| Part of a series on |
| Geography |
|---|
| History of geography |
|---|
Maps have been one of the most important human inventions, allowing humans to explain and navigate their way. When and how the earliest maps were made is unclear, but maps of local terrain are believed to have been independently invented by many cultures. The earliest putative maps includecave paintings and etchings on tusk and stone. Maps were produced extensively by ancientBabylon, Greece, Rome, China, and India.
The earliest maps ignored the curvature of Earth's surface, both because the shape of the Earth was unknown and because the curvature is not important across the small areas being mapped. However, since the age ofClassical Greece, maps of large regions, and especially of the world, have usedprojection from a model globe to control how the inevitable distortion gets apportioned on the map.
Modern methods of transportation, the use ofsurveillance aircraft, and more recently the availability ofsatellite imagery have made documentation of many areas possible that were previously inaccessible. Free online services such asGoogle Earth have made accurate maps of the world more accessible than ever before.
The English termcartography is modern, borrowed from the Frenchcartographie in the 1840s, itself based onMiddle Latincarta "map".

It is not always clear whether an ancient artifact had been wrought as a map or as something else. The definition of "map" is also not precise. Thus, no single artifact is generally accepted to be the earliest surviving map. Candidates include:

Maps in AncientBabylonia were made by using accuratesurveying techniques.[14] For example, a 7.6 × 6.8 cmclay tablet found in 1930 atGa-Sur, near contemporaryKirkuk, shows a map of a river valley between two hills.Cuneiform inscriptions label the features on the map, including a plot of land described as 354 iku (12 hectares) that was owned by a person called Azala. Most scholars date the tablet to the 25th to 24th century BC. Hills are shown by overlapping semicircles, rivers by lines, and cities by circles. The map also is marked to show thecardinal directions.[15] An engraved map from the Kassite period (14th–12th centuries BC) of Babylonian history shows walls and buildings in the holy city ofNippur.[16]
TheBabylonian World Map, the earliest surviving map of the world (c. 600 BC), is a symbolic, not a literal representation. It deliberately omits peoples such as thePersians andEgyptians, who were well known to the Babylonians. The area shown is depicted as a circular shape surrounded by water, which fits the religious image of the world in which the Babylonians believed.
Phoenician sailors made major advances in seafaring and exploration. It is recorded that the firstcircumnavigation of Africa was possibly undertaken by Phoenician explorers employed by EgyptianpharaohNecho II c. 610–595 BC.[17][18] InThe Histories, written 431–425 BC,Herodotus cast doubt on a report of the Sun observed shining from the north. He stated that the phenomenon was observed by Phoenician explorers during their circumnavigation of Africa (The Histories, 4.42) who claimed to have had the Sun on their right when circumnavigating in a clockwise direction. To modern historians, these details confirm the truth of the Phoenicians' report, and even suggest the possibility that the Phoenicians knew about thespherical Earth model. However, nothing certain about their knowledge of geography and navigation has survived.[17] The historian Dmitri Panchenko theorizes that it was the Phoenician circumnavigation of Africa that inspired the theory of a spherical Earth by the 5th century BC.[18]
Many scholars throughout history, such asStrabo, Kish, andDilke, considerHomer to be the founder of the early Greek conception of Earth, and therefore of geography.Homer conceived Earth to be a disk surrounded by a constantly movingstream of Ocean,[19]: 22 an idea which would be suggested by the appearance of the horizon as it is seen from a mountaintop or from a seacoast. This model was accepted by the earlyGreeks. Homer and his Greek contemporaries knew very little of the Earth beyond the Libyan desert ofEgypt, the southwest coast ofAsia Minor, and the northern boundary of the Greek homeland. Furthermore, the coast of the Black Sea was only known through myths and legends that circulated during his time. In his poems there is no mention of Europe and Asia as geographical concepts.[20][full citation needed] That is why the big part of Homer's world that is portrayed on this interpretive map represents lands that border on theAegean Sea. The Greeks believed that they occupied the central region of Earth and its edges were inhabited by savage, monstrousbarbarians and strange animals and monsters: Homer'sOdyssey mentions a great many of these.
Additional statements about ancient geography are found inHesiod's poems, probably written during the 8th century BC.[21][full citation needed] Through the lyrics ofWorks and Days andTheogony, he shows to his contemporaries some definite geographical knowledge. He introduces the names of such rivers asNile,Ister (Danube), the shores of theBosporus and theEuxine (Black Sea), the coast ofGaul, the island ofSicily, and a few other regions and rivers.[22][full citation needed] His advanced geographical knowledge not only had predated Greek colonial expansions, but also was used in the earliest Greek world maps, produced by Greek mapmakers such asAnaximander andHecataeus of Miletus, andPtolemy using both observations by explorers and a mathematical approach.
Early steps in the development of intellectual thought inancient Greece belonged toIonians from their well-known city ofMiletus inAsia Minor. Miletus was placed favourably to absorb aspects ofBabylonian knowledge and to profit from the expanding commerce of theMediterranean. The earliest ancient Greek who is said to have constructed a map of the world is Anaximander of Miletus (c. 611–546 BC), pupil ofThales. He believed that the Earth was a cylindrical form, a stone pillar suspended in space.[23] The inhabited part of his world was circular, disk-shaped, and presumably located on the upper surface of the cylinder.[19]: 24
For constructing his world map, Anaximander is considered by many to be the first mapmaker.[24]: 23 Little is known about the map, which has not survived.Hekatæus of Miletus (550–475 BC) produced another map fifty years later that he claimed was an improved version of the map of his illustrious predecessor.

Hecatæus's map describes the Earth as disk with an encircling Ocean, and with Greece placed in the center. This was a very popular contemporary Greek worldview, derived originally from the Homeric poems. Also, similar to many other early maps in antiquity, his map has no scale. As units of measurements, this map used "days of sailing" on the sea and "days of marching" on dry land.[25][full citation needed] The purpose of this map was to accompany Hecatæus's geographical work that was calledPeriodos Ges, orJourney Round the World.[24]: 24 Periodos Ges was divided into two books, "Europe" and "Asia", with the latter including Libya, the name of which was an ancient term for all of known Africa.
The work divides the world into two continents, Asia and Europe. Hecatæus depicts the line between the Pillars of Hercules through the Bosporus, and the Don River as a boundary between the two. He was the first writer known to have thought that the Caspian flows into the encircling ocean—an idea that persisted long into the Hellenic period. He was particularly instructive about the Black Sea, adding many geographic places that already were known to Greeks through the colonization process. To the north of the Danube, according to Hecatæus, were theRhipæan (gusty) Mountains, beyond which lived theHyperboreans—peoples of the far north. Hecatæus depicted the origin of the Nile River at the southern encircling ocean. This assumption helped Hecatæus propose a solution to the mystery of the annual flooding of the Nile. He believed that the waves of the ocean were a primary cause of this occurrence.[26][full citation needed] A map based on Hecataeus's was intended to aid political decision-making. According toHerodotus, that map was engraved into a bronze tablet and was carried to Sparta by Aristagoras during the revolt of the Ionian cities againstPersian rule from 499 to 494 BC.
Anaximenes of Miletus (6th century BC), who studied under Anaximander, rejected the views of his teacher regarding the shape of the Earth and instead, he visualized the Earth as a rectangular form supported by compressed air.
Pythagoras of Samos (c. 560–480 BC) speculated about the notion of a spherical Earth with a central fire at its core. He is sometimes incorrectly credited with the introduction of a model that divides a spherical Earth into five zones: one hot, two temperate, and two cold—northern and southern. This idea, known as the zonal theory of climate, is more likely to have originated at the time ofAristotle.[27]
Scylax, a sailor, made a record of hisMediterranean voyages inc. 515 BC. This is the earliest known set of Greekperiploi, or sailing instructions, which became the basis for many future mapmakers, especially in the medieval period.[28]
The way in which the geographical knowledge of the Greeks advanced from the previous assumptions of the Earth's shape was through Herodotus and his conceptual view of the world. This map also did not survive and many have speculated that it was never produced. A possible reconstruction of his map is displayed adjacent.

Herodotus traveled extensively, collecting information and documenting his findings in his books on Europe, Asia, and Libya. He also combined his knowledge with what he learned from the people he met. Herodotus wrote hisHistories in the mid-5th century BC. Although his work was dedicated to the story of long struggle of the Greeks with the Persian Empire, Herodotus also included everything he knew about the geography, history, and peoples of the world. Thus, his work provides a detailed picture of the known world of the 5th century BC.
Herodotus rejected the prevailing view of most 5th-century BC maps that the Earth is a disk surrounded by ocean. In his work he describes the Earth as an irregular shape with oceans surrounding only Asia and Africa. He introduces names such as the Atlantic Sea, and theErythrean Sea, which translates as the "Red Sea". He also divided the world into three continents: Europe, Asia, and Africa. He depicted the boundary of Europe as the line from thePillars of Hercules through theBosphorus and the area between theCaspian Sea and theIndus River. He regarded theNile as the boundary between Asia and Africa. He speculated that the extent of Europe was much greater than was assumed at the time and left Europe's shape to be determined by future research.
In the case of Africa, he believed that, except for the small stretch of land in the vicinity of Suez, the continent was in fact surrounded by water. However, he definitely disagreed with his predecessors and contemporaries about its presumed circular shape. He based his theory on the story of PharaohNecho II, the ruler of Egypt between 609 and 594 BC, who had sentPhoenicians to circumnavigate Africa. Apparently, it took them three years, but they certainly did prove his idea. He speculated that the Nile River started as far west as theIster River (Danube) in Europe and cut Africa through the middle. He was the first writer to assume that the Caspian Sea was separated from other seas and he recognised northern Scythia as one of the coldest inhabited lands in the world.
Similar to his predecessors, Herodotus also made mistakes. He accepted a clear distinction between the civilized Greeks in the center of the Earth and the barbarians on the world's edges. In hisHistories it is clear that he believed that the world became stranger and stranger when one traveled away from Greece, until one reached the ends of the Earth, where humans behaved as savages.
While various previous Greek philosophers presumed the Earth to be spherical,Aristotle (384–322 BC) is credited with proving the Earth's sphericity. His arguments may be summarized as follows:
A vital contribution to mapping the reality of the world came with a scientific estimate of the circumference of the earth. This event has been described as the first scientific attempt to give geographical studies a mathematical basis. The man credited for this achievement wasEratosthenes (275–195 BC), a Greek scholar who lived inHellenistic North Africa. As described byGeorge Sarton, historian of science, "there was among them [Eratosthenes's contemporaries] a man of genius but as he was working in a new field they were too stupid to recognize him".[29] His work, includingOn the Measurement of the Earth andGeographica, has only survived in the writings of later philosophers such asCleomedes andStrabo. He was a devoted geographer who set out to reform and perfect the map of the world. Eratosthenes argued that accurate mapping, even if in two dimensions only, depends upon the establishment of accurate linear measurements. He was the first to calculate theEarth's circumference (within 0.5 percent accuracy).[30] His great achievement in the field of cartography was the use of a new technique of charting withmeridians, his imaginary north–south lines, andparallels, his imaginary west–east lines.[31] These axis lines were placed over the map of the Earth with their origin in the city of Rhodes and divided the world into sectors. Then, Eratosthenes used these earth partitions to reference places on the map. He also divided Earth into five climatic regions, which was proposed at least as early as the late sixth or early fifth century BC byParmenides: a torrid zone across the middle, two frigid zones at extreme north and south, and two temperate bands in between.[32] He was likely also the first person to use the word "geography".[33]

Pomponius Mela (1st century B.C.) is unique among ancient geographers in that, after dividing the earth into five zones, of which two only were habitable, he asserts the existence ofantichthones inhabiting the southern temperate zone, inaccessible to the folk of the northern temperate regions due to the unbearable heat of the intervening torrid belt. On the divisions and boundaries of Europe, Asia and Africa, he repeats Eratosthenes; like all classical geographers fromAlexander the Great (exceptPtolemy) he regards theCaspian Sea as an inlet of the Northern Ocean, corresponding to thePersian Gulf and theRed Sea on the south.
Marinus of Tyre (c. A.D. 70–130) was aHellenizedPhoenician geographer and cartographer.[34] He founded mathematical geography and provided the underpinnings ofPtolemy's influentialGeographia.
Marinus's geographical treatise is lost and known only from Ptolemy's remarks. He introduced improvements to the construction of maps and developed a system of nautical charts. His chief legacy is that he first assigned to each place a properlatitude andlongitude. Hiszero meridian ran through the westernmost land known to him, theIsles of the Blessed around the location of theCanary orCape Verde Islands. He used the parallel ofRhodes for measurements of latitude. Ptolemy mentions several revisions of Marinus's geographical work, which is often dated to AD 114 although this is uncertain. Marinus estimated a length of 180,000 stadia for the equator, roughly corresponding[a] to a circumference of the Earth of 33,300 km, about 17% less than the actual value.
He also carefully studied the works of his predecessors and the diaries of travelers. His maps were the first in theRoman Empire to show China. He also inventedequirectangular projection, which is still used in map creation today. A few of Marinus's opinions are reported by Ptolemy. Marinus was of the opinion that theWorld Ocean was separated into an eastern and a western part by the continents of Europe, Asia and Africa. He thought that the inhabited world stretched in latitude fromThule (Norway) toAgisymba (around theTropic of Capricorn) and in longitude from theIsles of the Blessed (around theCanaries) to Shera (China). Marinus also coined the termAntarctic, referring to the opposite of theArctic Circle.
Ptolemy (90–168), a HellenizedEgyptian,[35][36][37] thought that, with the aid of astronomy and mathematics, the Earth could be mapped very accurately. Ptolemy revolutionized the depiction of the spherical Earth on a map by usingperspective projection, and suggested precise methods for fixing the position of geographic features on its surface using acoordinate system with parallels oflatitude andmeridians oflongitude.[6][38]
Ptolemy's eight-volume atlasGeographia is a prototype of modern mapping andGIS. It included an index of place-names, with the latitude and longitude of each place to guide the search, scale, conventional signs with legends, and the practice of orienting maps so that north is at the top and east to the right of the map—an almost universal custom today.
Yet with all his important innovations, however, Ptolemy was not infallible. His most important error was a miscalculation of the circumference of the Earth. He believed thatEurasia covered 180° of the globe, which convincedChristopher Columbus to sail across the Atlantic to look for a simpler and faster way to travel to India. Had Columbus known that the true figure was much greater, it is conceivable that he would never have set out on his momentous voyage.

In 2007, theTabula Peutingeriana, a 12th-century replica of a 5th-century Roman imperial road map, was placed on the UNESCO Memory of the World Register and displayed to the public for the first time. Although the scroll is well preserved and believed to be an accurate copy of an authentic original, it is on a medium that is now so delicate that it must be protected at all times from exposure to daylight.[39]
The earliest known maps to have survived in China date to the 4th century BC.[40]: 90 In 1986, seven ancient Chinese maps were found in an archeological excavation of aQin State tomb in what is nowFangmatan, in the vicinity of Tianshui City,Gansu.[40]: 90 Before this find, the earliest extant maps that were known came from theMawangdui Han tomb excavation in 1973, which found three maps on silk dated to the 2nd century BC in the earlyHan dynasty.[40]: 90, 93 The 4th-century BC maps from the State of Qin were drawn with black ink on wooden blocks.[40]: 91 These blocks fortunately survived in soaking conditions due to underground water that had seeped into the tomb; the quality of the wood had much to do with their survival.[40]: 91 After two years of slow-drying techniques, the maps were fully restored.[40]: 91
The territory shown in the seven Qin maps overlap each other.[40]: 92 The maps display tributary river systems of theJialing River in Sichuan, in a total measured area of 107 by 68 km.[40]: 92 The maps featured rectangular symbols encasing character names for the locations of administrative counties.[40]: 92 Rivers and roads are displayed with similar line symbols; this makes interpreting the map somewhat difficult, although the labels of rivers placed in order of stream flow are helpful to modern day cartographers.[40]: 92–93 These maps also feature locations where different types of timber can be gathered, while two of the maps state thedistances in mileage to the timber sites.[40]: 93 In light of this, these maps are perhaps the oldesteconomic maps in the world since they predateStrabo's economic maps.[40]: 93
In addition to the seven maps on wooden blocks found at Tomb 1 of Fangmatan, a fragment of a paper map was found on the chest of the occupant of Tomb 5 of Fangmatan in 1986. This tomb is dated to the earlyWestern Han, so the map dates to the early 2nd century BC. The map shows topographic features such as mountains, waterways and roads, and is thought to cover the area of the precedingQin Kingdom.[41][42]
In China, the earliest known geographical Chinese writing dates back to the 5th century BC, during the beginning of theWarring States (481–221 BC).[43]: 500 This was theYu Gong orTribute of Yu chapter of theShu Jing orBook of Documents. The book describes the traditional nine provinces, their kinds of soil, their characteristic products and economic goods, their tributary goods, their trades and vocations, their state revenues and agricultural systems, and the various rivers and lakes listed and placed accordingly.[43]: 500 The nine provinces in the time of this geographical work were very small in size compared to their modern Chinese counterparts. The Yu Gong's descriptions pertain to areas of theYellow River, the lower valleys of theYangzi, with the plain between them and theShandong Peninsula, and to the west the most northern parts of theWei River and theHan River were known (along with the southern parts of modern-dayShanxi).[43]: 500
The oldest reference to a map in China comes from the 3rd century BC.[43]: 534 This was the event of 227 BC whereCrown Prince Dan of Yan had his assassinJing Ke visit the court of the ruler of theState of Qin, who would become the first leader to unify China,Qin Shi Huang (r. 221–210 BC). Jing Ke was to present the ruler of Qin with a district map painted on a silk scroll, rolled up and held in a case where he hid his assassin's dagger.[43]: 534 Handing to him the map of the designated territory was the first diplomatic act of submitting that district to Qin rule.[43]: 534 Jing then tried and failed to kill him. From then on, maps were frequently mentioned in Chinese sources.[43]: 535
The three Han dynasty maps found atMawangdui differ from the earlier Qin State maps. While the Qin maps place thecardinal direction of north at the top of the map, the Han maps are orientated with the southern direction at the top.[40]: 93 The Han maps are also more complex, since they cover a much larger area, employ a large number of well-designed map symbols, and include additional information on local military sites and the local population.[40]: 93 The Han maps also note measured distances between certain places, but a formalgraduated scale and rectangular grid system for maps would not be used—or at least described in full—until the 3rd century (seePei Xiu below).[40]: 93–94 Among the three maps found at Mawangdui was a small map representing the tomb area where it was found, a larger topographical map showing the Han's borders along the subordinateKingdom of Changsha and theNanyue kingdom (of northernVietnam and parts of modernGuangdong andGuangxi), and a map which marks the positions of Han military garrisons that were employed in anattack against Nanyue in 181 BC.[44]
An early text that mentioned maps was theRites of Zhou.[43]: 534 Although attributed to the era of theZhou dynasty, its first recorded appearance was in the libraries of Prince Liu De (c. 130 BC), and was compiled and commented on byLiu Xin in the 1st century AD. It outlined the use of maps that were made for governmental provinces and districts, principalities, frontier boundaries, and even pinpointed locations of ores and minerals for mining facilities.[43]: 534 Upon the investiture of three of his sons as feudal princes in 117 BC,Emperor Wu of Han had maps of the entire empire submitted to him.[43]: 536
From the 1st century AD onwards, official Chinese historical texts contained a geographical section (地理纪;Diliji), which was often an enormous compilation of changes in place-names and local administrative divisions controlled by the ruling dynasty, descriptions of mountain ranges, river systems, taxable products, etc.[43]: 508 From the 5th century BCShu Jing forward, Chinese geographical writing provided more concrete information and less legendary element. This example can be seen in the 4th chapter of theHuainanzi (Book of the Master of Huainan), compiled under the editorship of PrinceLiu An in 139 BC during theHan dynasty (202 BC–202 AD). The chapter gave general descriptions oftopography in a systematic fashion, given visual aids by the use of maps (di tu) due to the efforts of Liu An and his associate Zuo Wu.[43]: 507–508 InChang Chu'sHua Yang Guo Chi ("Historical Geography ofSichuan") of 347, not only rivers, trade routes, and various tribes were described, but it also wrote of a 'Ba June Tu Jing' ("Map of Sichuan"), which had been made much earlier in 150.[43]: 517
Local mapmaking such as the one ofSichuan mentioned above, became a widespread tradition of Chinese geographical works by the 6th century, as noted in the bibliography of theSui Shu.[43]: 518 It is during this time of theSouthern and Northern Dynasties that theLiang dynasty (502–557) cartographers also began carving maps into stone steles (alongside the maps already drawn and painted on paper and silk).[43]: 543
In the year 267,Pei Xiu (224–271) was appointed as the Minister of Works byEmperor Wu of Jin, the first emperor of theJin dynasty. Pei is best known for his work in cartography. Although map making and use of the grid existed in China before him,[43]: 106–107 he was the first to mention aplotted geometrical grid and graduated scale displayed on the surface of maps to gain greater accuracy in the estimated distance between different locations.[43]: 538–540 Pei outlined six principles that should be observed when creating maps, two of which included the rectangular grid and the graduated scale for measuring distance.[43]: 539–540 Western historians compare him to the Greek Ptolemy for his contributions in cartography.[43]: 540 However, Howard Nelson states that, although the accounts of earlier cartographic works by the inventor and officialZhang Heng (78–139) are somewhat vague and sketchy, there is ample written evidence that Pei Xiu derived the use of the rectangular grid reference from the maps of Zhang Heng.[45]: 359
Later Chinese ideas about the quality of maps made during the Han dynasty and before stem from the assessment given by Pei Xiu.[40]: 96 Pei Xiu noted that the extant Han maps at his disposal were of little use since they featured too many inaccuracies and exaggerations in measured distance between locations.[40]: 96 However, the Qin State maps andMawangdui maps of the Han era were far superior in quality than those examined by Pei Xiu.[40]: 96 It was not until the 20th century that Pei Xiu's 3rd-century assessment of earlier maps' dismal quality would be overturned and disproven. The Qin and Han maps did have a degree of accuracy in scale and pinpointed location, but the major improvement in Pei Xiu's work and that of his contemporaries was expressing topographical elevation on maps.[40]: 97
In the year 605, during theSui dynasty (581–618), the Commercial CommissionerPei Ju (547–627) created a famous geometrically gridded map.[43]: 543 In 610Emperor Yang of Sui ordered government officials from throughout the empire to document ingazetteers the customs, products, and geographical features of their local areas and provinces, providing descriptive writing and drawing them all onto separate maps, which would be sent to the imperial secretariat in the capital city.[43]: 518 [46]: 409–10
TheTang dynasty (618–907) also had its fair share of cartographers, including the works ofXu Jingzong in 658,Wang Mingyuan in 661, andWang Zhongsi in 747.[43]: 543 Arguably the greatest geographer and cartographer of the Tang period wasJia Dan (730–805), whomEmperor Dezong of Tang entrusted in 785 to complete a map of China with her recently former inland colonies of Central Asia, the massive and detailed work completed in 801, called theHai Nei Hua Yi Tu (Map of both Chinese and Barbarian Peoples within the (Four) Seas).[43]: 543 The map was 30 ft (9.1 m) long and 33 ft (10 m) high in dimension, mapped out on a grid scale of 1-inch (25 mm) equaling 100li (unit) (the Chinese equivalent of the mile/kilometer).[43]: 543 Jia Dan is also known for having described thePersian Gulf region with great detail, along with lighthouses that were erected at the mouth of the Persian Gulf by the medieval Iranians in theAbbasid period (refer to article onTang dynasty for more).
During theSong dynasty (960–1279)Emperor Taizu of Song orderedLu Duosun in 971 to update and 're-write all the Tu Jing in the world', which would seem to be a daunting task for one individual, who was sent out throughout the provinces to collect texts and as much data as possible.[43]: 518 With the aid ofSong Zhun, the massive work was completed in 1010, with some 1566 chapters.[43]: 518 The laterSong Shi historical text stated (Wade-Giles spelling):
Yuan Hsieh (d. +1220) was director-general of governmental grain stores. In pursuance of his schemes for the relief of famines he issued orders that each pao (village) should prepare a map which would show the fields and mountains, the rivers and the roads in fullest detail. The maps of all the pao were joined together to make a map of the tu (larger district), and these in turn were joined with others to make a map of the hsiang and the hsien (still larger districts). If there was any trouble about the collection of taxes or the distribution of grain, or if the question of chasing robbers and bandits arose, the provincial officials could readily carry out their duties by the aid of the maps.[43]: 518
Like the earlier Liang dynasty stone-stele maps (mentioned above), there were large and intricately carved stone stele maps of the Song period. For example, the 3 ft (0.91 m) squared stone stele map of an anonymous artist in 1137, following the grid scale of 100 li squared for each grid square.[43]: Plate LXXXI What is truly remarkable about this map is the incredibly precise detail of coastal outlines and river systems in China (refer to Needham's Volume 3, Plate LXXXI for an image). The map shows 500 settlements and a dozen rivers in China, and extends as far as Korea and India. On the reverse, a copy of a more ancient map uses grid coordinates in a scale of 1:1,500,000 and shows the coastline of China with great accuracy.[48]
The famous 11th-century scientist andpolymath statesmanShen Kuo (1031–1095) was also a geographer and cartographer.[43]: 541 His largestatlas included twenty three maps of China and foreign regions that were drawn at a uniform scale of 1:900,000.[49] Shen also created athree-dimensionalraised-relief map using sawdust, wood, beeswax, and wheat paste, while representing the topography and specific locations of a frontier region to the imperial court.[49] Shen Kuo's contemporary,Su Song (1020–1101), was a cartographer who created detailed maps to resolve a territorial border dispute between the Song dynasty and theLiao dynasty.[50]
In theMongol Empire, theMongol scholars with the Persian and Chinese cartographers or their foreign colleagues created maps, geographical compendium as well as travel accounts.Rashid-al-Din Hamadani described his geographical compendium, "Suvar al-aqalim", constituted volume four of the Collected chronicles of theIlkhanate in Persia.[51] His works says about the borders of the seven climes (old world), rivers, major cities, places, climate, andMongol yams (relay stations). TheGreat KhanKhubilai's ambassador and minister,Bolad, had helped Rashid's works in relation to the Mongols andMongolia.[52] Thanks toPax Mongolica, the easterners and the westerners in Mongol dominions were able to gain access to one another's geographical materials.[53] The Mongols required the nations they conquered to send geographical maps to the Mongol headquarters.[54][55]
One of medieval Persian work written in northwest Iran can clarify the historical geography ofMongolia whereGenghis Khan was born and united the Mongol andTurkicnomads as recorded in native sources, especially theSecret History of the Mongols.[56]
Map of relay stations, called "yam", and strategic points existed in theYuan dynasty.[53] The Mongol cartography was enriched by traditions of ancient China and Iran which were now under the Mongols.
Because the Yuan court often requested the western Mongol khanates to send their maps, the Yuan dynasty was able to publish a map describing the whole Mongol world in c.1330. This is called "Hsi-pei pi ti-li tu". The map includes the Mongol dominions including 30 cities in Iran such asIspahan and the Ilkhanid capitalSoltaniyeh, and Russia (as "Orash") as well as their neighbors, e.g.Egypt andSyria.[57]

The multicolour map,Da Ming Hunyi Tu dates to the earlyMing dynasty from about 1390, is in multicolour. The horizontal scale is 1:820,000 and the vertical scale is 1:1,060,000.[48] Many of the oldest surviving maps from China dates between the 16th to 17th centuries, these include theSihai Huayi Zongtu (1532) and theShanhai Yudi Quantu (1609).[58] Similar to these, the earliest European style map from China, theKunyu Wanguo Quantu (1602) influenced and was exported to Japan[59] and Korea.[60] By this time, Jesuit missionaries contributed to similar maps such as theWanguo Quantu (1620s)[61] and theKunyu Quantu (1674).[62] While theSelden Map (c. 17th century) employs a system of navigational routes emanating from ports in China.[63] TheMao Kun map published in 1628 is thought to be based on astrip map dated to the voyages ofZheng He.[64]
In 1579,Luo Hongxian published theGuang Yutu atlas, including more than 40 maps, a grid system, and a systematic way of representing major landmarks such as mountains, rivers, roads and borders. TheGuang Yutu incorporates the discoveries of the naval explorer Zheng He's 15th-century voyages along the coasts of China, Southeast Asia, India and Africa.[48]
From the 16th and 17th centuries, several examples survive of maps focused on cultural information. Gridlines are not used on eitherYu Shi'sGujin xingsheng zhi tu (1555) orZhang Huang'sTushu bian (1613); instead, illustrations and annotations show mythical places, exotic foreign peoples, administrative changes and the deeds of historic and legendary heroes.[48] Also in the 17th century, an edition of a possible Tang dynasty map shows clear topographicalcontour lines.[43]: 546 Althoughtopographic features were part of maps in China for centuries, aFujian county officialYe Chunji (1532–1595) was the first to base county maps using on-site topographicalsurveying and observations.[65]


In 1402, Yi Hoe and Kwan Yun created a world map largely based from Chinese cartographers called theGangnido map. It is currently one of the oldest surviving world maps from East Asia.[66] Another notable pre-modern map is theCheonhado map developed in Korea in the 17th century.[67]
Sekisui Nagakubo produced a world map in 1785 called theComprehensive Map and Description of the Geography of the Myriad Countries of the Globe (地球萬國山海輿地全圖說), mainly deriving it from an earlier map made by Matteo Ricci. The production was made by woodblock print and folded into paper boards, he made corrections and additions on top of Matteo's production. This was one of the earliest maps with longitude and latitude information in Japan and was written inKatakana.[68]
Another well-known cartographer of the late-Edo period wasIno Tadataka, he is known for completing the first map of Japan using modern surveying techniques.[69] His most famous work, theDai Nihon Enkai Yochi Zenzu (大日本沿海輿地全図) consisted of three large map pages at a scale of 1:432,000 and it showed the entire country on eight pages at 1:216,000. Some of his maps are accurate to 1/1000 of a degree, which allowed it to become the definitive maps used in Japan for nearly a century. Maps based on his work were in use as late as 1924.

Indian cartographic traditions covered the locations of thePole star and other constellations of use.[70]: 330 These charts may have been in use by the beginning of theCommon Era for purposes of navigation.[70]: 330
Detailed maps of considerable length describing the locations of settlements, sea shores, rivers, and mountains were also made.[70]: 327 The 8th-century scholarBhavabhuti conceived paintings which indicated geographical regions.[70]: 328
Italian scholar Francesco Lorenzo Pullè reproduced a number of ancient Indian maps in hismagnum opusLa Cartografia Antica dell'India.[70]: 327 Out of these maps, two have been reproduced using a manuscript ofLokaprakasa, originally compiled by the polymath Ksemendra (Kashmir, 11th century), as a source.[70]: 327 The other manuscript, used as a source by Pullè, is titledSamgrahani.[70]: 327 The early volumes of theEncyclopædia Britannica also described cartographic charts made by theDravidian people of India.[70]: 330
Maps from theAin-e-Akbari, aMughal document detailing India's history and traditions, contain references to locations indicated in earlier Indian cartographic traditions.[70]: 327 Another map describing thekingdom of Nepal, four feet in length and about two and a half feet in breadth, was presented toWarren Hastings.[70]: 328 In this map the mountains were elevated above the surface, and several geographical elements were indicated in different colors.[70]: 328
The scholar Sadiq Isfahani ofJaunpur compiled anatlas of the parts of the world which he held to be 'suitable for human life'.[71] The 32 sheet atlas—with maps oriented towards the south as was the case with Islamic works of the era—is part of a larger scholarly work compiled by Isfahani during 1647 CE.[71] According to Joseph E. Schwartzberg (2008): 'The largest known Indian map, depicting the formerRajput capital atAmber in remarkable house-by-house detail, measures 661 × 645 cm.[72] (260 × 254 in., or approximately 22 × 21 ft).'[72]
In the Middle Ages, Muslim scholars continued and advanced on the mapmaking traditions of earlier cultures. Most used Ptolemy's methods; but they also took advantage of what explorers and merchants learned in their travels across the Muslim world, from Spain to India to Africa, and beyond in trade relationships with China, and Russia.[28]
An important influence in the development ofcartography was the patronage of theAbbasidcaliph,al-Ma'mun, who reigned from 813 to 833. He commissioned several geographers to remeasure the distance on earth that corresponds to one degree of celestial meridian. Thus his patronage resulted in the refinement of the definition of the mile used by Arabs (mīl in Arabic) in comparison to thestadion used by Greeks. These efforts also enabled Muslims to calculate the circumference of the earth. Al-Mamun also commanded the production of a large map of the world, which has not survived,[73]: 61–63 though it is known that its map projection type was based onMarinus of Tyre rather thanPtolemy.[74]: 193
Also in the 9th century, thePersian mathematician and geographer,Habash al-Hasib al-Marwazi, employedspherical trigonometry andmap projection methods to convertpolar coordinates to a different coordinate system centred on a specific point on the sphere, in this theQibla, the direction toMecca.[75]Abū Rayhān Bīrūnī (973–1048) later developed ideas which are seen as an anticipation of the polar coordinate system.[76] Around 1025, he describes a polar equi-azimuthal equidistant projection of thecelestial sphere.[77]: 153 However, this type of projection had been used in ancient Egyptian star-maps and was not to be fully developed until the 15 and 16th centuries.[78]
In the early 10th century,Abū Zayd al-Balkhī, originally fromBalkh, founded the "Balkhī school" of terrestrial mapping inBaghdad. The geographers of this school also wrote extensively of the peoples, products, and customs of areas in the Muslim world, with little interest in the non-Muslim realms.[73] The "Balkhī school", which included geographers such asEstakhri,al-Muqaddasi andIbn Hawqal, produced world atlases, each one featuring aworld map and twenty regional maps.[74]: 194
Suhrāb, a late 10th-century Muslim geographer, accompanied a book of geographicalcoordinates with instructions for making a rectangular world map, withequirectangular projection or cylindrical equidistant projection.[73] The earliest surviving rectangular coordinate map is dated to the 13th century and is attributed to Hamdallah al-Mustaqfi al-Qazwini, who based it on the work of Suhrāb. Theorthogonal parallel lines were separated by one degree intervals, and the map was limited to Southwest Asia and Central Asia. The earliest surviving world maps based on a rectangular coordinate grid are attributed to al-Mustawfi in the 14th or 15th century (who used invervals of ten degrees for the lines), and toHafiz-i Abru (died 1430).[74]: 200–01
Ibn Battuta (1304–1368?) wrote "Rihlah" (Travels) based on three decades of journeys, covering more than 120,000 km through northern Africa, southern Europe, and much of Asia.
Islamic regional cartography is usually categorized into three groups: that produced by the "Balkhī school", the type devised byMuhammad al-Idrisi, and the type that are uniquely found in theBook of curiosities.[73]
The maps by the Balkhī schools were defined by political, not longitudinal boundaries and covered only the Muslim world. In these maps the distances between various "stops" (cities or rivers) were equalized. The only shapes used in designs were verticals, horizontals, 90-degree angles, and arcs of circles; unnecessary geographical details were eliminated. This approach is similar to that used insubway maps, most notable used in the "London UndergroundTube Map" in 1931 byHarry Beck.[73]: 85–87
Al-Idrīsī defined his maps differently. He considered the extent of the known world to be 160° in longitude, and divided the region into ten parts, each 16° wide. In terms of latitude, he portioned the known world into seven 'climes', determined by the length of the longest day. In his maps, many dominant geographical features can be found.[73]
Muhammad ibn Mūsā al-Khwārizmī'sKitāb ṣūrat al-Arḍ ("Book on the appearance of the Earth") was completed in 833. It is a revised and completed version ofPtolemy'sGeography, consisting of a list of 2402 coordinates of cities and other geographical features following a general introduction.[79]
Al-Khwārizmī,Al-Ma'mun's most famous geographer, corrected Ptolemy's gross overestimate for the length of theMediterranean Sea[74]: 188 (from theCanary Islands to the eastern shores of the Mediterranean); Ptolemy overestimated it at 63 degrees oflongitude, while al-Khwarizmi almost correctly estimated it at nearly 50 degrees of longitude. Al-Ma'mun's geographers "also depicted theAtlantic and Indian Oceans asopen bodies of water, not land-locked seas as Ptolemy had done."[80] Al-Khwarizmi thus set thePrime Meridian of theOld World at the eastern shore of the Mediterranean, 10–13 degrees to the east ofAlexandria (the prime meridian previously set by Ptolemy) and 70 degrees to the west ofBaghdad. Most medieval Muslim geographers continued to use al-Khwarizmi's prime meridian.[74]: 188 Other prime meridians used were set byAbū Muhammad al-Hasan al-Hamdānī andHabash al-Hasib al-Marwazi atUjjain, a centre ofIndian astronomy, and by another anonymous writer atBasra.[74]: 189
Abu Rayhan al-Biruni (973–1048) gave an estimate of 6,339.6 km for theEarth radius, which is only 17.15 km less than the modern value of 6,356.7523142 km (WGS84 polar radius "b"). In contrast to his predecessors who measured the Earth's circumference by sighting the Sun simultaneously from two different locations, Al-Biruni developed a new method of usingtrigonometric calculations based on the angle between aplain and mountain top which yielded more accurate measurements of the Earth's circumference and made it possible for it to be measured by a single person from a single location.[81][82][83] Al-Biruni's method's motivation was to avoid "walking across hot, dusty deserts" and the idea came to him when he was on top of a tall mountain in India (present dayPind Dadan Khan,Pakistan).[83] From the top of the mountain, he sighted thedip angle which, along with the mountain's height (which he calculated beforehand), he applied to thelaw of sines formula. This was the earliest known use of dip angle and the earliest practical use of the law of sines.[82][83]
Around 1025, Al-Biruni was the first to describe a polar equi-azimuthal equidistant projection of thecelestial sphere.[84]
In hisCodex Masudicus (1037), Al-Biruni theorized the existence of a landmass along the vast ocean between Asia and Europe, or what is today known as the Americas. He deduced its existence on the basis of his accurate estimations of theEarth's circumference andAfro-Eurasia's size, which he found spanned only two-fifths of the Earth's circumference, and his discovery of the concept ofspecific gravity, from which he deduced that the geological processes that gave rise toEurasia must've also given rise to lands in the vast ocean between Asia and Europe. He also theorized that the landmass must be inhabited by human beings, which he deduced from his knowledge of humans inhabiting the broad north–south band stretching from Russia toSouth India andSub-Saharan Africa, theorizing that the landmass would most likely lie along the same band.[85][86] He was the first to predict "the existence of land to the east and west of Eurasia, which later on was discovered to be America and Japan".[86]

TheArab geographer,Muhammad al-Idrisi, produced his medieval atlas,Tabula Rogeriana orThe Recreation for Him Who Wishes to Travel Through the Countries, in 1154. He incorporated the knowledge of Africa, the Indian Ocean and the Far East gathered byArab merchants and explorers with the information inherited from the classical geographers to create the most accurate map of the world in pre-modern times.[87] With funding fromRoger II of Sicily (1097–1154), al-Idrisi drew on the knowledge collected at the university ofCordoba and paid draftsmen to make journeys and map their routes. The book describes the earth as a sphere with a circumference of 22,900 miles (36,900 km) but maps it in 70 rectangular sections. Notable features include the correct dual sources of the Nile, the coast of Ghana and mentions of Norway. Climate zones were a chief organizational principle. A second and shortened copy from 1192 calledGarden of Joys is known by scholars as theLittle Idrisi.[28]
On the work of al-Idrisi, S. P. Scott commented:[87]
The compilation of Edrisi marks an era in thehistory of science. Not only is its historical information most interesting and valuable, but its descriptions of many parts of the earth are still authoritative. For three centuries geographers copied his maps without alteration. The relative position of the lakes which form the Nile, as delineated in his work, does not differ greatly from that established by Baker and Stanley more than seven hundred years afterwards, and their number is the same. The mechanical genius of the author was not inferior to his erudition. The celestial and terrestrialplanisphere of silver which he constructed for his royal patron was nearly six feet in diameter, and weighed four hundred and fifty pounds; upon the one side the zodiac and the constellations, upon the other—divided for convenience into segments—the bodies of land and water, with the respective situations of the various countries, were engraved.
— S. P. Scott, History of the Moorish Empire in Europe
Al-Idrisi's atlas, originally called theNuzhat in Arabic, served as a major tool for Italian, Dutch and French mapmakers from the 16th century to the 18th century.[88]

The Ottoman cartographerPiri Reis published navigational maps in hisKitab-ı Bahriye. The work includes an atlas of charts for small segments of the mediterranean, accompanied by sailing instructions covering the sea. In the second version of the work, he included a map of the Americas.[73]: 106 ThePiri Reis map drawn by the Ottoman cartographerPiri Reis in 1513, is one of the oldest surviving maps to show the Americas.[89]: 268–272 [90][91][92]

Medieval maps of the world in Europe were mainly symbolic in form along the lines of the much earlierBabylonian World Map. Known asMappa Mundi (cloths or charts of the world) these maps were circular or symmetrical cosmological diagrams representing the Earth's single land mass as disk-shaped and surrounded by ocean.[6]


Roger Bacon's investigations of map projections and the appearance ofportolano and thenportolan charts for plying the European trade routes were rare innovations of the period. The Majorcan school is contrasted with the contemporaryItalian cartography school. TheCarta Pisana portolan chart, made at the end of the 13th century (1275–1300), is the oldest survivingnautical chart (that is, not simply a map but a document showing accurate navigational directions).[94]
TheMajorcan cartographic school was a predominantly Jewish cooperation ofcartographers,cosmographers andnavigational instrument-makers in late 13th to the 14th and 15th-centuryMajorca. With their multicultural heritage the Majorcan cartographic school experimented and developed unique cartographic techniques most dealing with the Mediterranean, as it can be seen in theCatalan Atlas.[95] The Majorcan school was (co-)responsible for the invention (c.1300) of the "NormalPortolan chart". It was a contemporary superior, detailed nautical model chart, gridded by compass lines.

ThePolynesian peoples who explored and settled the Pacific islands in the first two millennia AD used maps to navigate across large distances. A surviving map from theMarshall Islands uses sticks tied in a grid with palm strips representing wave and wind patterns, with shells attached to show the location of islands.[96] Other maps were created as needed using temporary arrangements of stones or shells.[97]
In theRenaissance, with the renewed interest in classical works, maps became more like surveys once again, while European exploration of the Americas and their subsequent effort to control and divide those lands revived interest in scientific mapping methods. Peter Whitfield, the author of several books on the history of maps, credits European mapmaking as a factor in the global spread of western power: "Men in Seville, Amsterdam or London had access to knowledge of America, Brazil, or India, while thenative peoples knew only their own immediate environment" (Whitfield). Jordan Branch and his advisor,Steven Weber, propose that the power of large kingdoms and nation states of later history are an inadvertent byproduct of 15th-century advances in map-making technologies.[98][99]
During the 15th and 16th centuries, Iberian powers (Kingdom of Castile andKingdom of Portugal) were at the vanguard of European overseas exploration and mapping the coasts of the Americas, Africa, and Asia, in what came known as theAge of Discovery (also known as theAge of Exploration). Spain andPortugal were magnets for the talent, science and technology from theItalian city-states.
Portugal's methodical expeditions started in 1419 along West Africa's coast under the sponsorship ofPrince Henry the Navigator, withBartolomeu Dias reaching theCape of Good Hope and entering the Indian Ocean in 1488. Ten years later, in 1498,Vasco da Gama led the first fleet around Africa to India, arriving inCalicut and starting a maritime route from Portugal to India. Soon, afterPedro Álvares Cabral reaching Brazil (1500), explorations proceed to Southeast Asia, having sent the first direct European maritime trade and diplomatic missions toMing China and to Japan (1542).

In 1492, when a Spanish expedition headed byGenoese explorerChristopher Columbus sailed west to find a new trade route to the Far East but inadvertently found the Americas. Columbus's first two voyages (1492–93) reached theBahamas and variousCaribbean islands, includingHispaniola,Puerto Rico andCuba. The Spanish cartographer and explorerJuan de la Cosa sailed with Columbus. He created the first known cartographic representations showing both the Americas. The post-1492 era is known as the period of theColumbian Exchange, a dramatically widespread exchange of animals, plants, culture, human populations (including slaves), communicable disease, and ideas between the American and Afro-Eurasian hemispheres following theVoyages of Christopher Columbus to the Americas.
TheMagellan-Elcano circumnavigation was the first known voyage around the world in human history. It was a Spanish expedition that sailed fromSeville in 1519 under the command of Portuguese navigatorFerdinand Magellan in search of a maritime path from the Americas to the East Asia across the Pacific Ocean. Following Magellan's death in Mactan (Philippines) in 1521,Juan Sebastián Elcano took command of the expedition, sailing toBorneo, theSpice Islands and back to Spain across the Indian Ocean, round the Cape of Good Hope and north along the west coast of Africa. They arrived in Spain three years after they left, in 1522.



Founded 1504 inSeville, the SpanishHouse of Trade (Casa de Contratación) kept a large contingent of cartographers as Spain's overseas empire expanded. Aroyal standard map (Padrón Real) was established in 1508 and updated periodically as more information became available from major expeditions returning to Seville.[101][102][103] This continued a practice of long standing in Portugal, whosePadrão Real was kept in theGuinea andIndia Houses (Casa da Guiné andda Índia) within the royal palace inLisbon.
The originals of the Spanish and Portuguese maps are now lost but copies of known provenance are held by theVatican Library; theBiblioteca Estense inModena, Italy; and theAnna Amalia Bibliothek inWeimar, Germany. The 1527 and 1529 copies of the Padrón Real underDiogo Ribeiro, a Portuguese cartographer working for Spain, are particularly praised as the first scientific world map.[104] Incorporating information from theMagellan,Gómez, andLoaysa expeditions and thegeodesic research undertaken to codify the demarcation lines established by thetreaties of Tordesillas andZaragoza, these editions of the Padrón Real show for the first time the full extension of the Pacific Ocean and the continuous coast of North America. They also very precisely delineate the coasts ofCentral and South America, although Portugal's control of the African trade routes left the Indian Ocean less exact.
Two prominent cosmographers (as mapmakers were then known) of the House of Trade wereAlonso de Santa Cruz and Juan López de Velasco, who directed mapmaking underPhilip II without ever going to the New World. Their maps were based on information they received from returning navigators. Using repeatable principles that underpin mapmaking, their mapmaking techniques could be employed anywhere. Philip II sought extensive information about his overseas empire, both in written textual form and in the production of maps.[105]




Leuven, Antwerp, andAmsterdam were the main centres of the Netherlandish school of cartography in its golden age (the 16th and 17th centuries, approximately 1570–1670s). The Golden Age of Dutch cartography started in Flanders (mainly in Leuven and Antwerp) whenGerardus Mercator andAbraham Ortelius found its fullest expression during the 17th century with the production of monumental multi-volume world atlases in theDutch Republic (mainly in Amsterdam) by competing mapmaking firms led byLucas Waghenaer,Joan Blaeu,Jan Janssonius,Claes Janszoon Visscher, andFrederik de Wit.[106]Notable representatives of theNetherlandish school of cartography and geography (1500s–1600s) include:Franciscus Monachus,Gemma Frisius,Gaspard van der Heyden,Christophe Plantin,Lucas Waghenaer,Jacob van Deventer,Willebrord Snell,Hessel Gerritsz,Petrus Plancius,Jodocus Hondius,Henricus Hondius II,Hendrik Hondius I,Willem Blaeu,Joan Blaeu,Andreas Cellarius,Gerard de Jode,Cornelis de Jode,Nicolaes Visscher I andNicolaes Visscher II.
Gerardus Mercator was a Flemish cartographer and geographer with a vast output of wall maps, bound maps, globes and scientific instruments but his greatest legacy was themathematical projection he devised for his1569 world map. TheMercator projection is an example of acylindrical projection in which themeridians are straight and perpendicular to the parallels. As a result, the map has a constant width and the parallels are stretched east–west as the poles are approached. Mercator's insight was to stretch the separation of the parallels in a way which exactly compensates for their increasing length, thus preserving shapes of small regions, albeit at the expense of global distortion. In this way the map projection transformsrhumb lines, sailing courses of a constant bearing, into straight lines on the map thus greatly facilitating navigation. That this was Mercator's intention is clear from the title:Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate Accommodata which translates as "New and more complete representation of the terrestrial globe properly adapted for use in navigation". Although the projection's adoption was slow, by the end of the seventeenth century it was in use for naval charts.[citation needed]
Mercator spent the last thirty years of his life working on a vast project, theCosmographia;[b] a description of the whole universe including the creation and a description of the topography, history and institutions of all countries. The wordatlas makes its first appearance in the title of the final volume: "Atlas sive cosmographicae meditationes de fabrica mundi et fabricati figura". This translates asAtlas OR cosmographical meditations upon the creation of the universe, and the universe as created, thus providing Mercator's definition of the termatlas. These volumes devote slightly less than one half of their pages to maps: Mercator did not use the term solely to describe a bound collection of maps. His choice of title was motivated by his respect forAtlas "King ofMauretania"[107]

Abraham Ortelius is generally recognized as the creator of the first modern atlas, theTheatrum Orbis Terrarum.[108]Triangulation had first emerged as amap making method in the early 16th century whenGemma Frisius set out the idea in hisLibellus de locorum describendorum ratione (Booklet concerning a way of describing places).[109][110][111] The Dutch cartographerJacob van Deventer was among the first to make systematic use of triangulation, the technique whose theory was described by Frisius in his 1533 book.
The modern systematic use oftriangulation networks stems from the work of the Dutch mathematicianWillebrord Snell (born Willebrord Snel van Royen), who in 1615 surveyed the distance fromAlkmaar toBergen op Zoom, approximately 70 miles (110 km), using a chain of quadrangles containing 33 triangles in all.[112][113][114] The two towns were separated by one degree on themeridian, so from his measurement he was able to calculate a value for the circumference of the earth – a feat celebrated in the title of his bookEratosthenes Batavus (The DutchEratosthenes), published in 1617. Snell's methods were taken up byJean Picard who in 1669–1670 surveyed one degree of latitude along theParis Meridian using a chain of thirteen triangles stretching north from Paris to the clocktower ofSourdon, nearAmiens.
The first printed atlas ofnautical charts (De Spieghel der Zeevaerdt orThe Mirror of Navigation /The Mariner's Mirror) was produced by Lucas Waghenaer inLeiden in 1584. This atlas was the first attempt to systematically codify nautical maps. This chart-book combined an atlas of nautical charts and sailing directions with instructions for navigation on the western and north-western coastal waters of Europe. It was the first of its kind in the history of maritime cartography.[115][116][117][118]
In 1660, the German-born Dutch cartographerAndreas Cellarius had hisstar atlas (Harmonia Macrocosmica) published byJan Janssonius in Amsterdam.
In the long run the competition between map-making firms Blaeu and Janssonius resulted in the publication of anAtlas Maior or 'Major Atlas'. In 1662 the Latin edition of Joan Blaeu'sAtlas Maior appeared in eleven volumes and with approximately 600 maps. In the years to come French and Dutch editions followed in twelve and nine volumes respectively. Purely judging from the number of maps in theAtlas Maior, Blaeu had outdone his rival Jan Janssonius. And also from a commercial point of view it was a huge success. Also due to the superior typography theAtlas Maior by Blaeu soon became a status symbol for rich citizens. Costing 350 guilders for a non-coloured and 450 guilders for a coloured version, the atlas was the most precious book of the 17th century. However, theAtlas Maior was also a turning point: after that time the role of Dutch cartography (and Netherlandish cartography in general) was finished. Janssonius died in 1664 while a great fire in 1672 destroyed one of Blaeu's print shops. In that fire a part of the copperplates went up in flames. Fairly soon afterwards Joan Blaeu died, in 1673. The almost 2,000 copperplates of Janssonius and Blaeu found their way to other publishers.
Historian David Buisseret has traced the roots of the flourishing of cartography in the 16th and 17th centuries in Europe. He noted five distinct reasons: 1) admiration ofantiquity, especially the rediscovery ofPtolemy, considered to be the first geographer; 2) increasing reliance on measurement and quantification as a result of the scientific revolution; 3) refinements in the visual arts, such as the discovery ofperspective, that allowed for better representation of spatial entities; 4) development of estate property; and 5) the importance of mapping to nation-building.[119]
The reign of Louis XIV is generally considered to represent the beginning of cartography as a science in France.[120]: 42 The evolution of cartography during the transition between the 17th and 18th centuries involved advancements on a technical level, as well as those on a representative level. According to Marco Petrella, the map developed "from a tool used to affirm the administrative borders of the reign and its features…into a tool which was necessary to intervene in territory and thus establish control of it."[121][page needed] Because unification of the kingdom necessitated well-kept records of land and tax bases, Louis XIV and members of the royal court pushed the development and progression of the sciences, especially cartography. Louis XIV established theAcadémie des Sciences in 1666, with the expressed purpose of improving cartography and sailing charts. It was found that all the gaps of knowledge in geography and navigation could be accounted for in the further exploration and study of astronomy and geodesy.[122][page needed] Colbert also attracted many foreign scientists to theAcadémie des Sciences to support the pursuit of scientific knowledge.[120]: 45
Under the auspices of the Sun King and Jean-Baptiste Colbert, members of theAcadémie des Sciences made many breakthrough discoveries within the realm of cartography to ensure accuracy of their works. Among the more prominent work done with theAcadémie was that done byGiovanni Domenico Cassini, who perfected a method of determining longitude by the observation of movement ofJupiter's satellites.[123] Cassini, along with the aid and support of mathematicianJean Picard, developed a system of uniting the provincial topographical information into a comprehensive map of the country, through a network of surveyed triangles. It established a practice that was eventually adopted by all nations in their project to map the areas under their domain.[122]: 18 For their method of triangulation, Picard and Cassini used themeridian arc of Paris-Amiens as their starting point.[121]: 21
Jean-Baptiste Colbert, the secretary of home affairs and prominent member of Louis XIV's royal court, set out to develop the resource base of the nation and to develop a system of infrastructure that could restore the French economy. He wanted to generate income for the high expenses incurred by Louis XIV. What Colbert lacked in his pursuit of the development of the economy was a map of the entire country. France, like all other countries of Europe, operated on local knowledge. Within France, there were local systems of measuring weight and taxes; a uniform notion of land surveying did not exist.[122]: 16 The advancements made by the members of theAcadémie des Sciences proved instrumental as a tool to aid reform within the nation. Cartography was an important element in two major reforms undertaken by Colbert: the reform of the royal forest, a project undertaken beginning in 1661, and naval reform, initiated in 1664.[120]: 44
In 1663–1664 Colbert tried to collect information from the provinces to accurately assess the income within the kingdom, necessary information for economic and tax reform. Colbert asked the provincial representatives of the king, the intendants, to gather existing maps of territory within the provinces and check them for accuracy. If they were found not to be accurate, the Royal Geographer, Nicolas Sanson, was to edit them, basing his information on the reports prepared by the intendants. The operation did not succeed because theAcadémie des Sciences did not believe it had a strong enough basis in cartographic methodology.[120]: 45 The importance of cartography to the mechanisms of the state, however, continued to grow.
In the 1670s the astronomerGiovanni Domenico Cassini began work on the first moderntopographic map in France. It was completed in 1789 or 1793 by his grandsonCassini de Thury.[124][125]
The seventeenth century marked the emergence of France as the center of the map trade in Europe, with much of the production and distribution of maps taking place in the capital Paris.[126]: 33–45 In conjunction with the support of scientific development, the royal court encouraged the work of arts and artisans. This royal patronage attracted artists to Paris. As a result, many mapmakers, such asNicolas Sanson and Alexis-Hubert Jaillot, moved to the national capital from the peripheries of the provinces.[126]: 34
Many of the agents of cartography, including those involved in the creation, production and distribution of maps in Paris, came to live in the same section of the capital city. Booksellers congregated on rue St-Jacques along the left bank of the Seine, while engravers and cartographers lived along the quai de l'Horloge on theÎle de la Cité (See Figure 1). Regulations enacted by thecommunautés informed the location of the libraries. These regulations included that each bookseller-printer was to have one shop, which had to be located in the university quarter or on thequai de l'Horloge. These restrictions enabled authorities to more easily inspect their businesses to enforce other regulations such as: printer need to register the number of presses they owned, and any books printed had to be registered and approved by the royal court before sales.[126]: 34 Opticians were also located ton heQuai de l'Horloge. Their tools – squares, rules, compasses and dividers – were essential to the practice of cartography.[126]: 37
Many of the cartographers who worked in Paris never set foot outside the city; they did not gather firsthand knowledge for their maps. They were known as thegeographes de cabinet. An example of a cartographer who relied on other sources was Jean-Baptiste Bourgignon d'Anville, who compiled his information from ancient and modern sources, verbal and pictorial, published and even unpublished sources.[126]: 39
TheDieppe maps are a series of world maps produced inDieppe, France, in the mid 16th century. They are large hand-produced maps, commissioned for wealthy and royal patrons, includingHenry II of France andHenry VIII of England. The Dieppe school ofcartographers includedPierre Desceliers,Johne Rotz,Guillaume Le Testu,Guillaume Brouscon and Nicolas Desliens.

The Vertical Perspective projection was first used by the German map publisherMatthias Seutter in 1740. He placed his observer at ~12,750 km distance. This is the type of projection used today by Google Earth.[78]
The changes in the use of military maps was also part of the modernMilitary Revolution, which changed the need for information as the scale of conflict increases as well. This created a need for maps to help with "... consistency, regularity and uniformity in military conflict."[127]
The final form of theequidistant conic projection was constructed by the French astronomerJoseph-Nicolas Delisle in 1745.[78]
The Swiss mathematicianJohann Lambert invented several hemispheric map projections. In 1772 he created theLambert conformal conic andLambert azimuthal equal-area projections.[78]
TheAlbers equal-area conic projection features no distortion along standard parallels. It was invented by Heinrich Albers in 1805.[78][128]
In 1715Herman Moll published the Beaver Map, one of the most famous early maps of North America, which he copied from a 1698 work byNicolas de Fer.
In 1763–1767 CaptainJames Cook mappedNewfoundland.
In 1777 ColonelJoseph Frederick Wallet DesBarres created a monumental four-volume atlas of North America,Atlantic Neptune.

In the United States in the 18th and 19th centuries, explorers mapped trails andarmy engineers surveyed government lands. Two agencies were established to provide more detailed, large-scale mapping: theU.S. Geological Survey andU.S. Coast and Geodetic Survey (now theNational Geodetic Survey, a part of theNational Oceanic and Atmospheric Administration).

During his travels in Spanish America (1799–1804)Alexander von Humboldt created the most accurate map ofNew Spain (now Mexico) to date. Published as part of hisEssai politique sur le royaume de la Nouvelle-Espagne (1811) (Political Essay on the Kingdom of New Spain), Humboldt'sCarte du Mexique (1804) was based on existing maps of Mexico, but with Humboldt's careful attention to latitude and longitude. Landing at the Pacific coast port of Acapulco in 1803, Humboldt did not leave the port area for Mexico City until he produced a map of the port; when leaving he drew a map of the east coast port of Veracruz, as well as a map of the central plateau of Mexico. Given royal authorization from the Spanish crown for his trip, crown officials in Mexico were eager to aid Humboldt's research. He had access toJosé Antonio de Alzate y Ramírez'sMapa del Arzobispado de México (1768), which he deemed "very bad", as well as the seventeenth-century map of greater Mexico City by savant DonCarlos de Sigüenza y Góngora.[129]
John Disturnell, a businessman and publisher of guidebooks and maps, publishedMapa de los Estados Unidos de Méjico, which was used in the negotiations between the U.S. and Mexico in theTreaty of Guadalupe Hidalgo (1848), following theMexican–American War, based on the 1822 map by U.S. cartographerHenry Schenck Tanner.[130] This map has been described as showing U.S.Manifest Destiny; a copy of the map was offered for sale in 2016 for $65,000. Map making at that time was important for both Mexico and the United States.[131]
TheGreenwich prime meridian became the international standard reference for cartographers in 1884.
During the 20th century, maps became more abundant due to improvements in printing and photography that made production cheaper and easier. Airplanes made it possible to photograph large areas at a time.
Two-point equidistant projection was first drawn up byHans Maurer in 1919. In this projection the distance from any point on the map to either of the two regulating points is accurate.[78]
Theloximuthal projection was constructed by Karl Siemon in 1935 and refined byWaldo Tobler in 1966.[78]
Since the mid-1990s, the use of computers in map making has helped to store, sort, and arrange data for mapping to create map projections.[132]
Nowadays map-making heavily relies on computer software to develop and provide a variety of services, a trend that already started at the end of the previous century. For instance, self-location, browser search of places, business, products, and area, and distance calculation. At the present time, computer-based software is dominated by big companies that offer their services to a worldwide public, such asGoogle Maps,Apple Maps,Bing Maps,National Geographic Maps,ESRIGeographic Information System (GIS),CartoDB,Mapbox,Waze, etc. Many other state-based, regional and smaller initiatives, and companies offer their services. Thelist of online map services is quite long and is growing every day.
Recent development also include the integration of ancient maps and modern scholar research combined with modern computer software to elaborate periodical history maps. Initiatives such asEuratlas History Maps (which covers the whole of Europe from the year 1 AD to the present), Centennia Historical Atlas (which covers Europe from the year 1000AD to the present), Geacron, and many others who work in what is calledhistorical cartography. These maps include evolution of countries, provinces and cities, wars and battles, thehistory of border changes, etc.
Today historical cartography is thriving. The specialization of map services is ever growing. New map projections are still being developed, university map collections, such asPerry–Castañeda Library Map Collection at theUniversity of Texas, offer better and more diverse maps and map tools every day, making available for their students and the broad public ancient maps that in the past were difficult to find.David Rumsey Historical Map Collection is nowadays a worldwide known initiative.
Never in the past there were many "edit-yourself" map tools and software available for non-specialist. Map blogs and self-publishing are common.[citation needed] In 2004,Steve Coast createdOpenStreetMap, acollaborative project to create afree editable map of the world. The creation and growth of OpenStreetMap has been motivated by restrictions on use or availability of map information across much of the world, and the advent of inexpensive portablesatellite navigation devices.[133][134]
In 1921, theInternational Hydrographic Organization (IHO) was set up, and it constitutes the authority onhydrographic surveying and nautical charting.[135] The current defining document is the Special publication S-23,Limits of Oceans and Seas, 3rd edition, 1953. The second edition dated back to 1937, and the first to 1928. A fourth edition draft was published in 1986 but so far several naming disputes (such as the one over theSea of Japan) have prevented its ratification.

In cartography, technology has continually changed to meet the demands of new generations of mapmakers and map users. The first maps were manually constructed with brushes and parchment and therefore varied in quality and were limited in distribution. The advent of thecompass,printing press,telescope,sextant,quadrant andvernier allowed for the creation of far more accurate maps and the ability to make accurate reproductions.Professor Steven Weber of theUniversity of California, Berkeley, has advanced the hypothesis that the concept of the "nation state" is an inadvertent byproduct of 15th-century advances in map-making technologies.[98][99]
Advances in photochemical technology, such as thelithographic andphotochemical processes, have allowed for the creation of maps that have fine details, do not distort in shape and resist moisture and wear. This also eliminated the need for engraving which further shortened the time it takes to make and reproduce maps.

In the mid-to-late 20th century, advances in electronic technology have led to further revolution in cartography. Specifically computer hardware devices such as computer screens, plotters, printers, scanners (remote and document) and analytic stereo plotters along with visualization, image processing, spatial analysis and database software, have democratized and greatly expanded the making of maps, particularly with their ability to produce maps that show slightly different features, without engraving a new printing plate. See alsodigital raster graphic andHistory of web mapping.
Aerial photography andsatellite imagery have provided high-accuracy, high-throughput methods for mapping physical features over large areas, such as coastlines, roads, buildings, and topography.[136]
But what we really want to know is to what extent the Alexandrian mathematicians of the period from the first to the fifth centuries C.E. were Greek. Certainly, all of them wrote in Greek and were part of the Greek intellectual community of Alexandria. And most modern studies conclude that the Greek community coexisted ... So should we assume that Ptolemy and Diophantus, Pappus and Hypatia were ethnically Greek, that their ancestors had come from Greece at some point in the past but had remained effectively isolated from the Egyptians? It is, of course, impossible to answer this question definitively. But research in papyri dating from the early centuries of the common era demonstrates that a significant amount of intermarriage took place between the Greek and Egyptian communities ... And it is known that Greek marriage contracts increasingly came to resemble Egyptian ones. In addition, even from the founding of Alexandria, small numbers of Egyptians were admitted to the privileged classes in the city to fulfill numerous civic roles. Of course, it was essential in such cases for the Egyptians to become "Hellenized", to adopt Greek habits and the Greek language. Given that the Alexandrian mathematicians mentioned here were active several hundred years after the founding of the city, it would seem at least equally possible that they were ethnically Egyptian as that they remained ethnically Greek. In any case, it is unreasonable to portray them with purely European features when no physical descriptions exist.
— Victor J. Katz (1998).A History of Mathematics: An Introduction, p. 184. Addison Wesley,ISBN 0-321-01618-1
{{cite book}}: CS1 maint: location missing publisher (link)[publisher missing]{{cite book}}: CS1 maint: location missing publisher (link)SeeMaps for more links to historical maps; however, most of the largest sites are listed at the sites linked below.