Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hoeffding's lemma

From Wikipedia, the free encyclopedia
Inequality in probability theory
This articlerelies largely or entirely on asingle source. Relevant discussion may be found on thetalk page. Please helpimprove this article byintroducing citations to additional sources.
Find sources: "Hoeffding's lemma" – news ·newspapers ·books ·scholar ·JSTOR
(March 2024)

Inprobability theory,Hoeffding's lemma is aninequality that bounds themoment-generating function of anyboundedrandom variable,[1] implying that such variables aresubgaussian. It is named after theFinnishAmericanmathematical statisticianWassily Hoeffding.

The proof of Hoeffding's lemma usesTaylor's theorem andJensen's inequality. Hoeffding's lemma is itself used in the proof ofHoeffding's inequality as well as the generalizationMcDiarmid's inequality.

Statement of the lemma

[edit]

LetX be any real-valued random variable such thataXb{\displaystyle a\leq X\leq b}almost surely, i.e. with probability one. Then, for allλR{\displaystyle \lambda \in \mathbb {R} },

E[eλX]exp(λE[X]+λ2(ba)28),{\displaystyle \mathbb {E} \left[e^{\lambda X}\right]\leq \exp {\Big (}\lambda \mathbb {E} [X]+{\frac {\lambda ^{2}(b-a)^{2}}{8}}{\Big )},}

or equivalently,

E[eλ(XE[X])]exp(λ2(ba)28).{\displaystyle \mathbb {E} \left[e^{\lambda (X-\mathbb {E} [X])}\right]\leq \exp {\Big (}{\frac {\lambda ^{2}(b-a)^{2}}{8}}{\Big )}.}

Proof

[edit]

The following proof is direct but somewhat ad-hoc. Another proof usesexponential tilting;[2]: Lemma 2.2  proofs with a slightly worse constant are also available using symmetrization.[3]

Without loss of generality, by replacingX{\displaystyle X} byXE[X]{\displaystyle X-\mathbb {E} [X]}, we can assumeE[X]=0{\displaystyle \mathbb {E} [X]=0}, so thata0b{\displaystyle a\leq 0\leq b}.

Sinceeλx{\displaystyle e^{\lambda x}} is a convex function ofx{\displaystyle x}, we have that for allx[a,b]{\displaystyle x\in [a,b]},

eλxbxbaeλa+xabaeλb{\displaystyle e^{\lambda x}\leq {\frac {b-x}{b-a}}e^{\lambda a}+{\frac {x-a}{b-a}}e^{\lambda b}}

So,

E[eλX]bE[X]baeλa+E[X]abaeλb=bbaeλa+abaeλb=eL(λ(ba)),{\displaystyle {\begin{aligned}\mathbb {E} \left[e^{\lambda X}\right]&\leq {\frac {b-\mathbb {E} [X]}{b-a}}e^{\lambda a}+{\frac {\mathbb {E} [X]-a}{b-a}}e^{\lambda b}\\&={\frac {b}{b-a}}e^{\lambda a}+{\frac {-a}{b-a}}e^{\lambda b}\\&=e^{L(\lambda (b-a))},\end{aligned}}}

whereL(h)=haba+ln(1+aehaba){\displaystyle L(h)={\frac {ha}{b-a}}+\ln(1+{\frac {a-e^{h}a}{b-a}})}. By computing derivatives, we find

L(0)=L(0)=0{\displaystyle L(0)=L'(0)=0} andL(h)=abeh(baeh)2{\displaystyle L''(h)=-{\frac {abe^{h}}{(b-ae^{h})^{2}}}}.

From theAMGM inequality we thus see thatL(h)14{\displaystyle L''(h)\leq {\frac {1}{4}}} for allh{\displaystyle h}, and thus, fromTaylor's theorem, there is some0θ1{\displaystyle 0\leq \theta \leq 1} such that

L(h)=L(0)+hL(0)+12h2L(hθ)18h2.{\displaystyle L(h)=L(0)+hL'(0)+{\frac {1}{2}}h^{2}L''(h\theta )\leq {\frac {1}{8}}h^{2}.}

Thus,E[eλX]e18λ2(ba)2{\displaystyle \mathbb {E} \left[e^{\lambda X}\right]\leq e^{{\frac {1}{8}}\lambda ^{2}(b-a)^{2}}}.

See also

[edit]

Notes

[edit]
  1. ^Pascal Massart (26 April 2007).Concentration Inequalities and Model Selection: Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003. Springer. p. 21.ISBN 978-3-540-48503-2.
  2. ^Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal (2013).Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press.
  3. ^Romaní, Marc (1 May 2021)."A short proof of Hoeffding's lemma". Retrieved7 September 2024.


Stub icon

Thisprobability-related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Hoeffding%27s_lemma&oldid=1256071450"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp