Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Holevo's theorem

From Wikipedia, the free encyclopedia

Upper bound on the knowable information of a quantum state

Holevo's theorem is an important limitative theorem inquantum computing, an interdisciplinary field ofphysics andcomputer science. It is sometimes calledHolevo's bound, since it establishes anupper bound to the amount of information that can be known about aquantum state (accessible information). It was published byAlexander Holevo in 1973.

Statement of the theorem

[edit]

Suppose Alice wants to send a classical message to Bob by encoding it into a quantum state, and suppose she can prepare a state from some fixed set{ρ1,...,ρn}{\displaystyle \{\rho _{1},...,\rho _{n}\}}, with the i-th state prepared with probabilitypi{\displaystyle p_{i}}. LetX{\displaystyle X} be the classical register containing the choice of state made by Alice. Bob's objective is to recover the value ofX{\displaystyle X} from measurement results on the state he received. LetY{\displaystyle Y} be the classical register containing Bob's measurement outcome. Note thatY{\displaystyle Y} is therefore a random variable whose probability distribution depends on Bob's choice ofmeasurement.

Holevo's theorem bounds the amount of correlation between the classical registersX{\displaystyle X} andY{\displaystyle Y}, regardless of Bob's measurement choice, in terms of theHolevo information. This is useful in practice because the Holevo information does not depend on the measurement choice, and therefore its computation does not require performing an optimization over the possible measurements.

More precisely, define theaccessible information betweenX{\displaystyle X} andY{\displaystyle Y} as the (classical) mutual information between the two registers maximized over all possible choices of measurements on Bob's side:Iacc(X:Y)=sup{ΠiB}iI(X:Y|{ΠiB}i),{\displaystyle I_{\rm {acc}}(X:Y)=\sup _{\{\Pi _{i}^{B}\}_{i}}I(X:Y|\{\Pi _{i}^{B}\}_{i}),}whereI(X:Y|{ΠiB}i){\displaystyle I(X:Y|\{\Pi _{i}^{B}\}_{i})} is the (classical) mutual information of the joint probability distribution given bypij=piTr(ΠjBρi){\displaystyle p_{ij}=p_{i}\operatorname {Tr} (\Pi _{j}^{B}\rho _{i})}. There is currently no known formula to analytically solve the optimization in the definition of accessible information in the general case. Nonetheless, we always have the upper bound:Iacc(X:Y)χ(η)S(ipiρi)ipiS(ρi),{\displaystyle I_{\rm {acc}}(X:Y)\leq \chi (\eta )\equiv S\left(\sum _{i}p_{i}\rho _{i}\right)-\sum _{i}p_{i}S(\rho _{i}),}whereη{(pi,ρi)}i{\displaystyle \eta \equiv \{(p_{i},\rho _{i})\}_{i}} is the ensemble of states Alice is using to send information, andS{\displaystyle S} is thevon Neumann entropy. Thisχ(η){\displaystyle \chi (\eta )} is called theHolevo information orHolevoχ quantity.

Note that the Holevo information also equals thequantum mutual information of the classical-quantum state corresponding to the ensemble:χ(η)=I(ipi|ii|ρi),{\displaystyle \chi (\eta )=I\left(\sum _{i}p_{i}|i\rangle \!\langle i|\otimes \rho _{i}\right),}withI(ρAB)S(ρA)+S(ρB)S(ρAB){\displaystyle I(\rho _{AB})\equiv S(\rho _{A})+S(\rho _{B})-S(\rho _{AB})} the quantum mutual information of the bipartite stateρAB{\displaystyle \rho _{AB}}. It follows that Holevo's theorem can be concisely summarized as a bound on the accessible information in terms of the quantum mutual information for classical-quantum states.

Proof

[edit]

Consider the composite system that describes the entire communication process, which involves Alice's classical inputX{\displaystyle X}, the quantum systemQ{\displaystyle Q}, and Bob's classical outputY{\displaystyle Y}. The classical inputX{\displaystyle X} can be written as a classical registerρX:=x=1npx|xx|{\displaystyle \rho ^{X}:=\sum \nolimits _{x=1}^{n}p_{x}|x\rangle \langle x|} with respect to some orthonormal basis{|x}x=1n{\displaystyle \{|x\rangle \}_{x=1}^{n}}. By writingX{\displaystyle X} in this manner, thevon Neumann entropyS(X){\displaystyle S(X)} of the stateρX{\displaystyle \rho ^{X}} corresponds to theShannon entropyH(X){\displaystyle H(X)} of the probability distribution{px}x=1n{\displaystyle \{p_{x}\}_{x=1}^{n}}:

S(X)=tr(ρXlogρX)=tr(x=1npxlogpx|xx|)=x=1npxlogpx=H(X).{\displaystyle S(X)=-\operatorname {tr} \left(\rho ^{X}\log \rho ^{X}\right)=-\operatorname {tr} \left(\sum _{x=1}^{n}p_{x}\log p_{x}|x\rangle \langle x|\right)=-\sum _{x=1}^{n}p_{x}\log p_{x}=H(X).}

The initial state of the system, where Alice prepares the stateρx{\displaystyle \rho _{x}} with probabilitypx{\displaystyle p_{x}}, is described by

ρXQ:=x=1npx|xx|ρx.{\displaystyle \rho ^{XQ}:=\sum _{x=1}^{n}p_{x}|x\rangle \langle x|\otimes \rho _{x}.}

Afterwards, Alice sends the quantum state to Bob. As Bob only has access to the quantum systemQ{\displaystyle Q} but not the inputX{\displaystyle X}, he receives a mixed state of the formρ:=trX(ρXQ)=x=1npxρx{\displaystyle \rho :=\operatorname {tr} _{X}\left(\rho ^{XQ}\right)=\sum \nolimits _{x=1}^{n}p_{x}\rho _{x}}. Bob measures this state with respect to thePOVM elements{Ey}y=1m{\displaystyle \{E_{y}\}_{y=1}^{m}}, and the probabilities{qy}y=1m{\displaystyle \{q_{y}\}_{y=1}^{m}} of measuring the outcomesy=1,2,,m{\displaystyle y=1,2,\dots ,m} form the classical outputY{\displaystyle Y}. This measurement process can be described as aquantum instrument

EQ(ρx)=y=1mqy|xρy|x|yy|,{\displaystyle {\mathcal {E}}^{Q}(\rho _{x})=\sum _{y=1}^{m}q_{y|x}\rho _{y|x}\otimes |y\rangle \langle y|,}

whereqy|x=tr(Eyρx){\displaystyle q_{y|x}=\operatorname {tr} \left(E_{y}\rho _{x}\right)} is the probability of outcomey{\displaystyle y} given the stateρx{\displaystyle \rho _{x}}, whileρy|x=WEyρxEyW/qy|x{\displaystyle \rho _{y|x}=W{\sqrt {E_{y}}}\rho _{x}{\sqrt {E_{y}}}W^{\dagger }/q_{y|x}} for some unitaryW{\displaystyle W} is the normalisedpost-measurement state. Then, the state of the entire system after the measurement process is

ρXQY:=[IXEQ](ρXQ)=x=1ny=1mpxqy|x|xx|ρy|x|yy|.{\displaystyle \rho ^{XQ'Y}:=\left[{\mathcal {I}}^{X}\otimes {\mathcal {E}}^{Q}\right]\!\left(\rho ^{XQ}\right)=\sum _{x=1}^{n}\sum _{y=1}^{m}p_{x}q_{y|x}|x\rangle \langle x|\otimes \rho _{y|x}\otimes |y\rangle \langle y|.}

HereIX{\displaystyle {\mathcal {I}}^{X}} is the identity channel on the systemX{\displaystyle X}. SinceEQ{\displaystyle {\mathcal {E}}^{Q}} is aquantum channel, and thequantum mutual information is monotonic undercompletely positive trace-preserving maps,[1]S(X:QY)S(X:Q){\displaystyle S(X:Q'Y)\leq S(X:Q)}. Additionally, as thepartial trace overQ{\displaystyle Q'} is also completely positive and trace-preserving,S(X:Y)S(X:QY){\displaystyle S(X:Y)\leq S(X:Q'Y)}. These two inequalities give

S(X:Y)S(X:Q).{\displaystyle S(X:Y)\leq S(X:Q).}

On the left-hand side, the quantities of interest depend only on

ρXY:=trQ(ρXQY)=x=1ny=1mpxqy|x|xx||yy|=x=1ny=1mpx,y|x,yx,y|,{\displaystyle \rho ^{XY}:=\operatorname {tr} _{Q'}\left(\rho ^{XQ'Y}\right)=\sum _{x=1}^{n}\sum _{y=1}^{m}p_{x}q_{y|x}|x\rangle \langle x|\otimes |y\rangle \langle y|=\sum _{x=1}^{n}\sum _{y=1}^{m}p_{x,y}|x,y\rangle \langle x,y|,}

withjoint probabilitiespx,y=pxqy|x{\displaystyle p_{x,y}=p_{x}q_{y|x}}. Clearly,ρXY{\displaystyle \rho ^{XY}} andρY:=trX(ρXY){\displaystyle \rho ^{Y}:=\operatorname {tr} _{X}(\rho ^{XY})}, which are in the same form asρX{\displaystyle \rho ^{X}}, describe classical registers. Hence,

S(X:Y)=S(X)+S(Y)S(XY)=H(X)+H(Y)H(XY)=I(X:Y).{\displaystyle S(X:Y)=S(X)+S(Y)-S(XY)=H(X)+H(Y)-H(XY)=I(X:Y).}

Meanwhile,S(X:Q){\displaystyle S(X:Q)} depends on the term

logρXQ=log(x=1npx|xx|ρx)=x=1n|xx|log(pxρx)=x=1nlogpx|xx|IQ+x=1n|xx|logρx,{\displaystyle \log \rho ^{XQ}=\log \left(\sum _{x=1}^{n}p_{x}|x\rangle \langle x|\otimes \rho _{x}\right)=\sum _{x=1}^{n}|x\rangle \langle x|\otimes \log \left(p_{x}\rho _{x}\right)=\sum _{x=1}^{n}\log p_{x}|x\rangle \langle x|\otimes I^{Q}+\sum _{x=1}^{n}|x\rangle \langle x|\otimes \log \rho _{x},}

whereIQ{\displaystyle I^{Q}} is the identity operator on the quantum systemQ{\displaystyle Q}. Then, the right-hand side is

S(X:Q)=S(X)+S(Q)S(XQ)=S(X)+S(ρ)+tr(ρXQlogρXQ)=S(X)+S(ρ)+tr(x=1npxlogpx|xx|ρx)+tr(x=1npx|xx|ρxlogρx)=S(X)+S(ρ)+tr(x=1npxlogpx|xx|)S(X)+tr(x=1npxρxlogρx)=S(ρ)+x=1npxtr(ρxlogρx)S(ρx)=S(ρ)x=1npxS(ρx),{\displaystyle {\begin{aligned}S(X:Q)&=S(X)+S(Q)-S(XQ)\\&=S(X)+S(\rho )+\operatorname {tr} \left(\rho ^{XQ}\log \rho ^{XQ}\right)\\&=S(X)+S(\rho )+\operatorname {tr} \left(\sum _{x=1}^{n}p_{x}\log p_{x}|x\rangle \langle x|\otimes \rho _{x}\right)+\operatorname {tr} \left(\sum _{x=1}^{n}p_{x}|x\rangle \langle x|\otimes \rho _{x}\log \rho _{x}\right)\\&=S(X)+S(\rho )+\underbrace {\operatorname {tr} \left(\sum _{x=1}^{n}p_{x}\log p_{x}|x\rangle \langle x|\right)} _{-S(X)}+\operatorname {tr} \left(\sum _{x=1}^{n}p_{x}\rho _{x}\log \rho _{x}\right)\\&=S(\rho )+\sum _{x=1}^{n}p_{x}\underbrace {\operatorname {tr} \left(\rho _{x}\log \rho _{x}\right)} _{-S(\rho _{x})}\\&=S(\rho )-\sum _{x=1}^{n}p_{x}S(\rho _{x}),\end{aligned}}}

which completes the proof.

Comments and remarks

[edit]

In essence, the Holevo bound proves that givennqubits, although they can "carry" a larger amount of (classical) information (thanks to quantum superposition), the amount of classical information that can beretrieved, i.e.accessed, can be only up ton classical (non-quantum encoded)bits. It was also established, both theoretically and experimentally, that there are computations where quantum bits carry more information through the process of the computation than is possible classically.[2]

See also

[edit]

References

[edit]
  1. ^Preskill, John (June 2016)."Chapter 10. Quantum Shannon Theory"(PDF).Quantum Information. pp. 23–24. Retrieved30 June 2021.
  2. ^Maslov, Dmitri; Kim, Jin-Sung; Bravyi, Sergey; Yoder, Theodore J.; Sheldon, Sarah (2021-06-28). "Quantum advantage for computations with limited space".Nature Physics.17 (8):894–897.arXiv:2008.06478.Bibcode:2021NatPh..17..894M.doi:10.1038/s41567-021-01271-7.S2CID 221136153.

Further reading

[edit]
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Holevo%27s_theorem&oldid=1223170967"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp