states.[22][12]

Isotopes

Further information:Isotopes of holmium

Natural holmium consists of oneprimordial isotope, holmium-165. It isobservationally stable, though theoretically should undergoalpha decay toterbium-161 with a very long half-life.[23]

The known isotopes of holmium range from140Ho to175Ho. The primarydecay mode before thestable165Ho, isbeta plus decay todysprosium isotopes, and the primary mode after isbeta minus decay toerbium isotopes. Of the 35synthetic radioactive isotopes among these, the most stable one is holmium-163 (163Ho), with a half-life of 4570 years.[24] The next most stable is holmium-166 (166Ho) having a half-life of 26.812 hours, and others have half-lives under 4 hours.

Themetastable isomer166m1Ho has the unusually long half-life of 1133 years. With a very low excitation energy, it does not decay to the ground state but beta-decays directly, having a particularly rich spectrum ofgamma rays, making this isotope useful as a means forcalibratinggamma ray spectrometers.[25]

Holmium-166 (ground state) has been studied for medical application.[26][27]

Compounds

Oxides and chalcogenides

Ho2O3, left: natural light, right: under acold-cathode fluorescent lamp

Holmium(III) oxide is the only oxide of holmium. It changes its color depending on the lighting conditions. In daylight, it has a yellowish color. Undertrichromatic light, it appears orange red, almost indistinguishable from the appearance of erbium oxide under the same lighting conditions.[28] The color change is related to the sharpemission lines of trivalent holmium ions acting as red phosphors.[29] Holmium(III) oxide appears pink under a cold-cathode fluorescent lamp.

Otherchalcogenides are known for holmium.Holmium(III) sulfide has orange-yellowcrystals in themonoclinic crystal system,[30] with thespace groupP21/m (No. 11).[31] Under high pressure, holmium(III) sulfide can form in thecubic andorthorhombiccrystal systems.[32] It can be obtained by the reaction of holmium(III) oxide andhydrogen sulfide at 1,598 K (1,325 °C; 2,417 °F).[33] Holmium(III) selenide is also known. It is antiferromagnetic below 6 K.[34]

Halides

All four trihalides of holmium are known. Holmium(III) fluoride is a yellowish powder that can be produced by reacting holmium(III) oxide andammonium fluoride, then crystallising it from the ammoniumsalt formed in solution.[35] Holmium(III) chloride can be prepared in a similar way, withammonium chloride instead of ammonium fluoride.[36] It has theYCl3 layer structure in the solid state.[37] These compounds, as well as holmium(III) bromide and holmium(III) iodide, can be obtained by the direct reaction of the elements:[21]

2 Ho + 3 X2 → 2 HoX3

In addition, holmium(III) iodide can be obtained by the direct reaction of holmium andmercury(II) iodide, then removing themercury bydistillation.[38]

Organoholmium compounds

See also:Organolanthanide chemistry

Organoholmium compounds are very similar tothose of the other lanthanides, as they all share an inability to undergoπ backbonding. They are thus mostly restricted to the mostly ioniccyclopentadienides (isostructural with those of lanthanum) and the σ-bonded simplealkyls andaryls, some of which may bepolymeric.[39]

History

Holmium (Holmia,Latin name forStockholm) wasdiscovered by the Swiss chemistsJacques-Louis Soret andMarc Delafontaine in 1878 who noticed the aberrantspectrographicemission spectrum of the then-unknown element (they called it "Element X").[40][41]

The Swedish chemistPer Teodor Cleve also independently discovered the element while he was working onerbia earth (erbium oxide). He was the first to isolate impure oxide of the new element.[9][8][42] Using the method developed by the Swedish chemistCarl Gustaf Mosander, Cleve first removed all of the known contaminants from erbia. The result of that effort was two new materials, one brown and one green. He named the brown substanceholmia (after the Latin name for Cleve's home town, Stockholm) and the green onethulia.Holmia was later found to be theholmium oxide, andthulia wasthulium oxide.[43] The pure oxide was only isolated in 1911 and the metal in 1939 by Heinrich Bommer.[44]: 959 [45]

In the English physicistHenry Moseley's classic paper onatomic numbers, holmium was assigned the value 66. The holmium preparation he had been given to investigate had been impure, dominated by neighboring dysprosium. He would have seenx-ray emission lines for both elements, but assumed that the dominant ones belonged to holmium, instead of the dysprosium impurity.[46]

Occurrence and production

A specimen ofgadolinite

Like all the otherrare-earth elements, holmium is not naturally found as afree element. It occurs combined with other elements in gadolinite,monazite and other rare-earth minerals. No holmium-dominant mineral has yet been found. The main mining areas are China, United States, Brazil, India, Sri Lanka, and Australia with reserves of holmium estimated as 400,000 tonnes.[43] The annual production of holmium metal is of about 10 tonnes per year.[47]

Holmium makes up 1.3 parts per million of theEarth's crust by mass.[48] Holmium makes up 1 part per million of thesoils, 400 parts perquadrillion of seawater, and almost none ofEarth's atmosphere, which is very rare for a lanthanide.[43] It makes up 500 parts per trillion of the universe by mass.[49]

Holmium is commercially extracted byion exchange from monazite sand (0.05% holmium), but is still difficult to separate from other rare earths. The element has been isolated through thereduction of itsanhydrouschloride orfluoride with metalliccalcium.[30] Its estimated abundance in the Earth's crust is 1.3 mg/kg. Holmium obeys theOddo–Harkins rule: as an odd-numbered element, it is less abundant than both dysprosium and erbium. However, it is the most abundant of the odd-numbered heavylanthanides. Of the lanthanides, onlypromethium,thulium, lutetium and terbium are less abundant on Earth. The principal current source are some of the ion-adsorption clays of southern China. Some of these have a rare-earth composition similar to that found inxenotime or gadolinite. Yttrium makes up about two-thirds of the total by mass; holmium is around 1.5%.[50] Holmium is relatively inexpensive for a rare-earth metal with the price about 1000 USD/kg.[51]

Applications

A solution of 4% holmium oxide in 10% perchloric acid, permanently fused into a quartzcuvette as an optical calibration standard

Glass containing holmium oxide and holmium oxide solutions (usually inperchloric acid) have sharp opticalabsorption peaks in the spectral range 200 to 900 nm. They are therefore used as a calibration standard foroptical spectrophotometers.[52][53][54] The radioactive but long-lived166m1Ho is used in calibration ofgamma-ray spectrometers.[55]

Holmium is used to create the strongest artificially generatedmagnetic fields, when placed within high-strength magnets as a magnetic pole piece (also called a magnetic flux concentrator).[56] Holmium is also used in the manufacture of somepermanent magnets.

Holmium can act as a sensitizer in sodium yttrium fluoride which takes advantage of its absorption in theNIR-II window. Holmium allows for lanthanide nanomaterials to have tunable emission and excitation in the NIR-II. Under 1143 nm excitation the interfacial energy transfer to other lanthanides allows a redshift in emission for biological applications.[57] This allows deeper penetration than typically used 980 nm and 808 nm lasers.

Holmium-dopedyttrium iron garnet (YIG) andyttrium lithium fluoride have applications insolid-state lasers, and Ho-YIG has applications inoptical isolators and inmicrowave equipment (e.g.,YIG spheres). Holmium lasers emit at 2.1 micrometres.[58] They are used in medical, dental, andfiber-optical applications.[16] It is also used in theenucleation of theprostate.[59]

Since holmium can absorbnuclear fission-bred neutrons, it is used as aburnable poison to regulate nuclear reactors.[43] It is used as acolorant forcubic zirconia, providing pink coloring,[60] and forglass, providing yellow-orange coloring.[61] In March 2017,IBM announced that they had developed a technique to store onebit of data on a single holmium atom set on a bed ofmagnesium oxide.[62] With sufficient quantum and classical control techniques, holmium may be a good candidate to makequantum computers.[63]

Holmium is used in the medical field, particularly inlaser surgery for procedures such as kidney stone removal and prostate treatment, due to its precision and minimal tissue damage.[64][65] Itsisotope, holmium-166, is applied in targeted cancer therapies, especially for liver cancer,[66] and it also enhancesMRI imaging as a contrast agent.[67]

Biological role and precautions

Holmium plays nobiological role in humans, but its salts are able to stimulatemetabolism.[30] Humans typically consume about a milligram of holmium a year. Plants do not readily take up holmium from the soil. Some vegetables have had their holmium content measured, and it amounted to 100 parts per trillion.[68] Holmium and its soluble salts are slightly toxic if ingested, but insoluble holmium salts arenontoxic. Metallic holmium in dust form presents a fire and explosion hazard.[69][70][71] Large amounts of holmium salts can cause severe damage ifinhaled, consumedorally, orinjected. The biological effects of holmium over a long period of time are not known. Holmium has a low level ofacute toxicity.[72]

See also

References

  1. ^"Standard Atomic Weights: Holmium".CIAAW. 2021.
  2. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  3. ^abArblaster, John W. (2018).Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International.ISBN 978-1-62708-155-9.
  4. ^Yttrium and all lanthanides except Ce, Pm, Tm, and Yb have been observed in the oxidation state 0 in bis(1,3,5-tri-t-butylbenzene) complexes, seeCloke, F. Geoffrey N. (1993). "Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides".Chem. Soc. Rev.22:17–24.doi:10.1039/CS9932200017. andArnold, Polly L.; Petrukhina, Marina A.; Bochenkov, Vladimir E.; Shabatina, Tatyana I.; Zagorskii, Vyacheslav V.; Cloke (2003-12-15). "Arene complexation of Sm, Eu, Tm and Yb atoms: a variable temperature spectroscopic investigation".Journal of Organometallic Chemistry.688 (1–2):49–55.doi:10.1016/j.jorganchem.2003.08.028.
  5. ^All thelanthanides, except Pm, in the +2 oxidation state have been observed in organometallic molecular complexes, seeLanthanides Topple Assumptions andMeyer, G. (2014). "All the Lanthanides Do It and Even Uranium Does Oxidation State +2".Angewandte Chemie International Edition.53 (14):3550–51.doi:10.1002/anie.201311325.PMID 24616202.. Additionally, all thelanthanides (La–Lu) form dihydrides (LnH2), dicarbides (LnC2), monosulfides (LnS), monoselenides (LnSe), and monotellurides (LnTe), but for most elements these compounds have Ln3+ ions with electrons delocalized into conduction bands, e. g. Ln3+(H)2(e).
  6. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann. p. 28.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  7. ^Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  8. ^abMarshall, James L. Marshall; Marshall, Virginia R. Marshall (2015)."Rediscovery of the elements: The Rare Earths–The Confusing Years"(PDF).The Hexagon:72–77. Retrieved30 December 2019.
  9. ^ab"Holmium".Royal Society of Chemistry. 2020. Retrieved4 January 2020.
  10. ^Stwertka, Albert (1998).A guide to the elements (2nd ed.). p. 161.
  11. ^Strandburg, D. L.; Legvold, S.; Spedding, F. H. (1962-09-15)."Electrical and Magnetic Properties of Holmium Single Crystals".Physical Review.127 (6):2046–2051.Bibcode:1962PhRv..127.2046S.doi:10.1103/PhysRev.127.2046.OSTI 4773351.
  12. ^ab"Holmium (Ho) - Periodic Table".www.periodictable.one. Retrieved2024-06-02.
  13. ^Cullity, B. D.; Graham, C. D. (2005).Introduction to Magnetic Materials. p. 172.
  14. ^Jiles, David (1998).Introduction to magnetism and magnetic materials. p. 228.
  15. ^abEmsley, John (2011).Nature's Building Blocks. p. 226.
  16. ^abC. K. Gupta; Nagaiyar Krishnamurthy (2004).Extractive metallurgy of rare earths. CRC Press. p. 30.ISBN 0-415-33340-7.
  17. ^Wahyudi, Tatang (2015)."Reviewing the properties of rare earth element-bearing minerals, rare-earth elements and cerium oxide compound".Indonesian Mining Journal.18 (2):92–108.doi:10.30556/imj.Vol18.No2.2015.293 (inactive 12 July 2025).ISSN 2527-8797.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  18. ^Phillips, W. L. (1964-08-01). "Oxidation of several lanthanide elements".Journal of the Less Common Metals.7 (2):139–143.doi:10.1016/0022-5088(64)90056-6.ISSN 0022-5088.
  19. ^Winter, Mark J."Holmium - 67Ho: electronegativity".WebElements.University of Sheffield. Retrieved4 August 2023.
  20. ^An, Tao; Dou, Chunyue; Ju, Jinning; Wei, Wenlong; Ji, Quanzeng (2019-06-01)."Microstructure, morphology, wettability and mechanical properties of Ho2O3 films prepared by glancing angle deposition".Vacuum.164:405–410.Bibcode:2019Vacuu.164..405A.doi:10.1016/j.vacuum.2019.03.057.ISSN 0042-207X.S2CID 133466738.
  21. ^abc"Chemical reactions of Holmium". Webelements. Retrieved2009-06-06.
  22. ^"Periodic Table of Elements: Los Alamos National Laboratory".periodic.lanl.gov. Retrieved2024-06-02.
  23. ^Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays".European Physical Journal A.55 (8): 140–1–140–7.arXiv:1908.11458.Bibcode:2019EPJA...55..140B.doi:10.1140/epja/i2019-12823-2.ISSN 1434-601X.S2CID 201664098.
  24. ^Naumann, R. A.; Michel, M. C.; Power, J. L. (September 1960). "Preparation of long-lived holmium-163".Journal of Inorganic and Nuclear Chemistry.15 (1–2):195–196.doi:10.1016/0022-1902(60)80035-8.OSTI 4120223.
  25. ^Oliveira, Bernardes, Estela Maria de (2001-01-01)."Holmium-166m: multi-gamma standard to determine the activity of radionuclides in semiconductor detectors" (in Portuguese).{{cite web}}: CS1 maint: multiple names: authors list (link)
  26. ^Suzuki, Yuka S (1998)."Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice"(PDF).Journal of Nuclear Medicine.39 (12):2161–2166.PMID 9867162.
  27. ^Klaassen, Nienke J. M.; Arntz, Mark J.; Gil Arranja, Alexandra; Roosen, Joey; Nijsen, J. Frank W. (2019-08-05)."The various therapeutic applications of the medical isotope holmium-166: a narrative review".EJNMMI Radiopharmacy and Chemistry.4 (1): 19.doi:10.1186/s41181-019-0066-3.ISSN 2365-421X.PMC 6682843.PMID 31659560.
  28. ^Ganjali, Mohammad Reza; Gupta, Vinod Kumar; Faridbod, Farnoush; Norouzi, Parviz (2016-02-25).Lanthanides Series Determination by Various Analytical Methods. p. 27.
  29. ^Su, Yiguo; Li, Guangshe; Chen, Xiaobo; Liu, Junjie; Li, Liping (2008). "Hydrothermal Synthesis of GdVO4:Ho3+ Nanorods with a Novel White-light Emission".Chemistry Letters.37 (7):762–763.doi:10.1246/cl.2008.762.
  30. ^abcC. R. Hammond (2000).The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press.ISBN 0-8493-0481-4.
  31. ^"Ho2S3: crystal structure, physical properties".Non-Tetrahedrally Bonded Binary Compounds II. Landolt-Börnstein - Group III Condensed Matter. Vol. 41D. Springer. 2000. pp. 1–3.doi:10.1007/10681735_623.ISBN 3-540-64966-2.Archived from the original on 2018-09-01. Retrieved2021-06-22.
  32. ^Tonkov, E. Yu (1998).Compounds and Alloys Under High Pressure A Handbook. p. 272.
  33. ^G. Meyer; Lester R. Morss, eds. (1991).Synthesis of Lanthanide and Actinide Compounds. p. 329.
  34. ^Bespyatov, M. A.; Musikhin, A. E.; Naumov, V. N.; Zelenina, L. N.; Chusova, T. P.; Nikolaev, R. E.; Naumov, N. G. (2018-03-01)."Low-temperature thermodynamic properties of holmium selenide (2:3)".The Journal of Chemical Thermodynamics.118:21–25.Bibcode:2018JChTh.118...21B.doi:10.1016/j.jct.2017.10.013.ISSN 0021-9614.
  35. ^Riedel, moderne anorganische Chemie. Erwin Riedel, Christoph Janiak, Hans-Jürgen Meyer. De Gruyter. 2012.{{cite book}}: CS1 maint: others (link)
  36. ^"Holmium chloride | 10138-62-2".ChemicalBook. Retrieved2023-08-09.
  37. ^Wells, A. F.Structural inorganic chemistry. p. 421.
  38. ^Asprey, L. B.; Keenan, T. K.; Kruse, F. H. (1964)."Preparation and crystal data for lanthanide and actinide triiodides".Inorganic Chemistry.3 (8):1137–1141.doi:10.1021/ic50018a015.
  39. ^Greenwood and Earnshaw, pp. 1248–1249
  40. ^Jacques-Louis Soret (1878)."Sur les spectres d'absorption ultra-violets des terres de la gadolinite".Comptes rendus de l'Académie des sciences.87: 1062.
  41. ^Jacques-Louis Soret (1879)."Sur le spectre des terres faisant partie du groupe de l'yttria".Comptes rendus de l'Académie des sciences.89: 521.
  42. ^Weeks, Mary Elvira (1956).The discovery of the elements. Journal of Chemical Education. p. 710.
  43. ^abcdEmsley, John (2011).Nature's Building Blocks. p. 225.
  44. ^Sicius, Hermann (2024).Handbook of the Chemical Elements. Berlin, Heidelberg: Springer Berlin Heidelberg.doi:10.1007/978-3-662-68921-9.ISBN 978-3-662-68920-2.
  45. ^Bommer, Heinrich (1939)."Kristallstruktur und magnetisches Verhalten des metallischen Holmiums".Zeitschrift für anorganische und allgemeine Chemie (in German).242 (3):277–280.Bibcode:1939ZAACh.242..277B.doi:10.1002/zaac.19392420307.
  46. ^Egdell, Russell G.; Bruton, Elizabeth (2020)."Henry Moseley, X-ray spectroscopy and the periodic table".Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.378 (2180).doi:10.1002/chem.202004775.PMID 32811359.
  47. ^"Ho - Holmium". MMTA. Retrieved5 December 2022.
  48. ^ABUNDANCE OF ELEMENTS IN THE EARTH'S CRUST AND IN THE SEA,CRC Handbook of Chemistry and Physics, 97th edition (2016–2017), p. 14-17
  49. ^Ltd, Mark Winter, University of Sheffield and WebElements."WebElements Periodic Table » Periodicity » Abundance in the universe » periodicity".www.webelements.com. Archived fromthe original on 2017-09-29. Retrieved27 March 2018.{{cite web}}: CS1 maint: multiple names: authors list (link)
  50. ^Patnaik, Pradyot (2003).Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 338–339.ISBN 0-07-049439-8. Archived fromthe original on 2023-06-14. Retrieved2009-06-06.
  51. ^James B. Hedrick."Rare-Earth Metals"(PDF). USGS. Archived fromthe original(PDF) on 2011-01-10. Retrieved2009-06-06.
  52. ^Allen, David W. (2007)."Holmium oxide glass wavelength standards".Journal of Research of the National Institute of Standards and Technology.112 (6):303–306.doi:10.6028/jres.112.024.ISSN 1044-677X.PMC 4655923.PMID 27110474.
  53. ^Travis, John C.; Zwinkels, Joanne C.; Mercader, Flora; et al. (2002-06-05). "An International Evaluation of Holmium Oxide Solution Reference Materials for Wavelength Calibration in Molecular Absorption Spectrophotometry".Analytical Chemistry.74 (14):3408–3415.Bibcode:2002AnaCh..74.3408T.doi:10.1021/ac0255680.ISSN 0003-2700.PMID 12139047.
  54. ^R. P. MacDonald (1964)."Uses for a Holmium Oxide Filter in Spectrophotometry"(PDF).Clinical Chemistry.10 (12):1117–20.doi:10.1093/clinchem/10.12.1117.PMID 14240747.
  55. ^Ming-Chen Yuan; Jeng-Hung Lee & Wen-Song Hwang (2002). "The absolute counting of166mHo,58Co and88Y".Applied Radiation and Isotopes.56 (1–2):429–434.Bibcode:2002AppRI..56..429Y.doi:10.1016/S0969-8043(01)00226-3.PMID 11839051.
  56. ^R. W. Hoard; S. C. Mance; R. L. Leber; E. N. Dalder; M. R. Chaplin; K. Blair; et al. (1985)."Field enhancement of a 12.5-T magnet using holmium poles".IEEE Transactions on Magnetics.21 (2):448–450.Bibcode:1985ITM....21..448H.doi:10.1109/tmag.1985.1063692.S2CID 121828376.
  57. ^Wang, Xusheng; Wu, Wenxiao; Yun, Baofeng; Huang, Liwen; Chen, Zi-Han; Ming, Jiang; Zhai, Fuheng; Zhang, Hongxin; Zhang, Fan (2025-01-15)."An Emerging Toolkit of Ho3+ Sensitized Lanthanide Nanocrystals with NIR-II Excitation and Emission for in Vivo Bioimaging".Journal of the American Chemical Society.147 (2):2182–2192.Bibcode:2025JAChS.147.2182W.doi:10.1021/jacs.4c16451.ISSN 0002-7863.PMID 39748521.
  58. ^Wollin, T. A.; Denstedt, J. D. (Feb 1998). "The holmium laser in urology".Journal of Clinical Laser Medicine & Surgery.16 (1):13–20.doi:10.1089/clm.1998.16.13.PMID 9728125.
  59. ^Gilling, Peter J.; Aho, Tevita F.; Frampton, Christopher M.; King, Colleen J.; Fraundorfer, Mark R. (2008-04-01)."Holmium Laser Enucleation of the Prostate: Results at 6 Years".European Urology.53 (4):744–749.doi:10.1016/j.eururo.2007.04.052.ISSN 0302-2838.PMID 17475395.
  60. ^Nassau, Kurt (Spring 1981)."Cubic zirconia: An Update"(PDF).Gems & Gemology.1 (1):9–19.Bibcode:1981GemG...17....9N.doi:10.5741/GEMS.17.1.9.
  61. ^El-Batal, Hatem A.; Azooz, Moenis A.; Ezz-El-Din, Fathy M.; El-Alaily, Nagia A. (2004-12-20)."Interaction of Gamma Rays with Calcium Aluminoborate Glasses Containing Holmium or Erbium".Journal of the American Ceramic Society.84 (9):2065–2072.doi:10.1111/j.1151-2916.2001.tb00959.x.
  62. ^Coldeway, Devin (March 9, 2017)."Storing data in a single atom proved possible by IBM researchers".TechCrunch. Retrieved2017-03-10.
  63. ^Forrester, Patrick Robert; Patthey, François; Fernandes, Edgar; Sblendorio, Dante Phillipe; Brune, Harald; Natterer, Fabian Donat (2019-11-19)."Quantum state manipulation of single atom magnets using the hyperfine interaction".Physical Review B.100 (18) 180405.arXiv:1903.00242.Bibcode:2019PhRvB.100r0405F.doi:10.1103/PhysRevB.100.180405.ISSN 2469-9950.
  64. ^Loewen, Eric."Holmium: Properties and Applications".Stanford Advanced Materials. RetrievedOct 23, 2024.
  65. ^Younis, Zaid; Ayyed, Atheer (2024). "Influence of stone location on rate of stone clearance and complication for holmium laser lithotripsy".International Journal of Urology Research.6 (1):84–90.doi:10.33545/26646617.2024.v6.i1b.38.
  66. ^Kuhnel, Christian; Kohler, Alexander (2024)."Clinical Results of Holmium-166 Radioembolization with Personalized Dosimetry for the Treatment of Hepatocellular Carcinoma".J. Pers. Med.14 (7): 747.doi:10.3390/jpm14070747.PMC 11278198.PMID 39064001.
  67. ^Maat, Gerrit; Seevinck, Peter (2013)."MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation".European Radiology.23 (3):827–835.doi:10.1007/s00330-012-2648-2.PMC 3563959.PMID 23014797.
  68. ^Emsley, John (2011).Nature's Building Blocks. p. 224.
  69. ^Haley, T. J.; Koste, L.; Komesu, N.; Efros, M.; Upham, H. C. (1966). "Pharmacology and toxicology of dysprosium, holmium, and erbium chlorides".Toxicology and Applied Pharmacology.8 (1):37–43.Bibcode:1966ToxAP...8...37H.doi:10.1016/0041-008x(66)90098-6.PMID 5921895.
  70. ^Haley, T. J. (1965). "Pharmacology and toxicology of the rare earth elements".Journal of Pharmaceutical Sciences.54 (5):663–70.Bibcode:1965JPhmS..54..663H.doi:10.1002/jps.2600540502.PMID 5321124.
  71. ^Bruce, D. W.; Hietbrink, B. E.; Dubois, K. P. (1963). "The acute mammalian toxicity of rare earth nitrates and oxides".Toxicology and Applied Pharmacology.5 (6):750–9.Bibcode:1963ToxAP...5..750B.doi:10.1016/0041-008X(63)90067-X.PMID 14082480.
  72. ^"Holmium: Biological Action". 2011-04-15. Archived fromthe original on 2011-04-15. Retrieved2023-03-05.

Bibliography

Further reading

  • R. J. Callow,The Industrial Chemistry of the Lanthanons, Yttrium, Thorium, and Uranium, Pergamon Press, 1967.

External links

Wikimedia Commons has media related toHolmium.
International
National
Retrieved from "https://en.wikipedia.org/w/index.php?title=Holmium&oldid=1336579781"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp