Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

History of gravitational theory

From Wikipedia, the free encyclopedia

Pioneers of gravitational theory

Inphysics, theories ofgravitation postulate mechanisms of interaction governing the movements of bodies with mass. There have been numerous theories of gravitation since ancient times. The first extant sources discussing such theories are found inancient Greek philosophy. This work was furthered through theMiddle Ages byIndian,Islamic, andEuropean scientists, before gaining great stridesduring the Renaissance andScientific Revolution—culminating in the formulation ofNewton's law of gravity. This was superseded byAlbert Einstein'stheory of relativity in the early 20th century.

Greek philosopherAristotle (fl. 4th century BC) found that objects immersed in a medium tend to fall at speeds proportional to their weight.Vitruvius (fl. 1st century BC) understood that objects fall based on theirspecific gravity. In the 6th century AD, ByzantineAlexandrian scholarJohn Philoponus modified theAristotelian concept of gravity with thetheory of impetus. In the 7th century, Indian astronomerBrahmagupta spoke of gravity as an attractive force. In the 14th century, European philosophersJean Buridan andAlbert of Saxony—who were influenced by Islamic scholarsIbn Sina andAbu'l-Barakat respectively—developed the theory of impetus and linked it to the acceleration and mass of objects. Albert also developed a law of proportion regarding the relationship between the speed of an object infree fall and the time elapsed.

Italians of the 16th century found that objects in free fall tend to accelerate equally. In 1632,Galileo Galilei put forththe basic principle of relativity. The existence of thegravitational constant was explored by various researchers from the mid-17th century, helpingIsaac Newton formulate his law of universal gravitation. Newton'sclassical mechanics were superseded in the early 20th century, when Einstein developed thespecial andgeneral theories of relativity. An elementalforce carrier of gravity is hypothesized inquantum gravity approaches such asstring theory, in a potentially unifiedtheory of everything.

Antiquity

[edit]
See also:Archimedes' principle,Aristotelian physics,Epicureanism, andPrinciple of inertia

Classical antiquity

[edit]

Heraclitus, Anaxagoras, Empedocles and Leucippus

[edit]
Heraclitus
A line engraving of Leucippus
Leucippus

Thepre-Socratic Greek philosopherHeraclitus (c. 535 – c. 475 BC) of theIonian School used the wordlogos ('word') to describe a kind of law which keeps thecosmos in harmony, moving all objects, including the stars, winds, and waves.[1]Anaxagoras (c. 500 – c. 428 BC), another Ionian philosopher, introduced the concept ofnous ('cosmic mind') as an ordering force.[2]

In the cosmogony of the Greek philosopherEmpedocles (c. 494 – c. 434/443 BC), there were two opposingfundamental cosmic forces of "attraction" and "repulsion", which Empedocles personified as "Love" and "Strife" (Philotes andNeikos).[3][4]

The ancient atomistLeucippus (5th century BC) proposed the cosmos was created when a large group ofatoms came together and swirled as avortex. The smaller atoms became the celestial bodies of the cosmos. The larger atoms in the center came together as a membrane from which theEarth was formed.[5][6]

Aristotle

[edit]
Aristotle found that objects immersed in a medium tend to fall at speeds proportional to their weight and inversely proportional to the density of the medium.[7][8][9]

In the 4th century BC, Greek philosopher Aristotle taught that there is noeffect ormotion without a cause. The cause of the downward natural motion of heavy bodies, such as theclassical elements ofearth andwater, was related to theirnature (gravity), which caused them to move downward toward the center of the (geocentric) universe. For this reason Aristotle supported aspherical Earth, since "every portion of earth has weight until it reaches the centre, and the jostling of parts greater and smaller would bring about not a waved surface, but rather compression and convergence of part and part until the centre is reached".[10] On the other hand, light bodies such as the elementfire andair, were moved by their nature (levity) upward toward thecelestial sphere of theMoon (seesublunary sphere).Astronomical objects near thefixed stars are composed ofaether, whose natural motion is circular. Beyond them is theprime mover, thefinal cause of all motion in the cosmos.[11][12] In hisPhysics, Aristotle correctly asserted that objects immersed in a medium tend to fall at speeds proportional to theirweight and inversely proportional to thedensity of the medium.[7][9]

Strato of Lampsacus, Epicurus and Aristarchus of Samos

[edit]

Greek philosopherStrato of Lampsacus (c. 335 – c. 269 BC) rejected the Aristotelian belief of "natural places" in exchange for amechanical view in which objects do not gainweight as they fall, instead arguing that the greater impact was due to an increase in speed.[13][14]

Epicurus (c. 341 – 270 BC) viewed weight as an inherent property ofatoms which influences their movement.[15] These atoms move downward in constantfree fall within an infinite vacuum withoutfriction at equal speed, regardless of their mass. On the other hand, upward motion is due toatomic collisions.[16]Epicureans deviated from olderatomist theories like that ofDemocritus (c. 460 – c. 370 BC) by proposing the idea that atoms mayrandomly deviate from their expected course.[17]

Greek astronomerAristarchus of Samos (c. 310 – c. 230 BC) theorizedEarth's rotation around its own axis, as well asEarth's orbit around theSun in aheliocentric cosmology.[18]Seleucus of Seleucia (c. 190 – c. 150 BC) supported his cosmology[18] and also describedgravitational effects of the Moon on thetidal range.[19]

Archimedes

[edit]

The 3rd-century BC Greek physicistArchimedes (c. 287 – c. 212 BC) discovered thecentre of mass of a triangle.[20] He also postulated that if thecentres of gravity of two equal weights was not the same, it would be located in the middle of the line that joins them.[21] InOn Floating Bodies, Archimedes claimed that for any object submerged in a fluid there is an equivalent upwardbuoyant force to the weight of the fluid displaced by the object's volume.[22] The fluids described by Archimedes are not self-gravitating, since he assumes that "any fluid at rest is the surface of a sphere whose centre is the same as that of the Earth".[23][24]

Hipparchus of Nicaea, Lucretius and Vitruvius

[edit]

Greek astronomerHipparchus of Nicaea (c. 190 – c. 120 BC) also rejectedAristotelian physics and followed Strato in adopting some form oftheory of impetus to explain motion.[25][26] The poemDe rerum natura byLucretius (c. 99 – c. 55 BC) asserts that more massive bodies fall faster in a medium because the latter resists less, but in avacuum fall with equal speed.[27] Roman engineer and architectVitruvius (c. 85 – c. 15 BC) contends in hisDe architectura that gravity is not dependent on a substance's weight but rather on its 'nature' (cf.specific gravity):

If thequicksilver is poured into a vessel, and a stone weighing one hundred pounds is laid upon it, the stone swims on the surface, and cannot depress the liquid, nor break through, nor separate it. If we remove the hundred pound weight, and put on a scruple of gold, it will not swim, but will sink to the bottom of its own accord. Hence, it is undeniable that the gravity of a substance depends not on the amount of its weight, but on its nature.[28][29] (translated from the original Latin by W. Newton)

Plutarch, Pliny the Elder, and Claudius Ptolemy

[edit]
Pliny the Elder

Greek philosopherPlutarch (c. 46 – c. 120 AD) attested the existence of Roman astronomers who rejected Aristotelian physics, "even contemplating theories ofinertia anduniversal gravitation",[30][31] and suggested that gravitational attraction was not unique to the Earth.[32] The gravitational effects of the Moon on the tides were noticed byPliny the Elder (23–79 AD) in hisNaturalis Historia[33] andClaudius Ptolemy (c. 100 – c. 170 AD) in hisTetrabiblos.[34]

Byzantine era

[edit]

John Philoponus

[edit]

In the 6th century AD, the ByzantineAlexandrian scholarJohn Philoponus proposed the theory of impetus, which modifies Aristotle's theory that "continuation of motion depends on continued action of a force" by incorporating a causative force which diminishes over time. In hiscommentary on Aristotle'sPhysics that "if one lets fall simultaneously from the same height two bodies differing greatly in weight, one will find that the ratio of the times of their motion does not correspond to the ratios of their weights, but the difference in time is a very small one".[35]

Indian subcontinent

[edit]
See also:History of science and technology in the Indian subcontinent

Brahmagupta

[edit]
Ujjain, Ram Ghat, home to Brahmagupta and Bhaskaracharya

Brahmagupta (c. 598 – c. 668 AD) was the first Indian scholar to describe gravity as an attractive force:[36][37][failed verification][38][39][failed verification]

The earth on all its sides is the same; all people on the earth stand upright, and all heavy things fall down to the earth by a law of nature, for it is the nature of the earth to attract and to keep things, as it is the nature of water to flow ... If a thing wants to go deeper down than the earth, let it try. The earth is the onlylow thing, and seeds always return to it, in whatever direction you may throw them away, and never rise upwards from the earth.[40][41][a]

Bhāskara II

[edit]

Bhāskara II (c. 1114 – c. 1185), another Indian mathematician and astronomer, describes gravity as an inherent attractive property of Earth in the section "Golādhyāyah" ("On Spherics") of his treatiseSiddhānta Shiromani:

The property of attraction is inherent in the Earth. By this property the Earth attracts any unsupported heavy thing towards it: The thing appears to be falling but it is in a state of being drawn to Earth. ... It is manifest from this that ... people situated at distances of a fourth part of the circumference [of earth] from us or in the opposite hemisphere, cannot by any means fall downwards [in space].[42][43]

Islamic world

[edit]
See also:Physics in the medieval Islamic world andAstronomy in the medieval Islamic world

Abu Ma'shar

[edit]

Ancient Greeks likePosidonius had associated the tides in the sea with to be influenced by moonlight. Around 850,Abu Ma'shar al-Balkhi recorded the tides and the moon position and noticed high-tides when the Moon was below the horizon. Abu Ma'shar considered an alternative explanation where the Moon and the sea had to share some astrological virtue that attracted each other. This work was translated into Latin and became one of the two main theories for tides for European scholars.[44]

Ibn Sina

[edit]
Ibn Sina

In the 11th century, Persian polymathIbn Sina (Avicenna) agreed with Philoponus' theory that "the moved object acquires an inclination from the mover" as an explanation forprojectile motion.[45] Ibn Sina then publishedhis own theory of impetus inThe Book of Healing (c. 1020). Unlike Philoponus, who believed that it was a temporary virtue that would decline even in a vacuum, Ibn Sina viewed it as a persistent, requiring external forces such asair resistance to dissipate it.[46][47][48] Ibn Sina made distinction between force and inclination (mayl), and argued that an object gained inclination when the object is in opposition to its natural motion. He concluded that continuation of motion is attributed to the inclination that is transferred to the object, and that object will be in motion until the inclination is spent.[49] The Iraqi polymathIbn al-Haytham describes gravity as a force in which heavier body moves towards the centre of the earth. He also describes the force of gravity will only move towards the direction of the centre of the earth not in different directions.[50]

Al-Biruni

[edit]
Al-Biruni

Another 11th-century Persian polymath,Al-Biruni, proposed thatheavenly bodies havemass, weight, and gravity, just like the Earth. He criticized both Aristotle and Ibn Sina for holding the view that only the Earth has these properties.[51] The 12th-century scholarAl-Khazini suggested that the gravity an object contains varies depending on its distance from the centre of the universe (referring to the centre of the Earth). Al-Biruni and Al-Khazini studied the theory of the centre of gravity, and generalized and applied it to three-dimensional bodies. Fine experimental methods were also developed for determining the specific gravity orspecific weight of objects, based the theory ofbalances andweighing.[52]

Abu'l-Barakāt al-Baghdādī

[edit]

In the 12th century,Ibn Malka al-Baghdadi adopted and modified Ibn Sina's theory onprojectile motion. In hisKitab al-Mu'tabar, Abu'l-Barakat stated that the mover imparts a violent inclination (mayl qasri) on the moved and that this diminishes as the moving object distances itself from the mover.[53] According toShlomo Pines, al-Baghdādī's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion], [and is thus an] anticipation in a vague fashion of the fundamental law ofclassical mechanics [namely, that a force applied continuously producesacceleration]."[54]

European Renaissance

[edit]
See also:Science in the Renaissance

14th century

[edit]
A 14th century illustration fromGautier de Metz'sL'Image du monde showing the gravitational attraction of the Earth at itsantipodes.

Jean Buridan, the Oxford Calculators, Albert of Saxony

[edit]

In the 14th century, both the French philosopherJean Buridan and theOxford Calculators (the Merton School) of theMerton College ofOxford rejected theAristotelian concept of gravity.[55][b] They attributed the motion of objects to an impetus (akin tomomentum), which varies according to velocity and mass;[55] Buridan was influenced in this by Ibn Sina'sBook of Healing.[48] Buridan and the philosopherAlbert of Saxony (c. 1320 – c. 1390) adopted Abu'l-Barakat's theory that the acceleration of a falling body is a result of its increasing impetus.[53] Influenced by Buridan, Albert developed a law of proportion regarding the relationship between the speed of an object infree fall and the time elapsed.[56] He also theorized that mountains and valleys are caused byerosion[c]—displacing the Earth's centre of gravity.[57][d]

Uniform and difform motion

[edit]

The roots ofDomingo de Soto's expressionuniform difform motion [uniformly accelerated motion] lies in the Oxford Calculators terms "uniform" and "difform" motion:[59] "uniform motion" was used differently then than it would be by later writers, and might have referred both to constant speed and to motion in which all parts of a body are moving at equal speed. The Calculators did not illustrate the different types of motion with real-world examples.[59] John of Holland at the University of Prague, illustrated uniform motion with what would later be called uniform velocity, but also with a falling stone (all parts moving at the same speed), and with a sphere in uniform rotation. He did, however, make distinctions between different kinds of "uniform" motion. Difform motion was exemplified by walking at increasing speed.[59]

Mean speed theorem

[edit]
Main article:Mean speed theorem
See also:Equations of motion § History
Nicole Oresme

Also in the 14th century, the Merton School developed themean speed theorem; a uniformly accelerated body starting from rest travels the same distance as a body withuniform speed whose speed is half the final velocity of the accelerated body. The mean speed theorem was proved byNicole Oresme (c. 1323 – 1382) and would be influential in latergravitational equations.[55] Written as a modern equation:

 s=12vft{\displaystyle \ s={\frac {1}{2}}v_{f}t}

However, since small time intervals could not be measured, the relationship between time and distance was not so evident as the equation suggests. More generally; equations, which were not widely used until after Galileo's time, imply a clarity that was not there.

15th–17th centuries

[edit]

Leonardo da Vinci

[edit]
Leonardo da Vinci

Leonardo da Vinci (1452–1519) made drawings recording the acceleration of falling objects.[60] He wrote that the "mother and origin of gravity" isenergy. He describes two pairs of physical powers which stem from ametaphysical origin and have an effect on everything:abundance of force and motion, and gravity and resistance. He associates gravity with the 'cold'classical elements,water and earth, and calls its energy infinite.[61][e] InCodex Arundel, Leonardo recorded that if a water-pouring vase moves transversally (sideways), simulating the trajectory of a vertically falling object, it produces aright triangle with equal leg length, composed of falling material that forms thehypotenuse and the vase trajectory forming one of the legs.[63] On the hypotenuse, Leonardo noted the equivalence of the two orthogonal motions, one effected by gravity and the other proposed by the experimenter.[63]

Nicolaus Copernicus, Petrus Apianus

[edit]
Nicolaus Copernicus

By 1514,Nicolaus Copernicus had writtenan outline ofhis heliocentric model, in which he stated that Earth's centre is the centre of bothits rotation and theorbit of the Moon.[64][f] In 1533, German humanistPetrus Apianus described theexertion of gravity:[g]

Since it is apparent that in the descent [along the arc] there is more impediment acquired, it is clear that gravity is diminished on this account. But because this comes about by reason of the position of heavy bodies, let it be called apositional gravity [i.e.gravitas secundum situm][67]

Francesco Beato and Luca Ghini

[edit]

By 1544, according toBenedetto Varchi, the experiments of at least two Italians, Francesco Beato, a Dominican philosopher at Pisa, andLuca Ghini, a physician and botanist from Bologna, had dispelled the Aristotelian claim that objects fall at speeds proportional to their weight.[68]

Domingo de Soto

[edit]
Domingo de Soto

In 1551,Domingo de Soto theorized that objects in free fall accelerate uniformly in his bookPhysicorum Aristotelis quaestiones.[69] This idea was subsequently explored in more detail by Galileo Galilei, who derived hiskinematics from the 14th-century Merton College and Jean Buridan,[55] and possibly De Soto as well.[69]

Simon Stevin

[edit]
Main article:Delft tower experiment
Simon Stevin

In 1585, Flemish polymathSimon Stevin performed a demonstration forJan Cornets de Groot, a local politician in the Dutch city ofDelft.[70] Stevin dropped two lead balls from theNieuwe Kerk in that city. From the sound of the impacts, Stevin deduced that the balls had fallen at the same speed. The result was published in 1586.[71][72]

Let us take (as ... Jan Cornets de Groot ... and I have done) two balls of lead, the one ten times larger and heavier than the other, and drop them together from a height of 30 feet on to a board or something on which they give a perceptible sound. Then it will be found that the lighter will not be ten times longer on its way than the heavier, but that they fall together on to the board so simultaneously that their two sounds seem to be one and the same. ... Therefore Aristotle ... is wrong.

— Simon Stevin, De Beghinselen der Weeghconst

Galileo Galilei

[edit]
This section is an excerpt fromGalileo's Leaning Tower of Pisa experiment.[edit]
Comparison of the antiquated view and the outcome of the experiment (size of the spheres represent their masses, not their volumes)

Between 1589 and 1592,[73] the Italian scientistGalileo Galilei (then professor of mathematics at theUniversity of Pisa) is said to have dropped "unequal weights of the same material" from theLeaning Tower of Pisa to demonstrate that their time of descent was independent of their mass, according to a biography by Galileo's pupilVincenzo Viviani, composed in 1654 and published in 1717.[74][75]: 19–21 [76][77] The basic premise had already been demonstrated by Italian experimenters a few decades earlier.

According to the story, Galileo discovered through this experiment that the objects fell with the same acceleration, proving his prediction true, while at the same time disprovingAristotle's theory of gravity (which states that objects fall at speed proportional to their mass). Though Viviani wrote that Galileo conducted "repeated experiments made from the height of the Leaning Tower of Pisa in the presence of other professors and all the students,"[74] most historians consider it to have been athought experiment rather than a physical test.[78]

Galileo successfully applied mathematics to the acceleration of falling objects,[79] correctly hypothesizing in a 1604 letter toPaolo Sarpi that the distance of a falling object is proportional to thesquare of the time elapsed.[80][h]

I have arrived at a proposition, ... namely, that spaces traversed in natural motion are in the squared proportion of the times.

— Galileo Galilei, Letter to Paolo Sarpi

Written with modern symbols:st2

The result was published inTwo New Sciences in 1638. In the same book, Galileo suggested that the slight variance of speed of falling objects of different mass was due to air resistance, and that objects would fall completely uniformly in a vacuum.[81] The relation of the distance of objects in free fall to the square of the time taken was confirmed by ItalianJesuitsGrimaldi andRiccioli between 1640 and 1650. They also made a calculation of thegravity of Earth by recording the oscillations of a pendulum.[82]

Johannes Kepler

[edit]
Johannes Kepler

In hisAstronomia nova (1609),Johannes Kepler proposed an attractive force of limited radius between any "kindred" bodies:

Gravity is a mutual corporeal disposition among kindred bodies to unite or join together; thus the earth attracts a stone much more than the stone seeks the earth. (The magnetic faculty is another example of this sort).... If two stones were set near one another in some place in the world outside the sphere of influence of a third kindred body, these stones, like two magnetic bodies, would come together in an intermediate place, each approaching the other by a space proportional to the bulk [moles] of the other....[83]

Kepler claimed that if the Earth and Moon were not held apart by some force they would come together. He recognized that mechanical forces cause action, resulting in a more modern view of planetary motion, in his view a celestial machine. On the other hand Kepler viewed the force of the Sun on the planets as magnetic and acting tangential to their orbits and he assumed with Aristotle that inertia meant objects tend to come to rest.[84][85]: 846 

Giovanni Borelli

[edit]

In 1666,Giovanni Alfonso Borelli avoided the key problems that limited Kepler. By Borelli's time the concept of inertia had its modern meaning as the tendency of objects to remain in uniform motion and he viewed the Sun as just another heavenly body. Borelli developed the idea of mechanical equilibrium, a balance between inertia and gravity. Newton cited Borelli's influence on his theory.[85]: 848 

Evangelista Torricelli

[edit]

A disciple of Galileo,Evangelista Torricelli reiterated Aristotle's model involving a gravitational centre, adding his view that a system can only be in equilibrium when the common centre itself is unable to fall.[66]

European Enlightenment

[edit]
See also:Scientific Revolution andScience in the Age of Enlightenment

The relation of the distance of objects in free fall to the square of the time taken was confirmed byFrancesco Maria Grimaldi andGiovanni Battista Riccioli between 1640 and 1650. They also made a calculation of thegravity of Earth constant by recording the oscillations of a pendulum.[86]

Mechanical explanations

[edit]
Main article:Mechanical explanations of gravitation
See also:Aether theories

In 1644,René Descartes proposed that no empty space can exist and that acontinuum of matter causes every motion to becurvilinear. Thus,centrifugal force thrusts relatively light matter away from the centralvortices of celestial bodies, lowering density locally and thereby creatingcentripetal pressure.[87][88] Using aspects of this theory, between 1669 and 1690,Christiaan Huygens designed a mathematical vortex model. In one of his proofs, he shows that the distance elapsed by an object dropped from a spinning wheel will increase proportionally to the square of the wheel's rotation time.[89] In 1671,Robert Hooke speculated that gravitation is the result of bodies emitting waves in theaether.[90][i]Nicolas Fatio de Duillier (1690) andGeorges-Louis Le Sage (1748) proposeda corpuscular model using some sort of screening or shadowing mechanism. In 1784, Le Sage posited that gravity could be a result of the collision of atoms, and in the early 19th century, he expandedDaniel Bernoulli'stheory of corpuscular pressure to the universe as a whole.[91] A similar model was later created byHendrik Lorentz (1853–1928), who usedelectromagnetic radiation instead of corpuscles.

English mathematician Isaac Newton used Descartes' argument that curvilinear motion constrains inertia,[92] and in 1675, argued that aether streams attract all bodies to one another.[j] Newton (1717) andLeonhard Euler (1760) proposed a model in which the aether loses density near mass, leading to a net force acting on bodies.[citation needed] Further mechanical explanations of gravitation (includingLe Sage's theory) were created between 1650 and 1900 to explain Newton's theory, but mechanistic models eventually fell out of favor because most of them lead to an unacceptable amount of drag (air resistance), which was not observed. Others violate theenergy conservation law and are incompatible with modernthermodynamics.[93]

'Weight' before Newton

[edit]
Main article:Mass § Pre-Newtonian concepts

Before Newton, 'weight' had the double meaning 'amount' and 'heaviness'.[94]

What we now know as mass was until the time of Newton called "weight." ... A goldsmith believed that an ounce of gold was a quantity of gold. ... But the ancients believed that a beam balance also measured "heaviness" which they recognized through their muscular senses. ... Mass and its associated downward force were believed to be the same thing.Kepler formed a [distinct] concept of mass ("amount of matter" (copia materiae), but called it "weight" as did everyone at that time.

— K. M. Browne, The pre-Newtonian meaning of the word "weight"

Mass as distinct from weight

[edit]
Portrait of Isaac Newton (1642–1727) byGodfrey Kneller (1689)

In 1686, Newton gave the concept of mass its name. In the first paragraph ofPrincipia, Newton defined quantity of matter as "density and bulk conjunctly", and mass as quantity of matter.[95]

The quantity of matter is the measure of the same, arising from its density and bulk conjunctly. ... It is this quantity that I mean hereafter everywhere under the name of body or mass. And the same is known by the weight of each body; for it is proportional to the weight.

— Isaac Newton, Mathematical principles of natural philosophy, Definition I.

Newton's law of universal gravitation

[edit]
See also:Gauss's law for gravity

In 1679, Robert Hooke wrote to Isaac Newton of his hypothesis concerning orbital motion, which partly depends on aninverse-square force.[96][k] In 1684, both Hooke and Newton toldEdmond Halley that they had proven the inverse-square law of planetary motion, in January and August, respectively.[98] While Hooke refused to produce his proofs, Newton was prompted to composeDe motu corporum in gyrum ('On the motion of bodies in an orbit'), in which he mathematically derivesKepler's laws of planetary motion.[98] In 1687, with Halley's support (and toHooke's dismay), Newton publishedPhilosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), which hypothesizes the inverse-squarelaw of universal gravitation.[98] In his own words:

I deduced that the forces which keep the planets in their orbs must be reciprocally as the squares of their distances from the centres about which they revolve; and thereby compared the force requisite to keep the moon in her orb with the force of gravity at the surface of the earth; and found them to answer pretty nearly.

Newton's original formula was:

Forceofgravitymassofobject1×massofobject2distancefromcenters2{\displaystyle {\rm {Force\,of\,gravity}}\propto {\frac {\rm {mass\,of\,object\,1\,\times \,mass\,of\,object\,2}}{\rm {distance\,from\,centers^{2}}}}}

where the symbol{\displaystyle \propto } means "is proportional to". To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them – thegravitational constant. Newton would need an accurate measure of this constant to prove his inverse-square law. Reasonably accurate measurements were not available in until theCavendish experiment byHenry Cavendish in 1797.[99]

In Newton's theory[100] (rewritten using more modern mathematics) the density of massρ{\displaystyle \rho \,} generates a scalar field, the gravitational potentialφ{\displaystyle \varphi \,} in joules per kilogram, by

2φxjxj=4πGρ.{\displaystyle {\partial ^{2}\varphi \over \partial x^{j}\,\partial x^{j}}=4\pi G\rho \,.}

Using theNabla operator{\displaystyle \nabla } for thegradient anddivergence (partial derivatives), this can be conveniently written as:

2φ=4πGρ.{\displaystyle \nabla ^{2}\varphi =4\pi G\rho \,.}

This scalar field governs the motion of afree-falling particle by:

d2xjdt2=φxj.{\displaystyle {d^{2}x^{j} \over dt^{2}}=-{\partial \varphi \over \partial x^{j}\,}.}

At distancer from an isolated massM, the scalar field is

φ=GMr.{\displaystyle \varphi =-{\frac {GM}{r}}\,.}

ThePrincipia sold out quickly, inspiring Newton to publish a second edition in 1713.[101][102]However the theory of gravity itself was not accepted quickly.

The theory of gravity faced two barriers. First scientists likeGottfried Wilhelm Leibniz complained that it relied onaction at a distance, that the mechanism of gravity was "invisible, intangible, and not mechanical".[103]: 339 [104]: 144  The French philosopherVoltaire countered these concerns, ultimately writinghis own book to explain aspects of it to French readers in 1738, which helped to popularize Newton's theory.[105]

Second, detailed comparisons with astronomical data were not initially favorable. Among the most conspicuous issue was the so-calledgreat inequality of Jupiter and Saturn. Comparisons of ancient astronomical observations to those of the early 1700s implied that the orbit of Saturn was increasing in diameter while that of Jupiter was decreasing. Ultimately this meant Saturn would exit the Solar System and Jupiter would collide with other planets or the Sun. The problem was tackled first byLeonhard Euler in 1748, thenJoseph-Louis Lagrange in 1763, byPierre-Simon Laplace in 1773. Each effort improved the mathematical treatment until the issue was resolved by Laplace in 1784 approximately 100 years after Newton's first publication on gravity. Laplace showed that the changes were periodic but with immensely long periods beyond any existing measurements.[106]: 144 

Successes such the solution to the great inequality of Jupiter and Saturn mystery accumulated. In 1755, Prussian philosopherImmanuel Kant publisheda cosmological manuscript based on Newtonian principles, in which he develops an early version of thenebular hypothesis.[107]Edmond Halley proposed that similar looking objects appearing every 76 years was in fact a single comet. The appearance of the comet in 1759, now named after him, within a month of predictions based on Newton's gravity greatly improved scientific opinion of the theory.[108] Newton's theory enjoyed its greatest success when it was used to predict the existence ofNeptune based on motions ofUranus that could not be accounted by the actions of the other planets. Calculations byJohn Couch Adams andUrbain Le Verrier both predicted the general position of the planet. In 1846, Le Verrier sent his position toJohann Gottfried Galle, asking him to verify it. The same night, Galle spotted Neptune near the position Le Verrier had predicted.[109]

Not every comparison was successful. By the end of the 19th century, Le Verrier showed that the orbit ofMercury could not be accounted for entirely under Newtonian gravity, and all searches for another perturbing body (such as a planet orbiting the Sun even closer than Mercury) were fruitless.[110] Even so, Newton's theory is thought to be exceptionally accurate in the limit of weakgravitational fields and low speeds.

At the end of the 19th century, many tried to combine Newton's force law with the established laws ofelectrodynamics (like those ofWilhelm Eduard Weber,Carl Friedrich Gauss, andBernhard Riemann) to explain the anomalousperihelion precession of Mercury. In 1890,Maurice Lévy succeeded in doing so by combining the laws of Weber and Riemann, whereby thespeed of gravity is equal to the speed of light. In another attempt,Paul Gerber (1898) succeeded in deriving the correct formula for the perihelion shift (which was identical to the formula later used by Albert Einstein). These hypotheses were rejected because of the outdated laws they were based on, being superseded by those ofJames Clerk Maxwell.[93]

Modern era

[edit]
See also:Alternatives to general relativity

In 1900,Hendrik Lorentz tried to explain gravity on the basis ofhis ether theory andMaxwell's equations. He assumed, likeOttaviano Fabrizio Mossotti andJohann Karl Friedrich Zöllner, that the attraction of opposite charged particles is stronger than the repulsion of equal charged particles. The resulting net force is exactly what is known as universal gravitation, in which the speed of gravity is that of light. Lorentz calculated that the value for the perihelion advance of Mercury was much too low.[111]

In the late 19th century,Lord Kelvin pondered the possibility of atheory of everything.[112] He proposed that every body pulsates, which might be an explanation of gravitation andelectric charges. His ideas were largely mechanistic and required the existence of the aether, which theMichelson–Morley experiment failed to detect in 1887. This, combined withMach's principle, led to gravitational models which featureaction at a distance.

Albert Einstein developed his revolutionarytheory of relativity in papers published in 1905 and 1915; these account for the perihelion precession of Mercury.[110] In 1914,Gunnar Nordström attempted to unify gravity andelectromagnetism inhis theory offive-dimensional gravitation.[l] General relativity was proven in 1919, whenArthur Eddington observedgravitational lensing around a solar eclipse, matching Einstein's equations. This resulted in Einstein's theory superseding Newtonian physics.[113] Thereafter, German mathematicianTheodor Kaluza promoted the idea of general relativity with a fifth dimension, which in 1921 Swedish physicistOskar Klein gavea physical interpretation of in a prototypicalstring theory, a possible model ofquantum gravity and potential theory of everything.

Albert Einstein in 1921

Einstein's field equations include acosmological constant to account for the allegedstaticity of the universe. However,Edwin Hubble observed in 1929 that the universe appears to be expanding. By the 1930s,Paul Dirac developed the hypothesis that gravitation should slowly and steadily decrease over the course of the history of the universe.[114]Alan Guth andAlexei Starobinsky proposed in 1980 thatcosmic inflation in the very early universe could have been driven by a negativepressure field, a concept later coined 'dark energy'—found in 2013 to have composed around 68.3% of the early universe.[115]

In 1922,Jacobus Kapteyn proposed the existence ofdark matter, an unseen force that moves stars in galaxies at higher velocities than gravity alone accounts for. It was found in 2013 to have comprised 26.8% of the early universe.[115] Along with dark energy, dark matter is an outlier in Einstein's relativity, and an explanation for its apparent effects is a requirement for a successful theory of everything.

In 1957,Hermann Bondi proposed thatnegative gravitational mass (combined with negative inertial mass) would comply with thestrong equivalence principle of general relativity andNewton's laws of motion. Bondi's proof yieldedsingularity-free solutions for the relativity equations.[116]

Early theories of gravity attempted to explain planetary orbits (Newton) and more complicated orbits (e.g. Lagrange). Then came unsuccessful attempts tocombine gravity and either wave or corpuscular theories of gravity. The whole landscape of physics was changed with the discovery ofLorentz transformations, and this led to attempts to reconcile it with gravity. At the same time, experimental physicists started testing the foundations of gravity and relativity—Lorentz invariance, thegravitational deflection of light, theEötvös experiment. These considerations led to and past the development ofgeneral relativity.

Einstein (1905–1912)

[edit]

In 1905, Albert Einstein published a series of papers in which he established thespecial theory of relativity and the fact thatmass and energy are equivalent. In 1907, in what he described as "the happiest thought of my life", Einstein realized that someone who is in free fall experiences no gravitational field. In other words, gravitation is exactly equivalent to acceleration.

Einstein's two-part publication in 1912[117][118] (and before in 1908) is really only important for historical reasons. By then he knew of the gravitational redshift and the deflection of light. He had realized that Lorentz transformations are not generally applicable, but retained them. The theory states that the speed of light is constant in free space but varies in the presence of matter. The theory was only expected to hold when the source of the gravitational field is stationary. It includes theprinciple of least action:

δdτ=0{\displaystyle \delta \int d\tau =0\,}
dτ2=ημνdxμdxν{\displaystyle {d\tau }^{2}=-\eta _{\mu \nu }\,dx^{\mu }\,dx^{\nu }\,}

whereημν{\displaystyle \eta _{\mu \nu }\,} is theMinkowski metric, and there is a summation from 1 to 4 over indicesμ{\displaystyle \mu \,} andν{\displaystyle \nu \,}.

Einstein and Grossmann[119] includesRiemannian geometry andtensor calculus.

δdτ=0{\displaystyle \delta \int d\tau =0\,}
dτ2=gμνdxμdxν{\displaystyle {d\tau }^{2}=-g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }\,}

The equations of electrodynamics exactly match those of general relativity. The equation

Tμν=ρdxμdτdxνdτ{\displaystyle T^{\mu \nu }=\rho {dx^{\mu } \over d\tau }{dx^{\nu } \over d\tau }\,}

is not in general relativity. It expresses thestress–energy tensor as a function of the matter density.

Lorentz-invariant models (1905–1910)

[edit]

Based on theprinciple of relativity,Henri Poincaré (1905, 1906),Hermann Minkowski (1908), andArnold Sommerfeld (1910) tried to modify Newton's theory and to establish aLorentz invariant gravitational law, in which the speed of gravity is that of light. As in Lorentz's model, the value for the perihelion advance of Mercury was much too low.[120]

Abraham (1912)

[edit]

Meanwhile,Max Abraham developed an alternative model of gravity in which the speed of light depends on the gravitational field strength and so is variable almost everywhere. Abraham's 1914 review of gravitation models is said to be excellent, but his own model was poor.

Nordström (1912)

[edit]

The first approach ofNordström (1912)[121] was to retain the Minkowski metric and a constant value ofc{\displaystyle c\,} but to let mass depend on the gravitational field strengthφ{\displaystyle \varphi \,}. Allowing this field strength to satisfy

φ=ρ{\displaystyle \Box \varphi =\rho \,}

whereρ{\displaystyle \rho \,} is rest mass energy and{\displaystyle \Box \,} is thed'Alembertian,

m=m0exp(φc2){\displaystyle m=m_{0}\exp \left({\frac {\varphi }{c^{2}}}\right)\,}

wherem0{\displaystyle m_{0}} is the mass when gravitational potential vanishes and,

φxμ=u˙μ+uμc2φ˙{\displaystyle -{\partial \varphi \over \partial x^{\mu }}={\dot {u}}_{\mu }+{u_{\mu } \over c^{2}{\dot {\varphi }}}\,}

whereu{\displaystyle u\,} is the four-velocity and the dot is a differential with respect to time.

The second approach ofNordström (1913)[122] is remembered as the firstlogically consistent relativistic field theory of gravitation ever formulated. (notation from Pais[123] not Nordström):

δψdτ=0{\displaystyle \delta \int \psi \,d\tau =0\,}
dτ2=ημνdxμdxν{\displaystyle {d\tau }^{2}=-\eta _{\mu \nu }\,dx^{\mu }\,dx^{\nu }\,}

whereψ{\displaystyle \psi \,} is a scalar field,

Tμνxν=T1ψψxμ{\displaystyle -{\partial T^{\mu \nu } \over \partial x^{\nu }}=T{1 \over \psi }{\partial \psi \over \partial x_{\mu }}\,}

This theory is Lorentz invariant, satisfies the conservation laws, correctly reduces to the Newtonian limit and satisfies theweak equivalence principle.

Einstein and Fokker (1914)

[edit]

This theory[124] is Einstein's first treatment of gravitation in which general covariance is strictly obeyed. Writing:

δds=0{\displaystyle \delta \int ds=0\,}
ds2=gμνdxμdxν{\displaystyle {ds}^{2}=g_{\mu \nu }\,dx^{\mu }\,dx^{\nu }\,}
gμν=ψ2ημν{\displaystyle g_{\mu \nu }=\psi ^{2}\eta _{\mu \nu }\,}

they relate Einstein–Grossmann[119] to Nordström.[122] They also state:

TR.{\displaystyle T\,\propto \,R\,.}

That is, the trace of the stress energy tensor is proportional to the curvature of space.

Between 1911 and 1915, Einstein developed the idea that gravitation is equivalent to acceleration, initially stated as theequivalence principle, into his general theory of relativity, which fuses thethree dimensions of space and the one dimension oftime into thefour-dimensional fabric ofspacetime. However, it does not unify gravity withquanta—individual particles of energy, which Einstein himself had postulated the existence of in 1905.

General relativity

[edit]
Main article:History of general relativity
Illustration explaining the relevance of the totalsolar eclipse of 29 May 1919, from the 22 November 1919 edition ofThe Illustrated London News

In general relativity, the effects of gravitation are ascribed to spacetime curvature instead of to a force. The starting point for general relativity is the equivalence principle, which equates free fall with inertial motion. The issue that this creates is that free-falling objects can accelerate with respect to each other. To deal with this difficulty, Einstein proposed that spacetime is curved by matter, and that free-falling objects are moving alonglocally straight paths in curved spacetime. More specifically, Einstein andDavid Hilbert discovered thefield equations of general relativity, which relate the presence of matter and the curvature of spacetime.These field equations are a set of 10simultaneous,non-linear,differential equations. The solutions of the field equations are the components of themetric tensor of spacetime, which describes its geometry. The geodesic paths of spacetime are calculated from the metric tensor.

Notable solutions of the Einstein field equations include:

General relativity has enjoyed much success because its predictions (not called for by older theories of gravity) have been regularly confirmed. For example:

It is believed thatneutron star mergers (since detected in 2017)[126] and black hole formation may also create detectable amounts of gravitational radiation.

Quantum gravity

[edit]
Main article:Quantum gravity

Several decades after the discovery of general relativity, it was realized that it cannot be the complete theory of gravity because it is incompatible withquantum mechanics.[127] Later it was understood that it is possible to describe gravity in the framework ofquantum field theory like the otherfundamental forces. In this framework, the attractive force of gravity arises due to exchange ofvirtualgravitons, in the same way as the electromagnetic force arises from exchange of virtualphotons.[128][129] This reproduces general relativity in theclassical limit, but only at the linearized level and postulating that the conditions for the applicability ofEhrenfest theorem holds, which is not always the case. Moreover, this approach fails at short distances of the order of thePlanck length.[127]

See also

[edit]

Notes

[edit]
  1. ^The source of this quote isAl-Biruni's India (c. 1030).[40]
  2. ^This was interpreted as deriving the weight of objects from thepressure of the air below them.[55]
  3. ^Leonardo da Vinci tested this theory by observingtrace fossils,[57] which he used to argue against themyth of a universal flood.[58]
  4. ^Furthermore, he hypothesized that the planet is in equilibrium when its centre of gravity coincides with that of its mass.[57]
  5. ^Leonardo did not publish his manuscripts and they had no direct influence on subsequent science.[62]
  6. ^He accounted for these movements by explaining, "Rotation is natural to a sphere, and by that very act is its shape expressed."[65]
  7. ^PhysicistPierre Duhem erroneously attributes this toJordanus Nemorarius, whom he calls the "precursor of Leonardo". Leonardo alludes to Jordanus in his notebooks, but not to any of his theories.[66]
  8. ^The distance traversed in successive equal intervals of time is calculated with a triangular model whose width (representing maximum velocity) increases by two for every equal section of height (representing time elapsed). This is in part anticipated by theMerton rule.[80]
  9. ^James Challis repeated this assumption in 1869.
  10. ^Bernhard Riemann made a similar argument in 1853.
  11. ^Newton was almost certainly influenced by this correspondence to do his subsequent work on gravitation,[96] although he denied that Hooke had told him of the inverse-square force.[97]
  12. ^Instring theory, dimensions exceeding four allow for the existence ofparallel realities—which along with theanthropic principle, help to explain the statistical near-impossibility of ourfine-tuned universe.

References

[edit]

Citations

[edit]
  1. ^Smith, Homer W. (1952).Man and His Gods. New York:Grosset & Dunlap. p. 144.
  2. ^Patzia, Michael."Anaxagoras (c.500—428 B.C.E.)". In Fieser, James; Dowden, Bradley (eds.).Internet Encyclopedia of Philosophy.ISSN 2161-0002.OCLC 37741658.
  3. ^Campbell, Gordon."Empedocles (c. 492—432 B.C.E.)". In Fieser, James; Dowden, Bradley (eds.).Internet Encyclopedia of Philosophy.ISSN 2161-0002.OCLC 37741658.
  4. ^Preston, David (2020)."Empedocles' Big Break: Pre-Socratic Cosmology and The Big Bounce".Sapiens Ubique Civis.1:11–28.doi:10.14232/suc.2020.1.11-28.ISSN 2786-2984.Empedocles also posits two opposing forces in an eternal tug-of-war as the energy which causes the roots to move about in the first place. These are 'Love' (also referred to as Aphrodite, Cypris, or Harmony) and 'Strife' (also referred to as Anger, Wrath, or Discord), the former named so for its unifying nature, the latter for its destructive. Under the influence of Love, the roots are 'glued' and 'fitted' together, while under Strife they are torn apart. To equate this to something more relatable, here we might think about the roles of gravity and dark energy in modern physical cosmology.
  5. ^Furley, David (1987).The Greek Cosmologists: Volume 1, The Formation of the Atomic Theory and its Earliest Critics. Cambridge University Press. pp. 140–141.doi:10.1017/CBO9780511552540.ISBN 0-521-33328-8.
  6. ^McKirahan, Richard D. (2011) [1994].Philosophy Before Socrates (2nd ed.). Hackett. pp. 411–412.ISBN 978-1-60384-182-5.
  7. ^ab"Aristotle's Theory of Free-Fall".Relativity of Gravity. Retrieved9 June 2023.
  8. ^Drabkin, Israel E. (1938). "Notes on the Laws of Motion in Aristotle".The American Journal of Philology.59 (1):60–84.JSTOR 90584.
  9. ^abRovelli, Carlo (2015). "Aristotle's Physics: A Physicist's Look".Journal of the American Philosophical Association.1 (1):23–40.arXiv:1312.4057.doi:10.1017/apa.2014.11.ISSN 2053-4477.S2CID 44193681.
  10. ^"On the Heavens by Aristotle, Book 2, Part 14".classics.mit.edu. MIT. Retrieved23 August 2023 – via The Internet Classics Archive.
  11. ^Grant, Edward (1996).The foundations of modern science in the Middle Ages: their religious, institutional, and intellectual contexts. Cambridge University Press. pp. 60–61.ISBN 978-0-521-56137-2 – via the Internet Archive.
  12. ^Pedersen, Olaf (1993).Early physics and astronomy: a historical introduction. Cambridge University Press. p. 130.ISBN 978-0-521-40340-5 – via the Internet Archive.
  13. ^Carrier, Richard (2017).The Scientist in the Early Roman Empire. United States and Canada: Pitchstone. p. 333.ISBN 978-1-63431-107-6.For example, in his lost books On Lightness and Heaviness and On Motion, Strato abandoned the doctrine of 'natural places' in exchange for a more mechanical view of why some objects rise and others fall
  14. ^Fortenbaugh, William (2017).Strato of Lampsacus: Text, Translation and Discussion. Routledge.ISBN 978-1-351-48792-4.If someone drops a rock [from] a finger's height above the ground, it certainly won't make a visible impact on the ground, but if someone drops it holding it a hundred feet or more, it will have a strong impact. And there is no other reason for that impact. Because it does not have greater weight, nor is it impelled by greater force; but it moves faster.
  15. ^"Weight in Greek Atomism".Philosophia.45: 85. 2015.
  16. ^Laertius, Diogenes."Letter of Epicurus to Herodotus, (61)".Attalus. Retrieved26 February 2024.
  17. ^Berryman, Sylvia (2022), Zalta, Edward N.; Nodelman, Uri (eds.),Ancient Atomism (Winter 2022 ed.), Metaphysics Research Lab, Stanford University, retrieved11 February 2024
  18. ^ab"Plutarch, Platonicae quaestiones, Question VIII, section 1".perseus.tufts.edu. Retrieved27 August 2023.
  19. ^Strabo."Geography — III, 5, 9".penelope.uchicago.edu. University of Chicago. Retrieved27 August 2023.
  20. ^Berggren, J. L. (1976). "Spurious Theorems in Archimedes' Equilibrium of Planes: Book I".Archive for History of Exact Sciences.16 (2):87–103.doi:10.1007/BF00349632.JSTOR 41133463.
  21. ^Tuplin, C. J.; Wolpert, Lewis (2002).Science and Mathematics in Ancient Greek Culture. Hachette. p. xi.ISBN 978-0-19-815248-4.
  22. ^"The works of Archimedes". Cambridge University Press. 1897. p. 257.Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced.
  23. ^The works of Archimedes. Translated byHeath, T. L. Cambridge University Press. 1897. p. 254. Retrieved13 November 2017.
  24. ^Ceccarelli, Marco (2007).Distinguished Figures in Mechanism and Machine Science: Their Contributions and Legacies. Springer. p. 13.ISBN 978-1-4020-6366-4.
  25. ^Sorabji, Richard, ed. (2014).Simplicius: On Aristotle On the Heavens 1.5-9. Translated by Hankinson, R. J. Bloomsbury. p. 87.ISBN 978-1-4725-0111-0.
  26. ^Carrier, Richard (2017).The Scientist in the Early Roman Empire. Pitchstone.ISBN 978-1-63431-107-6.Hipparchus rejected the Aristotlian physics of motion and followed Strato in embracing an early impetus theory
  27. ^Leonard, William Ellery (ed.)."Lucretius, De Rerum Natura, BOOK II, line 216".Perseus Digital Library. Retrieved20 August 2023 – viaTufts University.
  28. ^Vitruvius, Marcus Pollio (1914)."VII". In Howard, Alfred A. (ed.).De Architectura libri decem [Ten Books on Architecture] (in Latin). Cambridge, MA: Harvard University Press. p. 215.
  29. ^For another English translation see:The architecture of M. Vitruvius Pollio. Vol. 2. 1791. p. 168.
  30. ^Carrier, Richard (2017).The Scientist in the Early Roman Empire. Pitchstone.ISBN 978-1-63431-107-6.Plutarch also attests to the existence of Roman philosophers and astronomers who rejected Aristotelian dynamics and were engaging sophisticated debates on the subject, even contemplating theories of inertia and universal gravitation
  31. ^Taub, Liba Chaia (2008).Aetna and the Moon: Explaining Nature in Ancient Greece and Rome. Oregon State University Press.ISBN 978-0-87071-196-1.
  32. ^Bakker, Frederik; Palmerino, Carla Rita (1 June 2020)."Motion to the Center or Motion to the Whole? Plutarch's Views on Gravity and Their Influence on Galileo".Isis.111 (2):217–238.doi:10.1086/709138.hdl:2066/219256.ISSN 0021-1753.S2CID 219925047.
  33. ^Pliny the Elder (1893).The Natural History of Pliny. H. G. Bohn. p. 128.ISBN 978-0-598-91073-8.{{cite book}}:ISBN / Date incompatibility (help)
  34. ^Ptolemy (1940). "2".Tetrabiblos. Vol. 1. Translated by Robbins, Frank E. Cambridge, MA:Harvard University Press.
  35. ^"John Philoponus".eoht.info. Retrieved9 June 2023.
  36. ^Pickover, Clifford (2008).Archimedes to Hawking: Laws of Science and the Great Minds Behind Them. Oxford University Press. p. 105.ISBN 978-0-19-979268-9.
  37. ^Bose, Mainak Kumar (1988).Late classical India. A. Mukherjee & Company.[page needed]
  38. ^Sen, Amartya (2005).The Argumentative Indian. Allen Lane. p. 29.ISBN 978-0-7139-9687-6.
  39. ^Thurston, Hugh (1993).Early Astronomy. New York: Springer.ISBN 978-0-387-94107-3.[page needed]
  40. ^abAlberuni's India. Kegan Paul. p. 272. Retrieved3 June 2014.
  41. ^Kitāb al-Jawharatayn al-'atīqatayn al-mā'i'atayn min al-ṣafrā' wa-al-bayḍā': al-dhahab wa-al-fiḍḍahكتاب الجوهرتين العتيقتين المائعتين من الصفراء والبيضاء : الذهب والفضة (in Arabic). Cairo: Maṭba'at Dār al-Kutub wa-al-Wathā'iq al-Qawmīyah bi-al-Qāhirah. 2004. pp. 43–44, 87.OCLC 607846741.
  42. ^Áryabhat́t́a;Bháskarácárya (1150) [505, 1150]."Chapter III ─ Called Bhuvana-kośa or Cosmograghy".Súrya Siddhánta and Siddhánta Shiromańi (in Sanskrit). Translated by Deva Sástri, Bápú; Wilkinson, Lancelot. Calcutta: C. B. Lewis, Baptist Mission Press (published 1860). p. 113.
  43. ^Bháskarácárya (1150). "ভুবনকোষ".Siddhánta Shiromańi: Goládhyáyah(PDF) (in Sanskrit). Calcutta.
  44. ^Deparis, Vincent (2013), Souchay, Jean; Mathis, Stéphane; Tokieda, Tadashi (eds.), "Investigations of Tides from the Antiquity to Laplace",Tides in Astronomy and Astrophysics, vol. 861, Berlin: Springer, pp. 31–82,doi:10.1007/978-3-642-32961-6_2,ISBN 978-3-642-32960-9
  45. ^McGinnis, Jon; Reisman, David C. (2007).Classical Arabic philosophy: an anthology of sources. Hackett. p. 174.ISBN 978-0-87220-871-1. Retrieved16 June 2010.
  46. ^Espinoza, Fernando (2005). "An analysis of the historical development of ideas about motion and its implications for teaching".Physics Education.40 (2): 141.Bibcode:2005PhyEd..40..139E.doi:10.1088/0031-9120/40/2/002.S2CID 250809354.
  47. ^Nasr, Seyyed Hossein; Mehdi Amin, Razavi (1996).The Islamic intellectual tradition in Persia. Routledge. p. 72.ISBN 978-0-7007-0314-2.
  48. ^abSayili, Aydin (1987). "Ibn Sīnā and Buridan on the Motion of the Projectile".Annals of the New York Academy of Sciences.500 (1):477–482.Bibcode:1987NYASA.500..477S.doi:10.1111/j.1749-6632.1987.tb37219.x.S2CID 84784804.
  49. ^Espinoza, Fernando. "An Analysis of the Historical Development of Ideas About Motion and its Implications for Teaching". Physics Education. Vol. 40 (2).
  50. ^Clagett, Marshall (1961).The Science of Mechanics in the Middle Ages. Vol. 1. University of Wisconsin Press. p. 58 – via the Internet Archive.
  51. ^Starr, S. Frederick (2015).Lost Enlightenment: Central Asia's Golden Age from the Arab Conquest to Tamerlane. Princeton University Press. p. 260.ISBN 978-0-691-16585-1.
  52. ^Rozhanskaya, Mariam; Levinova, I. S. (1996). "Statics". In Rushdī, Rāshid (ed.).Encyclopedia of the History of Arabic Science. Vol. 2. Psychology Press. pp. 614–642.ISBN 978-0-415-12411-9.Using a whole body of mathematical methods (not only those inherited from the antique theory of ratios and infinitesimal techniques, but also the methods of the contemporary algebra and fine calculation techniques), Muslim scientists raised statics to a new, higher level. The classical results of Archimedes in the theory of the centre of gravity were generalized and applied to three-dimensional bodies, the theory of ponderable lever was founded and the 'science of gravity' was created and later further developed in medieval Europe. The phenomena of statics were studied by using the dynamic approach so that two trends – statics and dynamics – turned out to be inter-related within a single science, mechanics. The combination of the dynamic approach with Archimedean hydrostatics gave birth to a direction in science which may be called medieval hydrodynamics. ... Numerous fine experimental methods were developed for determining the specific weight, which were based, in particular, on the theory of balances and weighing. The classical works of al-Biruni and al-Khazini can by right be considered as the beginning of the application of experimental methods in medieval science.
  53. ^abGutman, Oliver (2003).Pseudo-Avicenna, Liber Celi Et Mundi: A Critical Edition. Brill. p. 193.ISBN 90-04-13228-7.
  54. ^Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī, Hibat Allah".Dictionary of Scientific Biography. Vol. 1. New York: Charles Scribner's Sons. pp. 26–28.ISBN 0-684-10114-9.
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory",Journal of the History of Ideas64 (4), pp. 521–546 [528].)
  55. ^abcdeGillispie 1960, p. 41.
  56. ^Drake, Stillman (1975)."Free fall from Albert of Saxony to Honoré Fabri".Studies in History and Philosophy of Science Part A.5 (4):347–366.Bibcode:1975SHPSA...5..347D.doi:10.1016/0039-3681(75)90007-2.ISSN 0039-3681 – viaAcademia.edu.
  57. ^abcKnight, Kevin (2017)."Albert of Saxony".New Advent. Retrieved10 July 2019.
  58. ^Da Vinci, Leonardo (1971). Taylor, Pamela (ed.).The Notebooks of Leonardo da Vinci. New American Library. pp. 136–138,142–148.
  59. ^abcWallace 2004a, p. 386.
  60. ^Ouellette, Jennifer (10 February 2023)."Leonardo noted link between gravity and acceleration centuries before Einstein".Ars Technica. Retrieved11 February 2023.
  61. ^Da Vinci, Leonardo (1971). Taylor, Pamela (ed.).The Notebooks of Leonardo da Vinci. New American Library. p. 124.Force arises from dearth or abundance; it is the child of physical motion, and the grandchild of spiritual motion, and the mother and origin of gravity. Gravity is limited to the elements of water and earth; but his force is unlimited, and by it infinite worlds might be moved if instruments could be made by which the force be generated.
    Force, with physical motion, and gravity, with resistance, are the four external powers on which all actions of mortals depend.
  62. ^Capra, Fritjof (2007).The Science of Leonardo. Doubleday. pp. 5–6.ISBN 978-0-385-51390-6.
  63. ^abGharib, Morteza; Roh, Chris; Noca, Flavio (1 February 2023)."Leonardo da Vinci's Visualization of Gravity as a Form of Acceleration".Leonardo.56:21–27.doi:10.1162/leon_a_02322.S2CID 254299572. Retrieved16 February 2023.
  64. ^Durant, Will (2011) [1957].The Story of Civilization: Volume VI – The Reformation. Simon & Schuster. p. 823.ISBN 978-1-4516-4763-1.
  65. ^Gillispie 1960, p. 27.
  66. ^abGinzburg, Benjamin (September 1936). "Duhem and Jordanus Nemorarius".Isis.25 (2). The University of Chicago Press:341–362.doi:10.1086/347085.JSTOR 225373.S2CID 145152521.
  67. ^Duhem, Pierre (2012).The Origins of Statics: The Sources of Physical Theory Volume 1. Translated by Leneaux, G. F.; Vagliente, V. N.; Wagener, G. H. Springer. p. xxiv.ISBN 978-94-011-3730-0.
  68. ^Wallace 2004b, p. 121.
  69. ^abWallace, William A. (2018) [2004].Domingo de Soto and the Early Galileo: Essays on Intellectual History. Abingdon, UK: Routledge. pp. 119,121–122.ISBN 978-1-351-15959-3.
  70. ^Icke, V. (2014).Gravity does not exist: A puzzle for the 21st century. Amsterdam University Press. p. 9.Bibcode:2014gdne.book.....I.
  71. ^Drake, S (1978).Galileo at work: His scientific biography. University of Chicago Press. p. 20.ISBN 978-0-226-16226-3.
  72. ^Stevin, S. (1955) [1586]. Dijksterhuis, E. J. (ed.).The Principal Works of Simon Stevin(PDF) (in Dutch and English). Vol. 1. C. V. Swets & Zeitlinger. pp. 509, 511.
  73. ^Some contemporary sources speculate about the exact date; e.g. Rachel Hilliam gives 1591 (Galileo Galilei: Father of Modern Science, The Rosen Publishing Group, 2005, p. 101).
  74. ^abVincenzo Viviani (1717),Racconto istorico della vita di Galileo Galilei, p. 606: [...dimostrando ciò con replicate esperienze, fatte dall'altezza del Campanile di Pisa con l'intervento delli altri lettori e filosofi e di tutta la scolaresca... [...Galileo showed this [all bodies, whatever their weights, fall with equal speeds] by repeated experiments made from the height of the Leaning Tower of Pisa in the presence of other professors and all the students...].
  75. ^Drake, Stillman (2003).Galileo at Work: His Scientific Biography (Facsim. ed.). Mineola (N.Y.): Dover publ.ISBN 978-0-486-49542-2.
  76. ^"Sci Tech: Science history: setting the record straight".The Hindu. 30 June 2005. Archived fromthe original on 2 November 2005. Retrieved5 May 2009.
  77. ^Vincenzo Viviani on museo galileo
  78. ^"El experimento más famoso de Galileo probablemente nunca tuvo lugar".The Conversation. 16 May 2019. Retrieved17 May 2019.
  79. ^Gillispie 1960, p. 42.
  80. ^abGillispie 1960, pp. 3–6.
  81. ^Galilei, Galileo (2015).Dialogues Concerning Two New Sciences. Translated byCrew, Henry. Eastford, CT: Martino Fine Books. p. 72.ISBN 978-1-61427-794-1.
  82. ^J.L. Heilbron,Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics (Berkeley: the University of California Press, 1979), 180.
  83. ^Kepler, Johannes (2004).Selections from Kepler's Astronomia Nova. Translated by Donahue, William H. Santa Fe, NM: Green Lion. p. 1.ISBN 1-888009-28-4.
  84. ^Holton, Gerald (1 May 1956)."Johannes Kepler's Universe: Its Physics and Metaphysics".American Journal of Physics.24 (5):340–351.doi:10.1119/1.1934225.ISSN 0002-9505.
  85. ^abDijksterhuis, E. J. (1954). History of Gravity and Attraction before Newton. Cahiers d'Histoire Mondiale. Journal of World History. Cuadernos de Historia Mundial, 1(4), 839.
  86. ^J.L. Heilbron,Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics (Berkeley: University of California Press, 1979), 180.
  87. ^Gillispie 1960, p. 93.
  88. ^Descartes, René (1644).Principles of Philosophy.
  89. ^Gillispie 1960, p. 121.
  90. ^Taylor, William Bower (1876). "Kinetic Theories of Gravitation".Smithsonian Report:205–282.
  91. ^Gillispie 1960, p. 480.
  92. ^Gillispie 1960, p. 120.
  93. ^abZenneck, J. (1903). "Gravitation".Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (in German). Vol. 5. Leipzig. pp. 25–67.doi:10.1007/978-3-663-16016-8_2.ISBN 978-3-663-15445-7.{{cite book}}:ISBN / Date incompatibility (help)CS1 maint: location missing publisher (link)
  94. ^Browne, K. M. (2018)."The pre-Newtonian meaning of the word "weight"; a comment on "Kepler and the origins of pre-Newtonian mass" [Am. J. Phys. 85, 115–123 (2017)]".American Journal of Physics.86 (6):471–474.Bibcode:2018AmJPh..86..471B.doi:10.1119/1.5027490.S2CID 125953814.
  95. ^Newton, I. (1729) [Original work published 1686].The mathematical principles of natural philosophy. Translated by Motte, A. Printed for Benjamin Motte. pp. 1–2.
  96. ^abCohen, I. Bernard; Smith, George Edwin (2002).The Cambridge Companion to Newton. Cambridge University Press. pp. 11–12,96–97.ISBN 978-0-521-65696-2.
  97. ^H. W. Turnbull (ed.),Correspondence of Isaac Newton, Vol. 2 (1676–1687), (Cambridge University Press, 1960), pp. 297–314, 431–448.
  98. ^abcSagan, Carl;Druyan, Ann (1997).Comet. New York: Random House. pp. 52–58.ISBN 978-0-307-80105-0.
  99. ^Poynting 1894
  100. ^Newton, I. (1686).Philosophiæ Naturalis Principia Mathematica (in Latin).
  101. ^The Correspondence of Isaac Newton, vol. 4, Cambridge University Press 1967, at pp. 519, n.2.
  102. ^Westfall, Richard S. (1971),Force in Newton's Physics: The Science of Dynamics in the Seventeenth Century. New York: American Elsevier, p. 750.
  103. ^Hesse, Mary B. (1955). "Action at a Distance in Classical Physics".Isis.46 (4):337–353.doi:10.1086/348429.ISSN 0021-1753.JSTOR 227576.S2CID 121166354.
  104. ^Gillispie, Charles Coulston. The edge of objectivity: An essay in the history of scientific ideas. Princeton University Press, 2016.
  105. ^Shank, J. B. (2009)."Voltaire". Stanford Encyclopedia of Philosophy.
  106. ^Whittaker, Edmund T. (1989).A history of the theories of aether & electricity. 2: The Modern Theories 1900–1926 (Repr. ed.). New York: Dover.ISBN 978-0-486-26126-3.
  107. ^Woolfson, M. M. (1993). "Solar System – its origin and evolution".Q. J. R. Astron. Soc.34:1–20.Bibcode:1993QJRAS..34....1W.
  108. ^Hughes, D. W. (1987). "The history of Halley's Comet".Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.323 (1572):349–367.Bibcode:1987RSPTA.323..349H.doi:10.1098/rsta.1987.0091.ISSN 0080-4614.S2CID 123592786.
  109. ^Chisholm, Hugh, ed. (1911)."Adams, John Couch" .Encyclopædia Britannica. Vol. 1 (11th ed.). Cambridge University Press. pp. 177–178.
  110. ^abcEinstein, Albert (1916)."The Foundation of the General Theory of Relativity"(PDF).Annalen der Physik.49 (7):769–822.Bibcode:1916AnP...354..769E.doi:10.1002/andp.19163540702. Retrieved3 September 2006.
  111. ^Lorentz, H. A. (1900)."Considerations on Gravitation"(PDF).Proceedings of the Royal Netherlands Academy of Arts and Sciences.2:559–574.
  112. ^Thompson, Silvanus P. (2019)."Lord Kelvin".International Electrotechnical Commission. Archived fromthe original on 29 March 2019. Retrieved16 October 2019.
  113. ^Andrzej, Stasiak (2003)."Myths in science".EMBO Reports.4 (3): 236.doi:10.1038/sj.embor.embor779.PMC 1315907.
  114. ^Haber, Heinz (1967) [1965]. "Die Expansion der Erde" [The expansion of the Earth].Unser blauer Planet [Our blue planet]. Rororo Sachbuch [Rororo nonfiction] (in German) (Rororo Taschenbuch Ausgabe [Rororo pocket edition] ed.). Reinbek:Rowohlt Verlag. p. 52.Bibcode:1967ubp..book.....H.Der englische Physiker und Nobelpreisträger Dirac hat ... vor über dreißig Jahren die Vermutung begründet, dass sich das universelle Maß der Schwerkraft im Laufe der Geschichte des Universums außerordentlich langsam, aber stetig verringert."English: "The English physicist and Nobel laureate Dirac has ..., more than thirty years ago, substantiated the assumption that the universal strength of gravity decreases very slowly, but steadily over the course of the history of the universe.
  115. ^ab"Big Bang's afterglow shows universe is 80 million years older than scientists first thought".The Washington Post. Archived fromthe original on 22 March 2013. Retrieved22 March 2013.
  116. ^Bondi, H. (1957). "Negative mass in general relativity".Reviews of Modern Physics.29 (3):423–428.Bibcode:1957RvMP...29..423B.doi:10.1103/revmodphys.29.423.
  117. ^Einstein, Albert (1912)."Lichtgeschwindigkeit und Statik des Gravitationsfeldes".Annalen der Physik (in German).38 (7):355–369.Bibcode:1912AnP...343..355E.doi:10.1002/andp.19123430704.
  118. ^Einstein, Albert (1912)."Zur Theorie des statischen Gravitationsfeldes".Annalen der Physik (in German).38 (7): 443.Bibcode:1912AnP...343..443E.doi:10.1002/andp.19123430709.
  119. ^abEinstein, A. and Grossmann, M. (1913),Zeitschrift für Mathematik und Physik 62, 225
  120. ^Walter, S. (2007). Renn, J. (ed.)."Breaking in the 4-vectors: the four-dimensional movement in gravitation, 1905–1910"(PDF).The Genesis of General Relativity.3. Berlin:193–252.Bibcode:2007ggr..conf..193W.
  121. ^Nordström, G. (1912)."Relativitätsprinzip und Gravitation".Physikalische Zeitschrift (in German).13: 1126.
  122. ^abNordström, G. (1913). "Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips".Annalen der Physik (in German).42 (13): 533.Bibcode:1913AnP...347..533N.doi:10.1002/andp.19133471303.
  123. ^Pais, Abraham (2005).Subtle is the Lord: The Science and Life of Albert Einstein. New York: Oxford University Press.ISBN 978-0-19-152402-8.
  124. ^Einstein, Albert; Fokker, A. D. (1914). "Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentkalküls".Annalen der Physik (in German).44 (10):321–328.Bibcode:1914AnP...349..321E.doi:10.1002/andp.19143491009.
  125. ^Abbott, Benjamin P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger".Physical Review Letters.116 (6) 061102.arXiv:1602.03837.Bibcode:2016PhRvL.116f1102A.doi:10.1103/PhysRevLett.116.061102.PMID 26918975.S2CID 124959784.
  126. ^Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S. (2017)."Multi-messenger Observations of a Binary Neutron Star Merger".The Astrophysical Journal Letters.848 (2): L12.arXiv:1710.05833.Bibcode:2017ApJ...848L..12A.doi:10.3847/2041-8213/aa91c9.S2CID 217162243.
  127. ^abRandall, Lisa (2005).Warped Passages: Unraveling the Universe's Hidden Dimensions. Ecco.ISBN 978-0-06-053108-9.
  128. ^Feynman, Richard; Morinigo, F. B.; Wagner, W. G.; Hatfield, B. (1995).Feynman lectures on gravitation. Addison-Wesley.ISBN 978-0-201-62734-3.
  129. ^Zee, A. (2003).Quantum Field Theory in a Nutshell. Princeton University Press.

Sources

[edit]
Standard
Newtonian gravity (NG)
General relativity (GR)
Alternatives to
general relativity
Paradigms
Classical
Quantum-mechanical
Unified-field-theoric
Unified-field-theoric and
quantum-mechanical
Generalisations /
extensions of GR
Pre-Newtonian
theories and
toy models
Related topics
Classical physics
Modern physics
Recent developments
On specific discoveries
By periods
By groups
Scientific disputes
Retrieved from "https://en.wikipedia.org/w/index.php?title=History_of_gravitational_theory&oldid=1314037689"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp