Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

HiWish program

From Wikipedia, the free encyclopedia
NASA program for public suggestions for MRO images
icon
This articlecontains too many images for its overall length. Relevant discussion may be found on thetalk page. Please helpimprove this article by removingindiscriminate collections of images or by adjusting images that aresandwiching text in accordance with Wikipedia'sManual of Style.(November 2024) (Learn how and when to remove this message)

HiWish is a program created by NASA so that anyone can suggest a place for theHiRISE camera on theMars Reconnaissance Orbiter to photograph.[1][2][3] It was started in January 2010. In the first few months of the program 3000 people signed up to use HiRISE.[4][5] The first images were released in April 2010.[6] Over 12,000 suggestions were made by the public; suggestions were made for targets in each of the 30 quadrangles of Mars. Selected images released were used for three talks at the 16th Annual International Mars Society Convention. Below are some of the over 4,224 images that have been released from the HiWish program as of March 2016.[7]

Glacial features

[edit]
Main article:Glaciers on Mars

Some landscapes look just like glaciers moving out of mountain valleys on Earth. Some have a hollowed-out appearance, looking like a glacier after almost all the ice has disappeared. What is left are the moraines—the dirt and debris carried by the glacier. The center is hollowed out because the ice is mostly gone.[8] These supposed alpine glaciers have been called glacier-like forms (GLF) or glacier-like flows (GLF).[9] Glacier-like forms are a later and maybe more accurate term because we cannot be sure the structure is currently moving.[10]

Analysis ofSHARAD data led researchers to conclude that martian glaciers are 80% pure ice. The paper authors examined five different sites and all showed high levels of pure water ice.[11][12][13]

Because of the high purity of the ice content that was found, the authors argued that the formation of glaciers happened by atmospheric precipitation or direct condensation. After glaciers were formed there was a time when enhanced sublimation formed a lag layer or promoted the accumulation of dry debris atop the water ice glacier. Those dry debris would then insulate the underlying ice from going away.[14]

Martian glacier moving down a valley, as seen by HiRISE under HiWish program
  • Possible glacier flowing down a valley and spreading out on a plain. Rectangle shows a portion that is enlarged in the next image.[15]
    Possible glacier flowing down a valley and spreading out on a plain. Rectangle shows a portion that is enlarged in the next image.[15]
  • Enlargement of the area in the rectangle in the previous image. This area would be called a moraine in an alpine glacier on Earth.
    Enlargement of the area in the rectangle in the previous image. This area would be called a moraine in an alpine glacier on Earth.
  • Well-developed hollows of concentric crater fill (CCF), as seen by HiRISE under the HiWish program Concentric crater fill (CCF) is considered a type of glacier since it contains movin ice.
    Well-developed hollows of concentric crater fill (CCF), as seen by HiRISE under the HiWish program Concentric crater fill (CCF) is considered a type of glacier since it contains movin ice.
  • Glacier on a crater floor, as seen by HiRISE under HiWish program. The cracks in the glacier may be crevasses. There is also a gully system on the crater wall.
    Glacier on a crater floor, as seen by HiRISE under HiWish program. The cracks in the glacier may be crevasses. There is also a gully system on the crater wall.
  • Glacier coming out of valley, as seen by HiRISE under HiWish program. Location is rim of Moreux Crater. Location is Ismenius Lacus quadrangle.
    Glacier coming out of valley, as seen by HiRISE under HiWish program. Location is rim ofMoreux Crater. Location isIsmenius Lacus quadrangle.
  • Wide view of tongue-shaped flows, as seen by HiRISE under the HiWish program
    Wide view of tongue-shaped flows, as seen by HiRISE under the HiWish program

Possible pingos

[edit]
See also:Pingo

The radial and concentric cracks visible here are common when forces penetrate a brittle layer, such as a rock thrown through a glass window. These particular fractures were probably created by something emerging from below the brittle Martian surface. Ice may have accumulated under the surface in a lens shape; thus making these cracked mounds. Ice being less dense than rock, pushed upwards on the surface and generated these spider web-like patterns. A similar process creates similar sized mounds in arctic tundra on Earth. Such features are called "pingos", an Inuit word.[16] Pingos would contain pure water ice; thus they could be sources of water for future colonists of Mars. Many features that look like the pingos on the Earth are found in Utopia Planitia (~35-50° N; ~80-115° E).[17]

  • Close view of possible pingo with scale, as seen by HiRISE under HiWish program
    Close view of possible pingo with scale, as seen by HiRISE under HiWish program

Ancient rivers and streams

[edit]

There is great deal of evidence that water once flowed in river valleys on Mars. Pictures from orbit show winding valleys, branched valleys, and even meanders withoxbow lakes. Mars probably once even had an ocean.[18][19][20] Some are visible in the pictures below.

  • Channel on floor of Newton Crater, as seen by HiRISE under HiWish program
    Channel on floor of Newton Crater, as seen by HiRISE under HiWish program
  • Branched channel, as seen by HiRISE under HiWish program
    Branched channel, as seen by HiRISE under HiWish program
  • Channel, as seen by HiRISE under HiWish program
    Channel, as seen by HiRISE under HiWish program
  • Branched channel, as seen by HiRISE under HiWish program
    Branched channel, as seen by HiRISE under HiWish program
  • Oxbow lake, as seen by HiRISE under HiWish program
    Oxbow lake, as seen by HiRISE under HiWish program
  • Valleys as seen by HiRISE under HiWish program
    Valleys as seen by HiRISE under HiWish program
  • Channel system that travels through part of a crater, as seen by HiRISE under HiWish program
    Channel system that travels through part of a crater, as seen by HiRISE under HiWish program
  • Channels, as seen by HiRISE under HiWish program. Stream appears to have eroded through a hill.
    Channels, as seen by HiRISE under HiWish program. Stream appears to have eroded through a hill.
  • Channel showing an old oxbow and a cutoff, as seen by HiRISE under HiWish program. Location is Memnonia quadrangle.
    Channel showing an old oxbow and a cutoff, as seen by HiRISE under HiWish program. Location isMemnonia quadrangle.
  • Channel on floor of valley, as seen by HiRISE under HiWish program. Location is Eridania quadrangle.
    Channel on floor of valley, as seen by HiRISE under HiWish program. Location isEridania quadrangle.
  • Close view of channel in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program
    Close view of channel inIsmenius Lacus quadrangle, as seen by HiRISE under HiWish program
  • Channel with hanging valley in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program
    Channel with hanging valley in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program
  • Hanging valleys in Aram Chaos, as seen by HiRISE under HiWish program
    Hanging valleys inAram Chaos, as seen by HiRISE under HiWish program
  • Wide view of channels in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program
    Wide view of channels in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program

Streamlined shapes

[edit]

Streamlined shapes represent more evidence of past flowing water on Mars. Water shaped features into streamlined shapes.

  • Streamlined feature, as seen by HiRISE under HiWish program. Location is Memnonia quadrangle.
    Streamlined feature, as seen by HiRISE under HiWish program. Location isMemnonia quadrangle.
  • Channel, as seen by HiRISE under HiWish program. Streamlined shapes are indicated with arrows. Location is the Phaethontis quadrangle.
    Channel, as seen by HiRISE under HiWish program. Streamlined shapes are indicated with arrows. Location is thePhaethontis quadrangle.
  • Wide view of streamlined shapes in Amenthes quadrangle, as seen by HiRISE under HiWish program
    Wide view of streamlined shapes inAmenthes quadrangle, as seen by HiRISE under HiWish program
  • Close view of streamlined shapes, as seen by HiRISE under HiWish program. Arrow indicates the direction of past flowing water.
    Close view of streamlined shapes, as seen by HiRISE under HiWish program. Arrow indicates the direction of past flowing water.
  • Close view of streamlined shapes, as seen by HiRISE under HiWish program
    Close view of streamlined shapes, as seen by HiRISE under HiWish program
  • Streamlined shapes, as seen by HiRISE under HiWish program. Location is the Elysium quadrangle.
    Streamlined shapes, as seen by HiRISE under HiWish program. Location is theElysium quadrangle.

Sand dunes

[edit]

Many locations on Mars have sanddunes. The dunes are covered by a seasonal carbon dioxide frost that forms in early autumn and remains until late spring. Many martian dunes strongly resemble terrestrial dunes but images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter have shown that martian dunes in the north polar region are subject to modification via grainflow triggered by seasonal CO2sublimation, a process not seen on Earth. Many dunes are black because they are derived from the darkvolcanic rock basalt. Extraterrestrial sand seas such as those found on Mars are referred to as "undae" from theLatin for waves.

  • Dunes in two craters, as seen by HiRISE under the HiWish program
    Dunes in two craters, as seen by HiRISE under the HiWish program
  • Dunes among craters, as seen by HiRISE under HiWish program. Some of these are barchans.
    Dunes among craters, as seen by HiRISE under HiWish program. Some of these are barchans.
  • Dunes on a crater floor, as seen by HiRISE under HiWish program. Most of these are barchans. Box shows location of next image. Location is the Eridania quadrangle.
    Dunes on a crater floor, as seen by HiRISE under HiWish program. Most of these are barchans. Box shows location of next image. Location is theEridania quadrangle.
  • Dunes on a crater floor, as seen by HiRISE under HiWish program. Most of these are barchans. Note: this is an enlargement of the center of the previous image.
    Dunes on a crater floor, as seen by HiRISE under HiWish program. Most of these are barchans. Note: this is an enlargement of the center of the previous image.
  • Dunes, as seen by HiRISE under HiWish program. Location is Eridania quadrangle.
    Dunes, as seen by HiRISE under HiWish program. Location isEridania quadrangle.
  • Defrosting dunes and ice in troughs of polygons, as seen by HiRISE under HiWish program
    Defrosting dunes and ice in troughs of polygons, as seen by HiRISE under HiWish program
  • Color view of defrosting dunes and ice in troughs of polygons, as seen by HiRISE under HiWish program
    Color view of defrosting dunes and ice in troughs of polygons, as seen by HiRISE under HiWish program
  • Defrosting surface, as seen by HiRISE under HiWish program. Frost is disappearing in patches from a dune. The trough boundaries around the polygon shapes still contain frost; hence they are white. Note: the north side (side near top) has not defrosted because the sun is coming from the other side.
    Defrosting surface, as seen by HiRISE under HiWish program. Frost is disappearing in patches from a dune. The trough boundaries around the polygon shapes still contain frost; hence they are white. Note: the north side (side near top) has not defrosted because the sun is coming from the other side.
  • Wide view of dunes in Moreux Crater, as seen by HiRISE under HiWish program
    Wide view of dunes inMoreux Crater, as seen by HiRISE under HiWish program
  • Dunes in Mare Tyrrhenum quadrangle, as seen by HiRISE under HiWish program
    Dunes inMare Tyrrhenum quadrangle, as seen by HiRISE under HiWish program
  • Close, color view of dunes in Mare Tyrrhenum quadrangle, as seen by HiRISE under HiWish program. Ripples are visible on dune surface.
    Close, color view of dunes inMare Tyrrhenum quadrangle, as seen by HiRISE under HiWish program. Ripples are visible on dune surface.
  • Close, color view of dome sand dunes, as seen by HiRISE under HiWish program
    Close, color view of dome sand dunes, as seen by HiRISE under HiWish program

Landing site

[edit]

Some of the targets suggested became possible sites for a Rover Mission in 2020. The targets were inFirsoff (crater) andHolden Crater. These locations were picked as two of 26 locations considered for a mission that will look for signs of life and gather samples for a later return to Earth.[21][22][23]

  • Layers in Firsoff Crater, as seen by HiRISE under HiWish program. Note: this image field can be found in the previous image of the layers in Firsoff Crater, as seen by CTX camera (on Mars Reconnaissance Orbiter).
    Layers in Firsoff Crater, as seen by HiRISE under HiWish program. Note: this image field can be found in the previous image of the layers in Firsoff Crater, as seen by CTX camera (on Mars Reconnaissance Orbiter).
  • Close-up of layers in Firsoff Crater, as seen by HiRISE. Note: this is an enlargement of the previous image of Firsoff Crater.
    Close-up of layers in Firsoff Crater, as seen by HiRISE. Note: this is an enlargement of the previous image of Firsoff Crater.
  • Layers in Firsoff crater with a box showing the size of a football field. Picture taken by HiRISE under HiWish program.
    Layers in Firsoff crater with a box showing the size of a football field. Picture taken by HiRISE under HiWish program.
  • Layers and faults in Firsoff Crater, as seen by HiRISE under HiWish program. Arrows show one large fault, but there are other smaller ones in the picture.
    Layers and faults in Firsoff Crater, as seen by HiRISE under HiWish program. Arrows show one large fault, but there are other smaller ones in the picture.
  • Part of delta in Holden Crater, as seen by HiRISE under HiWish program. Holden crater is a possible landing site for a Mars Rover scheduled for 2020.[24]
    Part of delta inHolden Crater, as seen by HiRISE under HiWish program. Holden crater is a possible landing site for a Mars Rover scheduled for 2020.[24]
  • Close view of previous image showing layers, as seen by HiRISE under HiWish program and enlarged with HiView
    Close view of previous image showing layers, as seen by HiRISE under HiWish program and enlarged with HiView

Landscape features

[edit]
  • Troughs to the East of Albor Tholus, as seen by HiRISE under the HiWish program
    Troughs to the East of Albor Tholus, as seen by HiRISE under the HiWish program
  • Portion of a trough (Fossae) in Elysium Planitia, as seen by HiRISE under the HiWish program. Blue indicates possible seasonal frost.
    Portion of a trough (Fossae) inElysium Planitia, as seen by HiRISE under the HiWish program. Blue indicates possible seasonal frost.
  • Landslide in a crater, as seen by HiRISE under HiWish program. Image from Iapygia quadrangle.
    Landslide in a crater, as seen by HiRISE under HiWish program. Image fromIapygia quadrangle.
  • Wide view of Buttes and Mesas, as seen by HiRISE under HiWish program. Location is Elysium quadrangle.
    Wide view of Buttes and Mesas, as seen by HiRISE under HiWish program. Location isElysium quadrangle.
  • Buttes and mesas, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image.
    Buttes and mesas, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image.
  • Mesas, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image.
    Mesas, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image.

Dark slope streaks

[edit]
Main article:Dark slope streak

Thease are believed by most researchers to be avalanches of a bright, thin layer of dust.[25] There are a few other ideas about this, some involve water.[26][27]

Research was published in the fall of 2025 where 2.1 million slope streaks were found between 2006 and 2024. Streak formation rates had an average of ~0.05 newly-formed streaks per existing streak per Mars Year. Meteoroid impacts and quakes only caused at most about 0.1 % of the streaks each year. Nearly all streak formation happened with peaks of dust in the atmosphere. And that was in the southern summer and autumn, when wind stress systematically exceeds the amount needed to start dust and sand to move. These conditions occur at sunrise and sunset.[28]

  • Close-up of some layers under cap rock of a pedestal crater and a dark slope streak, as seen by HiRISE under HiWish program
    Close-up of some layers under cap rock of a pedestal crater and a dark slope streak, as seen by HiRISE under HiWish program
  • Dark slope streaks and layers near a pedestal crater, as seen by HiRISE under the HiWish program. Arrows show the small starting points for the streaks.
    Dark slope streaks and layers near a pedestal crater, as seen by HiRISE under the HiWish program. Arrows show the small starting points for the streaks.
  • Dark slope streaks on mound in Lycus Sulci in Diacria quadrangle, as seen by HiRISE under HiWish program
    Dark slope streaks on mound inLycus Sulci inDiacria quadrangle, as seen by HiRISE under HiWish program
  • Layers in trough and dark slope streaks, as seen by HiRISE under HiWish program. Location is Amazonis quadrangle.
    Layers in trough and dark slope streaks, as seen by HiRISE under HiWish program. Location isAmazonis quadrangle.

Recurrent slope lineae

[edit]

Recurrent slope lineae are small dark streaks on slopes that elongate in warm seasons. They may be evidence of liquid water.[29][30][31] However, there remains debate about whether water or much water is needed.[32][33][34][35]

  • Wide view of part of Valles Marineris, as seen by HiRISE under HiWish program. Box shows location of recurrent slope lineae that are enlarged in next image.
    Wide view of part of Valles Marineris, as seen by HiRISE under HiWish program. Box shows location of recurrent slope lineae that are enlarged in next image.
  • Close, color view of recurrent slope lineae, as seen by HiRISE under HiWish program. Arrows point to some of the recurrent slope lineae [36]
    Close, color view of recurrent slope lineae, as seen by HiRISE under HiWish program. Arrows point to some of the recurrent slope lineae[36]

Layers

[edit]

Many places on Mars show rocks arranged in layers. Rock can form layers in a variety of ways. Volcanoes, wind, or water can produce layers.[37] Layers can be hardened by the action of groundwater.

Main article:Groundwater on Mars § Layered terrain
  • Layers exposed at the base of a group of buttes in Mangala Valles in Memnonia quadrangle, as seen by HiRISE under HiWish program. Arrows point to boulders sitting in pits. The pits may have formed by winds, heat from the boulders melting ground ice, or some other process.
    Layers exposed at the base of a group of buttes inMangala Valles inMemnonia quadrangle, as seen by HiRISE under HiWish program. Arrows point to boulders sitting in pits. The pits may have formed by winds, heat from the boulders melting ground ice, or some other process.
  • Buttes, as seen by HiRISE under HiWish program. Buttes have layered rocks with a hard resistant cap rock on the top which protects the underlying rocks from erosion.
    Buttes, as seen by HiRISE under HiWish program. Buttes have layered rocks with a hard resistant cap rock on the top which protects the underlying rocks from erosion.
  • Butte in Crommelin Crater, as seen by HiRISE under HiWish program. Location is Oxia Palus quadrangle.
    Butte in Crommelin Crater, as seen by HiRISE under HiWish program. Location isOxia Palus quadrangle.
  • Layers in Crommelin Crater, as seen by HiRISE under HiWish program. Location is Oxia Palus quadrangle.
    Layers in Crommelin Crater, as seen by HiRISE under HiWish program. Location isOxia Palus quadrangle.
  • Layered mound on floor of Danielson Crater, as seen by HiRISE under HiWish program
    Layered mound on floor of Danielson Crater, as seen by HiRISE under HiWish program
  • Close, color view of layers and dark dust on floor of Danielson Crater, as seen by HiRISE under HiWish program
    Close, color view of layers and dark dust on floor of Danielson Crater, as seen by HiRISE under HiWish program
  • Close, color view of layers and dark dust on floor of Danielson Crater, as seen by HiRISE under HiWish program. Boulders are visible in the image.
    Close, color view of layers and dark dust on floor of Danielson Crater, as seen by HiRISE under HiWish program. Boulders are visible in the image.
  • Close, color view of layers and dark dust on floor of Danielson Crater, as seen by HiRISE under HiWish program. Faults are indicated with arrows.
    Close, color view of layers and dark dust on floor of Danielson Crater, as seen by HiRISE under HiWish program. Faults are indicated with arrows.
  • Close view of layers on floor of Danielson Crater, as seen by HiRISE under HiWish program. Some faults are visible in image.
    Close view of layers on floor of Danielson Crater, as seen by HiRISE under HiWish program. Some faults are visible in image.
  • Light toned butte on floor of crater, as seen by HiRISE under HiWish program. Arrows show outcrops of light toned material. Light toned material is probably sulfate-rich and similar to material examined by Spirit Rover, and it once probably covered the whole floor. Other images below show enlargements of the butte. Location is Margaritifer Sinus quadrangle.
    Light toned butte on floor of crater, as seen by HiRISE under HiWish program. Arrows show outcrops of light toned material. Light toned material is probably sulfate-rich and similar to material examined by Spirit Rover, and it once probably covered the whole floor. Other images below show enlargements of the butte. Location isMargaritifer Sinus quadrangle.
  • Enlargement of white butte, as seen by HiRISE under HiWish program. Box shows size of a football field.
    Enlargement of white butte, as seen by HiRISE under HiWish program. Box shows size of a football field.
  • Closer view towards top of white butte, as seen by HiRISE under HiWish program. Box shows size of a football field.
    Closer view towards top of white butte, as seen by HiRISE under HiWish program. Box shows size of a football field.
  • Top of white butte, as seen by HiRISE under HiWish program. Box shows size of a football field.
    Top of white butte, as seen by HiRISE under HiWish program. Box shows size of a football field.
  • Layered terrain in Aeolis quadrangle, as seen by HiRISE under HiWish program.
    Layered terrain inAeolis quadrangle, as seen by HiRISE under HiWish program.
  • Wide view of layered terrain, as seen by HiRISE under HiWish program. Location is northeast of Gale Crater in Aeolis quadrangle.
    Wide view of layered terrain, as seen by HiRISE under HiWish program. Location is northeast of Gale Crater inAeolis quadrangle.
  • Close view of mound with layers, as seen by HiRISE under HiWish program. Note: this is an enlargement from the previous image.
    Close view of mound with layers, as seen by HiRISE under HiWish program. Note: this is an enlargement from the previous image.
  • Close view of mound with layers, as seen by HiRISE under HiWish program. Note: this is an enlargement from a previous image.
    Close view of mound with layers, as seen by HiRISE under HiWish program. Note: this is an enlargement from a previous image.
  • Layers in Arabia, as seen by HiRISE under HiWish program.
    Layers in Arabia, as seen by HiRISE under HiWish program.
  • Wide view of part of Danielson Crater, as seen by HiRISE under HiWish program
    Wide view of part of Danielson Crater, as seen by HiRISE under HiWish program
  • Enlargement of previous image of Danielson Crater, as seen by HiRISE under HiWish program. The box represents the size of a football field.
    Enlargement of previous image of Danielson Crater, as seen by HiRISE under HiWish program. The box represents the size of a football field.
  • Close-up of layers in Danielson Crater, as seen by HiRISE under HiWish program—boulders are visible, as well as dark sand
    Close-up of layers in Danielson Crater, as seen by HiRISE under HiWish program—boulders are visible, as well as dark sand
  • Close-up of layers in trough south of Ius Chasma, as seen by HiRISE under HiWish program
    Close-up of layers in trough south of Ius Chasma, as seen by HiRISE under HiWish program
  • Close-up of layers in Lotto Crater, as seen by HiRISE under HiWish program
    Close-up of layers in Lotto Crater, as seen by HiRISE under HiWish program
  • Layers, as seen by HiRISE under HiWish program. Location is Tempe Terra.
    Layers, as seen by HiRISE under HiWish program. Location isTempe Terra.
  • Layers, as seen by HiRISE under HiWish program. Location is Tempe Terra Note: this is an enlargement of the previous image.
    Layers, as seen by HiRISE under HiWish program. Location isTempe Terra Note: this is an enlargement of the previous image.
  • Close view of layers, as seen by HiRISE under HiWish program. At least one layer is light-toned which may indicated hydrated minerals.
    Close view of layers, as seen by HiRISE under HiWish program. At least one layer is light-toned which may indicated hydrated minerals.
  • Close view of layers, as seen by HiRISE under HiWish program
    Close view of layers, as seen by HiRISE under HiWish program

This group of layers that are found in a crater all come from theArabia quadrangle.

  • Wide view of layers in crater, as seen by HiRISE under HiWish program. Parts of this image are enlarged in other images that follow.
    Wide view of layers in crater, as seen by HiRISE under HiWish program. Parts of this image are enlarged in other images that follow.
  • Close view of layers, as seen by HiRISE under HiWish program. Box shows the size of a football field.
    Close view of layers, as seen by HiRISE under HiWish program. Box shows the size of a football field.
  • Close view of layers, as seen by HiRISE under HiWish program. Box shows the size of a football field.
    Close view of layers, as seen by HiRISE under HiWish program. Box shows the size of a football field.
  • Close view of layers, as seen by HiRISE under HiWish program. Box shows the size of a football field.
    Close view of layers, as seen by HiRISE under HiWish program. Box shows the size of a football field.
  • Close view of layers, as seen by HiRISE under HiWish program
    Close view of layers, as seen by HiRISE under HiWish program
  • Close view of layers, as seen by HiRISE under HiWish program
    Close view of layers, as seen by HiRISE under HiWish program
  • Close view of layers, as seen by HiRISE under HiWish program
    Close view of layers, as seen by HiRISE under HiWish program
  • Close view of layers, as seen by HiRISE under HiWish program
    Close view of layers, as seen by HiRISE under HiWish program
  • Close view of layers, as seen by HiRISE under HiWish program
    Close view of layers, as seen by HiRISE under HiWish program

This next group of layered terrain comes from the Louros Valles in theCoprates quadrangle.

  • Wide view of layers in Louros Valles, as seen by HiRISE under HiWish program
    Wide view of layers inLouros Valles, as seen by HiRISE under HiWish program
  • Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
    Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
  • Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
    Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
  • Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
    Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
  • Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
    Close view of layers in Louros Valles, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.

Layers in ice cap

[edit]
  • Layers in northern ice cap with an angular unconformity, as seen by HiRISE under HiWish program
    Layers in northern ice cap with an angular unconformity, as seen by HiRISE under HiWish program
  • Close view of layers in northern ice cap, as seen by HiRISE under HiWish program. Arrows point to an angular unconformity.
    Close view of layers in northern ice cap, as seen by HiRISE under HiWish program. Arrows point to an angular unconformity.
  • Close, color view of layers in northern ice cap, as seen by HiRISE under HiWish program
    Close, color view of layers in northern ice cap, as seen by HiRISE under HiWish program
  • Layers exposed in northern ice cap, as seen by HiRISE under HiWish program
    Layers exposed in northern ice cap, as seen byHiRISE under HiWish program
  • Close view of layers exposed in northern ice cap, as seen by HiRISE under HiWish program
    Close view of layers exposed in northern ice cap, as seen by HiRISE under HiWish program

Gullies

[edit]

Martian gullies are incised networks of narrow channels and their associated downslopesediment deposits, found on the planet ofMars. They are named for their resemblance to terrestrialgullies. First discovered on images fromMars Global Surveyor, they occur on steep slopes, especially on the walls of craters. Usually, each gully has adendriticalcove at its head, afan-shapedapron at its base, and a single thread of incisedchannel linking the two, giving the whole gully an hourglass shape.[38] They are believed to be relatively young because they have few, if any craters. On the basis of their form, aspects, positions, and location amongst and apparent interaction with features thought to be rich in water ice, many researchers believed that the processes carving the gullies involve liquid water. However, this remains a topic of active research. Some later observations suggest that dry ice may be involved in the development of gullies today.[39]

Main article:Gullies on Mars
Image of gullies with main parts labeled. The main parts of a Martian gully are alcove, channel, and apron. Since there are no craters on this gully, it is thought to be rather young. Picture was taken by HiRISE under HiWish program. Location isPhaethontis quadrangle.
  • Close-up of gully aprons showing they are free of craters; hence very young. Location is Phaethontis quadrangle. Picture was taken by HiRISE under HiWish program.
    Close-up of gully aprons showing they are free of craters; hence very young. Location isPhaethontis quadrangle. Picture was taken by HiRISE under HiWish program.
  • Close-up of gully channels, as seen by HiRISE under HiWish program. This image shows many streamlined forms and some benches along a channel. These features suggest formation by running water. Benches are usually formed when the water level goes down a bit and stays at that level for a time. Picture was taken with HiRISE under HiWish program. Location is the Mare Acidalium quadrangle. Note this is an enlargement of a previous image.
    Close-up of gully channels, as seen by HiRISE under HiWish program. This image shows many streamlined forms and some benches along a channel. These features suggest formation by running water. Benches are usually formed when the water level goes down a bit and stays at that level for a time. Picture was taken with HiRISE under HiWish program. Location is theMare Acidalium quadrangle. Note this is an enlargement of a previous image.
  • Gullies along mesa wall in North Tempe Terra, as seen by HiRISE under HiWish program
    Gullies along mesa wall in NorthTempe Terra, as seen by HiRISE under HiWish program
  • Close view of gully apron, as seen by HiRISE under HiWish program. Note this is an enlargement of the previous image.
    Close view of gully apron, as seen by HiRISE under HiWish program. Note this is an enlargement of the previous image.
  • Close view of gully alcove, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
    Close view of gully alcove, as seen by HiRISE under HiWish program. Note this is an enlargement of a previous image.
  • Gullies in crater, as seen by HiRISE under HiWish program
    Gullies in crater, as seen by HiRISE under HiWish program
  • Close view of gullies from previous image The channels are quite curved. Because channels of gullies often form curves, it was thought that they were made by flowing water. Today, it is thought that they could be produced with chunks of dry ice. The image is from HiRISE under HiWish program.
    Close view of gullies from previous image The channels are quite curved. Because channels of gullies often form curves, it was thought that they were made by flowing water. Today, it is thought that they could be produced with chunks of dry ice. The image is from HiRISE under HiWish program.
  • Gullies, as seen by HiRISE. The gullies range from very samll to large, as such they may represent different stages in the formation of gullies. The colored strip is about 1 km wide.
    Gullies, as seen by HiRISE. The gullies range from very samll to large, as such they may represent different stages in the formation of gullies. The colored strip is about 1 km wide.
  • Small gully This gully may be in its initial state of formation.
    Small gully This gully may be in its initial state of formation.
  • Gully, as seen by HiRISE
    Gully, as seen by HiRISE
  • Wide view of gullies
    Wide view of gullies
  • Close view of gully alcoves Picture is about 1 km across.
    Close view of gully alcoves Picture is about 1 km across.
  • Close view of gully channels Picture is about 1 km across.
    Close view of gully channels Picture is about 1 km across.

Latitude dependent mantle

[edit]
Main article:Latitude dependent mantle

Much of the Martian surface is covered with a thick ice-rich, mantle layer that has fallen from the sky a number of times in the past.[40][41][42] In some places a number of layers are visible in the mantle.[43]

  • Surface showing appearance with and without mantle covering, as seen by HiRISE, under the HiWish program. Location is Terra Sirenum in Phaethontis quadrangle.
    Surface showing appearance with and without mantle covering, as seen by HiRISE, under the HiWish program. Location isTerra Sirenum in Phaethontis quadrangle.
  • Mantle layers, as seen by HiRISE under HiWish program. Location is Eridania quadrangle
    Mantle layers, as seen by HiRISE under HiWish program. Location isEridania quadrangle
  • Close up view of mantle, as seen by HiRISE under the HiWish program. Mantle may be composed of ice and dust that fell from the sky during past climatic conditions. Location is Cebrenia quadrangle.
    Close up view of mantle, as seen by HiRISE under the HiWish program. Mantle may be composed of ice and dust that fell from the sky during past climatic conditions. Location isCebrenia quadrangle.
  • Close view of mantle, as seen by HiRISE under HiWish program. Arrows show craters along edge which highlight the thickness of mantle. Location is Ismenius Lacus quadrangle.
    Close view of mantle, as seen by HiRISE under HiWish program. Arrows show craters along edge which highlight the thickness of mantle. Location isIsmenius Lacus quadrangle.
  • Close view that displays the thickness of the mantle, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
    Close view that displays the thickness of the mantle, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
  • Wide view of surface with spots displaying mantle, as seen by HiRISE under HiWish program. Location is the Arcadia quadrangle.
    Wide view of surface with spots displaying mantle, as seen by HiRISE under HiWish program. Location is theArcadia quadrangle.
  • Close view of mantle, as seen by HiRISE under HiWish program
    Close view of mantle, as seen by HiRISE under HiWish program
  • Close view of mantle, as seen by HiRISE under HiWish program
    Close view of mantle, as seen by HiRISE under HiWish program

It fell as snow and ice-coated dust. There is good evidence that this mantle is ice-rich. The shapes of the polygons common on many surfaces suggest ice-rich soil. High levels of hydrogen (probably from water) have been found withMars Odyssey.[44][45][46][47][48] Thermal measurements from orbit suggest ice.[49][50] ThePhoenix (spacecraft) discovered water ice with made direct observations since it landed in a field of polygons.[51][52] In fact, its landing rockets exposed pure ice. Theory had predicted that ice would be found under a few cm of soil. This mantle layer is called "latitude dependent mantle" because its occurrence is related to the latitude. It is this mantle that cracks and then forms polygonal ground. This cracking of ice-rich ground is predicted based on physical processes.[53][54][55][56][57][58][59]

Polygonal patterned ground

[edit]
Main article:Polygonal patterned ground

Polygonal,patterned ground is quite common in some regions of Mars.[60][61][62][63][58][64][65] It is commonly believed to be caused by the sublimation of ice from the ground.Sublimation is the direct change of solid ice to a gas. This is similar to what happens todry ice on the Earth. Places on Mars that display polygonal ground may indicate where future colonists can find water ice. Polygons can be of different shapes and sizes—often very beautiful. They are believed to be caused by ice in the ground because they occur on the Earth where there is ice in the ground.[66]=[67]

With the changing seasons, alternate cooling and warming causes the ice-cemented soil to contract and expand. With the right conditions, cracks are made into the hard frozen ground releasing the stresses caused by contraction. Sublimation can occur much quicker along those cracks.[68][69]

In the future they may help point us to supplies of ice for colonists. The locations of polygons will provide evidence for us to make detailed maps for locations of water before we send crews to live there.

Patterned ground forms in a mantle layer, calledlatitude dependent mantle, that fell from the sky when the climate was different.[40][41][70][71]

  • Wide view of crater containing polygons with frost in the low parts, as seen by HiRISE under the HiWish program
    Wide view of crater containing polygons with frost in the low parts, as seen by HiRISE under the HiWish program
  • Closer view of polygons with frost in the low parts, as seen by HiRISE under the HiWish program
    Closer view of polygons with frost in the low parts, as seen by HiRISE under the HiWish program
  • Still closer view of polygons, as seen by HiRISE under the HiWish program
    Still closer view of polygons, as seen by HiRISE under the HiWish program
  • Close view of polygons with frost in the low parts, as seen by HiRISE under the HiWish program. Circular shapes are also visible.
    Close view of polygons with frost in the low parts, as seen by HiRISE under the HiWish program. Circular shapes are also visible.
  • High center polygons, shown with arrows, as seen by HiRISE under HiWish program. Location is Casius quadrangle. Image enlarged with HiView.
    High center polygons, shown with arrows, as seen by HiRISE under HiWish program. Location isCasius quadrangle. Image enlarged with HiView.
  • Scalloped terrain labeled with both low center polygons and high center polygons, as seen by HiRISE under HiWish program. Location is Casius quadrangle. Image enlarged with HiView.
    Scalloped terrain labeled with both low center polygons and high center polygons, as seen by HiRISE under HiWish program. Location isCasius quadrangle. Image enlarged with HiView.
  • High and low center polygons, as seen by HiRISE under HiWish program. Location is Casius quadrangle. Image enlarged with HiView.
    High and low center polygons, as seen by HiRISE under HiWish program. Location isCasius quadrangle. Image enlarged with HiView.
  • Close-up of high center polygons seen by HiRISE under HiWish program. Troughs between polygons are easily visible in this view. Location is Ismenius Lacus quadrangle.
    Close-up of high center polygons seen by HiRISE under HiWish program. Troughs between polygons are easily visible in this view. Location isIsmenius Lacus quadrangle.
  • Low center polygons, as seen by HiRISE under HiWish program. Location is Casius quadrangle. Image enlarged with HiView. Location is Casius quadrangle.
    Low center polygons, as seen by HiRISE under HiWish program. Location isCasius quadrangle. Image enlarged with HiView. Location isCasius quadrangle.
  • Close view of snout of glacier, as seen by HiRISE under the HiWish program. High center polygons are visible. Box shows size of football field.
    Close view of snout of glacier, as seen by HiRISE under the HiWish program. High center polygons are visible. Box shows size of football field.
  • Close view of high center polygons near glacier, as seen by HiRISE under the HiWish program. Box shows size of football field.
    Close view of high center polygons near glacier, as seen by HiRISE under the HiWish program. Box shows size of football field.
  • Close view of high center polygons near glacier, as seen by HiRISE under the HiWish program
    Close view of high center polygons near glacier, as seen by HiRISE under the HiWish program
  • Wide view of a group of channels, as seen by HiRISE under HiWish project Some parts of the surface show patterned ground when enlarged.
    Wide view of a group of channels, as seen by HiRISE under HiWish project Some parts of the surface show patterned ground when enlarged.
  • Patterned ground, as seen by HiRISE under HiWish program. This is a close up from previous image.
    Patterned ground, as seen by HiRISE under HiWish program. This is a close up from previous image.
  • Ridges, as seen by HiRISE under HiWish program. This is a close up from a previous image.
    Ridges, as seen by HiRISE under HiWish program. This is a close up from a previous image.
  • Color view of surface in a previous image, as seen by HiRISE under HiWish program
    Color view of surface in a previous image, as seen by HiRISE under HiWish program
  • Color image of patterned ground, enlarged from a previous image, as seen by HiRISE under HiWish program
    Color image of patterned ground, enlarged from a previous image, as seen by HiRISE under HiWish program

Complex polygonal patterned ground

[edit]
  • Wide view of polygons, as seen by HiRISE under HiWish program. Parts of this image are enlarged in following images. The location is the Noachis quadrangle.
    Wide view of polygons, as seen by HiRISE under HiWish program. Parts of this image are enlarged in following images. The location is theNoachis quadrangle.
  • Polygons, as seen by HiRISE under HiWish program
    Polygons, as seen by HiRISE under HiWish program
  • Close view of polygons, as seen by HiRISE under HiWish program. Arrow point to boulders that sit inside of small craters.
    Close view of polygons, as seen by HiRISE under HiWish program. Arrow point to boulders that sit inside of small craters.
  • Close view of polygons, as seen by HiRISE under HiWish program
    Close view of polygons, as seen by HiRISE under HiWish program
  • Close view of polygons, as seen by HiRISE under HiWish program
    Close view of polygons, as seen by HiRISE under HiWish program

Exposed ice sheets

[edit]

HiRISE images taken under the HiWish program found triangular shaped depressions inMilankovic Crater that researchers found contain vast amounts of ice that are found under only 1–2 meters of soil.These depressions contain water ice in the straight wall that faces the pole, according to the study published in the journal Science. Eight sites were found with Milankovic Crater being the only one in the northern hemisphere. Research was conducted with instruments on board theMars Reconnaissance Orbiter (MRO).[72][73][74][75][76]

The following images are ones referred to in this study of subsurface ice sheets.[77]

  • Wide view of part of Milankovic Crater, as seen by HiRISE under HiWish program. Many depressions here contain ice in their walls.
    Wide view of part ofMilankovic Crater, as seen by HiRISE under HiWish program. Many depressions here contain ice in their walls.
  • Close view from a previous image, as seen by HiRISE under HiWish program. The triangular shape of some depressions are noted. The area in the box is enlarged in following images.
    Close view from a previous image, as seen by HiRISE under HiWish program. The triangular shape of some depressions are noted. The area in the box is enlarged in following images.
  • Close view of depression, as seen by HiRISE under HiWish program. Arrows indicate where there is a very thin, 1–2 meter covering on what is believed to be ice.
    Close view of depression, as seen by HiRISE under HiWish program. Arrows indicate where there is a very thin, 1–2 meter covering on what is believed to be ice.

These triangular depressions are similar to those in scalloped terrain. However scalloped terrain, displays a gentle equator-facing slope and is rounded. Scarps discussed here have a steep pole-facing side and have been found between 55 and 59 degrees north and south latitude[77]Scalloped topography is common in themid-latitudes of Mars, between 45° and 60° north and south.

Scalloped topography

[edit]
Main article:Scalloped topography

Scalloped topography is common in themid-latitudes of Mars, between 45° and 60° north and south. It is particularly prominent in the region ofUtopia Planitia[78][79] in the northern hemisphere and in the region ofPeneus and Amphitrites Patera[80][81] in the southern hemisphere. Such topography consists of shallow, rimless depressions with scalloped edges, commonly referred to as "scalloped depressions" or simply "scallops". Scalloped depressions can be isolated or clustered and sometimes seem to coalesce. A typical scalloped depression displays a gentle equator-facing slope and a steeper pole-facing scarp. This topographic asymmetry is probably due to differences ininsolation. Scalloped depressions are believed to form from the removal of subsurface material, possibly interstitial ice, bysublimation. This process may still be happening at present.[82]

On November 22, 2016, NASA reported finding a large amount ofunderground ice in the Utopia Planitia region of Mars.[83] The volume of water detected has been estimated to be equivalent to the volume of water inLake Superior.[84][85]The volume of water ice in the region were based on measurements from theground-penetrating radar instrument onMars Reconnaissance Orbiter, calledSHARAD. From the data obtained from SHARAD, "dielectric permittivity", or the dielectric constant was determined. The dielectric constant value was consistent with a large concentration of water ice.[86][87][88]

  • Scalloped ground, as seen by HiRISE under HiWish program
    Scalloped ground, as seen by HiRISE under HiWish program
  • Close-up of scalloped ground, as seen by HiRISE under HiWish program. Surface is divided into polygons; these forms are common where ground freezes and thaws. Note: this is an enlargement of a previous image.
    Close-up of scalloped ground, as seen by HiRISE under HiWish program. Surface is divided into polygons; these forms are common where ground freezes and thaws. Note: this is an enlargement of a previous image.
  • Scalloped ground, as seen by HiRISE under HiWish program
    Scalloped ground, as seen by HiRISE under HiWish program
  • Close-up of scalloped ground, as seen by HiRISE under HiWish program. Surface is divided into polygons; these forms are common where ground freezes and thaws. Note: this is an enlargement of a previous image.
    Close-up of scalloped ground, as seen by HiRISE under HiWish program. Surface is divided into polygons; these forms are common where ground freezes and thaws. Note: this is an enlargement of a previous image.
  • Low center polygons, shown with arrows, as seen by HiRISE under HiWish program. Image was enlarged with HiView.
    Low center polygons, shown with arrows, as seen by HiRISE under HiWish program. Image was enlarged with HiView.
  • Scalloped terrain, as seen by HiRISE under HiWish program. The location is the Casius quadrangle.
    Scalloped terrain, as seen by HiRISE under HiWish program. The location is theCasius quadrangle.
  • Scalloped terrain, as seen by HiRISE under HiWish program. The location is the Casius quadrangle.
    Scalloped terrain, as seen by HiRISE under HiWish program. The location is the Casius quadrangle.

Images of variety of craters

[edit]
  • Crater with colorful ejecta, as seen by HiRISE under the HiWish program The ejecta represents samples of material from underground. Craters allow us to study underlying material.
    Crater with colorful ejecta, as seen by HiRISE under the HiWish program The ejecta represents samples of material from underground. Craters allow us to study underlying material.
  • Crater with colorful ejecta, as seen by HiRISE The ejecta represents samples of material from underground. Craters allow us to study underlying material.
    Crater with colorful ejecta, as seen by HiRISE The ejecta represents samples of material from underground. Craters allow us to study underlying material.

Pedestal craters

[edit]
Main article:Pedestal crater

Apedestal crater is acrater with its ejecta sitting above the surrounding terrain and thereby forming a raised platform (like apedestal). They form when an impact crater ejects material which forms an erosion-resistant layer, thus causing the immediate area to erode more slowly than the rest of the region. Some pedestals have been accurately measured to be hundreds of meters above the surrounding area. This means that hundreds of meters of material were eroded away. The result is that both the crater and itsejecta blanket stand above the surroundings. Pedestal craters were first observed during theMariner missions.[89][90][91][92]

  • Pedestal crater, as seen by HiRISE under HiWish program. Top layer has protected the lower material from being eroded. The location is Casius quadrangle.
    Pedestal crater, as seen by HiRISE under HiWish program. Top layer has protected the lower material from being eroded. The location isCasius quadrangle.
  • Pedestal crater, as seen by HiRISE under HiWish program. Location is Hellas quadrangle.
    Pedestal crater, as seen by HiRISE under HiWish program. Location isHellas quadrangle.
  • Pedestal crater, as seen by HiRISE under HiWish program. Location is Casius quadrangle.
    Pedestal crater, as seen by HiRISE under HiWish program. Location isCasius quadrangle.
  • Pedestal crater, as seen by HiRISE under HiWish program. Location is Cebrenia quadrangle.
    Pedestal crater, as seen by HiRISE under HiWish program. Location isCebrenia quadrangle.

Ring mold craters

[edit]
Main article:Ring mold crater

Ring mold craters are believed to be formed from asteroid impacts into ground that has an underlying layer of ice. The impact produces an rebound of the ice layer to form a "ring-mold" shape.

Another, later idea, for their formation suggests that the impacting body goes through layers of different densities. Later, erosion could have helped shape them. It was thought that ring-mold craters could only exist in areas with large amounts of ground ice. However, with more extensive analysis of larger areas, it was found the ring mold craters are sometimes formed where there is not as much ice underground.[93][94]

  • Ring mold craters of various sizes on floor of a crater, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
    Ring mold craters of various sizes on floor of a crater, as seen by HiRISE under HiWish program. Location isIsmenius Lacus quadrangle.
  • Wide view of a field of ring mold craters, as seen by HiRISE under HiWish program
    Wide view of a field of ring mold craters, as seen by HiRISE under HiWish program
  • Close view of ring mold crater, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image of a field of ring mold craters.
    Close view of ring mold crater, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image of a field of ring mold craters.
  • Wide view of ring-mold craters on floor of larger crater, as seen by HiRISE under HiWish program
    Wide view of ring-mold craters on floor of larger crater, as seen by HiRISE under HiWish program
  • Ring-mold craters, as seen by HiRISE under HiWish program
    Ring-mold craters, as seen by HiRISE under HiWish program
  • Close view of ring-mold craters and brain terrain, as seen by HiRISE under HiWish program
    Close view of ring-mold craters and brain terrain, as seen by HiRISE under HiWish program

Halo craters

[edit]
  • Pedestal crater with boulders along rim. Such craters are called "halo craters".[95] Picture taken with HiRISE under HiWish program.
    Pedestal crater with boulders along rim. Such craters are called "halo craters".[95] Picture taken with HiRISE under HiWish program.
  • Close view of boulders on lower left of crater rim Box is the size of a football field, so boulders are roughly the size of cars or small houses. Picture taken with HiRISE under HiWish program.
    Close view of boulders on lower left of crater rim Box is the size of a football field, so boulders are roughly the size of cars or small houses. Picture taken with HiRISE under HiWish program.
  • Close view of boulders along crater rim Boulders are roughly the size of cars or small houses. Picture taken with HiRISE under HiWish program.
    Close view of boulders along crater rim Boulders are roughly the size of cars or small houses. Picture taken with HiRISE under HiWish program.

Boulders

[edit]
  • Boulders, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
    Boulders, as seen by HiRISE under HiWish program. Location isIsmenius Lacus quadrangle.
  • Boulder and boulder tracks, as seen by HiRISE under HiWish program. The arrow shows a boulder that has made a track in the sand as it rolled down dune. Location is Mare Boreum quadrangle.
    Boulder and boulder tracks, as seen by HiRISE under HiWish program. The arrow shows a boulder that has made a track in the sand as it rolled down dune. Location isMare Boreum quadrangle.
  • Boulders and tracks, as seen by HiRISE under HiWish program. The arrows show a boulders that have produced a track by rolling down dune. Location is Mare Boreum quadrangle.
    Boulders and tracks, as seen by HiRISE under HiWish program. The arrows show a boulders that have produced a track by rolling down dune. Location isMare Boreum quadrangle.
  • Boulders and their tracks from rolling down a slope, as seen by HiRISE under HiWish program. Arrows show two boulders at the end of their tracks. Location is Arabia quadrangle.
    Boulders and their tracks from rolling down a slope, as seen by HiRISE under HiWish program. Arrows show two boulders at the end of their tracks. Location isArabia quadrangle.

Dust devil tracks

[edit]
See also:Dust devil tracks

Dust devil tracks can be very pretty. They are caused by giant dust devils removing bright colored dust from the Martian surface; thereby exposing a dark layer.[96][97][98]

Dust devils form when the sun heats the Martian surface; air near the surface gets heated first. Because hot air is lighter than cool air, it tends to rise. Pockets of hot air rise through cold air, quickly forming an upward current. The sudden uprush causes air to speed horizontally inward to the center. Under the right conditions, the air begins spinning. As the air continues to rise, it gets stretched vertically and spins even more quickly. Eventually the moving air kicks up dust. Thus, another dust devil is created.[99][100] It has been suggested that the movement of dust particles in a dust devil can generate an electric charge. In large-size dust devils in the Martian atmosphere charge can build up, generating electric fields that could cause lightning.[101]

The patterns formed by the dust devil tracks change frequently; sometimes in just a few months.[102][103][104][105]

Dust devils on Mars have been photographed both from the ground and high overhead from orbit. They have even blown dust off the solar panels of two Rovers on Mars, thereby greatly extending their useful lifetime.[106] The pattern of the tracks has been shown to change every few months.[107] A study that combined data from theHigh Resolution Stereo Camera (HRSC) and theMars Orbiter Camera (MOC) found that some large dust devils on Mars have a diameter of 700 metres (2,300 ft) and last at least 26 minutes.[108]

According to a study by V. Bickel and others, Martian near-surface winds are significantly stronger and more abundant than previously assumed by global circulation models and surface measurements. Tracking over a thousand dust devils revealed winds up to 160 km/h, which are likely a major source of atmospheric dust and provide data to refine climate models. The study found that the diameters of dust devils range from an estimated ~18 to ~578 m, with a average diameter of 82 m.

Dust particles are difficult to lift right into the thin martian atmosphere because of cohesive forces, especially if they do not form dust aggregates. However, the saltation or bounching of larger grains (~100 μm, “fine-grained sand”) nakes it easier to initiate on Mars at lower wind speeds. Also, saltating sand particles can directly and efficiently inject finer-sized particles (dust) into the atmosphere when they impact on the surface.[109][110]

Yardangs

[edit]
Main article:Yardangs on Mars

Yardangs are common in some regions on Mars, especially in what is called the "Medusae Fossae Formation". This formation is found in theAmazonis quadrangle and near the equator.[111] They are formed by the action of wind on sand sized particles; hence yardangs often point in the direction that the winds were blowing when they were formed.[112] Because they exhibit very few impact craters they are believed to be relatively young.[113]

  • Yardangs, as seen by HiRISE under HiWish program. Location is near Gordii Dorsum in the Amazonis quadrangle. These yardangs are in the upper member of the Medusae Fossae Formation.
    Yardangs, as seen by HiRISE under HiWish program. Location is near Gordii Dorsum in theAmazonis quadrangle. These yardangs are in the upper member of the Medusae Fossae Formation.
  • Yardangs, as seen by HiRISE under HiWish program. Location is near Gordii Dorsum in the Amazonis quadrangle. Note: this is an enlargement of previous image.
    Yardangs, as seen by HiRISE under HiWish program. Location is near Gordii Dorsum in theAmazonis quadrangle. Note: this is an enlargement of previous image.
  • Yardangs, as seen by HiRISE under HiWish program. Location is near Gordii Dorsum in the Amazonis quadrangle. Note: this is an enlargement of previous image.
    Yardangs, as seen by HiRISE under HiWish program. Location is near Gordii Dorsum in theAmazonis quadrangle. Note: this is an enlargement of previous image.
  • Yardangs formed in light-toned material and surrounded by dark, volcanic basalt sand, as seen by HiRISE under HiWish program. Loacation is Margaritifer Sinus quadrangle.
    Yardangs formed in light-toned material and surrounded by dark, volcanic basalt sand, as seen by HiRISE under HiWish program. Loacation isMargaritifer Sinus quadrangle.
  • Close-up image of yardangs, as seen by HiRISE under HiWish program. Arrows point to transverse aeolian ridges (TARs), a type of dune. Note this is an enlargement of the previous image from HiRISE.
    Close-up image of yardangs, as seen by HiRISE under HiWish program. Arrows point to transverse aeolian ridges (TARs), a type of dune. Note this is an enlargement of the previous image from HiRISE.

Plumes and spiders

[edit]

In spring, dark eruptions of gas and dust occur in certain areas. During the eruptions, wind often blows the material into a fan or a tail-like shape. During the winter, much frost accumulates. It freezes out directly onto the surface of the permanent polar cap, which is made of water ice covered with layers of dust and sand. The deposit begins as a layer of dusty CO2 frost. Over the winter, it recrystallizes and becomes denser. The dust and sand particles caught in the frost slowly sink. By the time temperatures rise in the spring, the frost layer has become a slab of semi-transparent ice about 3 feet thick, lying on a substrate of dark sand and dust. This dark material absorbs light and causes the ice to sublimate (turn directly into a gas). Eventually much gas accumulates and becomes pressurized. When it finds a weak spot, the gas escapes and blows out the dust.[114] Speeds can reach 100 miles per hour.[115] Calculations show that the plumes are 20–80 meters high.[116][117] Dark channels can sometimes be seen; they are called "spiders".[118][119][120] The surface appears covered with dark spots when this process is occurring.[115][121]

Many ideas have been advanced to explain these features.[122][123][124][125][126][127][128] These features can be seen in some of the pictures below.

  • Wide view of plumes, as seen by HiRISE under HiWish program. Many of the plumes show spiders when enlarged.
    Wide view of plumes, as seen by HiRISE under HiWish program. Many of the plumes show spiders when enlarged.
  • Plumes, as seen by HiRISE under HiWish program. Arrow shows a double plume. This may have been because of shifting winds.
    Plumes, as seen by HiRISE under HiWish program. Arrow shows a double plume. This may have been because of shifting winds.
  • Plumes and spiders, as seen by HiRISE under HiWish program
    Plumes and spiders, as seen by HiRISE under HiWish program
  • Plumes and spiders, as seen by HiRISE under HiWish program
    Plumes and spiders, as seen by HiRISE under HiWish program
  • Plumes and spiders, as seen by HiRISE under HiWish program
    Plumes and spiders, as seen by HiRISE under HiWish program
  • Wide view of plumes and spiders, as seen by HiRISE under HiWish program
    Wide view of plumes and spiders, as seen by HiRISE under HiWish program

Upper plains unit

[edit]
Main article:Upper plains unit

Remnants of a 50–100 meter thick mantling, called the upper plains unit, has been discovered in the mid-latitudes of Mars. It was first investigated in theDeuteronilus Mensae (Ismenius Lacus quadrangle) region, but it occurs in other places as well. The remnants consist of sets of dipping layers in craters and along mesas.[129] Sets of dipping layers may be of various sizes and shapes—some look like Aztec pyramids from Central America. Dipping layers are common in some regions of Mars. They may be the remains of mantle layers. Another idea for their origin was presented at 55th LPSC (2024) by an international team of researchers. They suggest that the layers are from past ice sheets.[130]

  • Layered structure in crater that is probably what is left of a layered unit that once covered a much larger area. Material for this unit fell from the sky as ice-coated dust. The picture was taken by HiRISE, under the HiWish program. Picture is from Hellas quadrangle.
    Layered structure in crater that is probably what is left of a layered unit that once covered a much larger area. Material for this unit fell from the sky as ice-coated dust. The picture was taken by HiRISE, under the HiWish program. Picture is fromHellas quadrangle.
  • Layered features in crater, as seen by HiRISE under HiWish program
    Layered features in crater, as seen by HiRISE under HiWish program
  • Layered structures, as seen by HiRISE under HiWish program
    Layered structures, as seen by HiRISE under HiWish program
  • Close view of dipping layers along a mesa wall, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
    Close view of dipping layers along a mesa wall, as seen by HiRISE under HiWish program. Location isIsmenius Lacus quadrangle.
  • Close view of dipping layers in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program
    Close view of dipping layers inIsmenius Lacus quadrangle, as seen by HiRISE under HiWish program
  • Wide view of dipping layers in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program. Gullies are also visible at the bottom of the image.
    Wide view of dipping layers in Ismenius Lacus quadrangle, as seen by HiRISE under HiWish program. Gullies are also visible at the bottom of the image.

This unit also degrades intobrain terrain. Brain terrain is a region of maze-like ridges 3–5 meters high. Some ridges may consist of anice core, so they may be sources of water for future colonists.

  • Brain terrain, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
    Brain terrain, as seen by HiRISE under HiWish program. Location isIsmenius Lacus quadrangle.
  • Layered features and brain terrain, as seen by HiRISE under HiWish program. The upper plains unit often changes into brain terrain.
    Layered features and brain terrain, as seen by HiRISE under HiWish program. The upper plains unit often changes into brain terrain.
  • Brain terrain is forming from the breakdown of upper plains unit, as seen by HiRISE under HiWish program. Arrow points to a place where fractures are forming that will turn into brain terrain.
    Brain terrain is forming from the breakdown of upper plains unit, as seen by HiRISE under HiWish program. Arrow points to a place where fractures are forming that will turn into brain terrain.
  • Brain terrain is forming from the breakdown of upper plains unit, as seen by HiRISE under HiWish program. Arrow points to a place where fractures are forming that will turn into brain terrain.
    Brain terrain is forming from the breakdown of upper plains unit, as seen by HiRISE under HiWish program. Arrow points to a place where fractures are forming that will turn into brain terrain.
  • Wide view of brain terrain being formed, as seen by HiRISE under HiWish program
    Wide view of brain terrain being formed, as seen by HiRISE under HiWish program
  • Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image using HiView. Arrows indicate spots where brain terrain is beginning to form.
    Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image using HiView. Arrows indicate spots where brain terrain is beginning to form.
  • Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView. Arrows indicate spots where brain terrain is beginning to form.
    Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView. Arrows indicate spots where brain terrain is beginning to form.
  • Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView.
    Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView.
  • Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView.
    Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView.
  • Open and closed brain terrain with labels, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
    Open and closed brain terrain with labels, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
  • Brain terrain being formed, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
    Brain terrain being formed, as seen by HiRISE under HiWish program. Location is Ismenius Lacus quadrangle.
  • Wide view of brain terrain being formed, as seen by HiRISE under HiWish program
    Wide view of brain terrain being formed, as seen by HiRISE under HiWish program
  • Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image using HiView.
    Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image using HiView.
  • Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView.
    Brain terrain being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of a previous image using HiView.

Some regions of the upper plains unit display large fractures and troughs with raised rims; such regions are called ribbed upper plains. Fractures are believed to have started with small cracks from stresses. Stress is suggested to initiate the fracture process since ribbed upper plains are common when debris aprons come together or near the edge of debris aprons—such sites would generate compressional stresses. Cracks exposed more surfaces, and consequently more ice in the material sublimates into the planet's thin atmosphere. Eventually, small cracks become large canyons or troughs.

  • Well developed ribbed upper plains material. These start with small cracks that expand as ice sublimates from the surfaces of the crack. Picture was taken with HiRISE under HiWish program.
    Well developed ribbed upper plains material. These start with small cracks that expand as ice sublimates from the surfaces of the crack. Picture was taken with HiRISE under HiWish program.
  • Dipping layers, as seen by HiRISE under HiWish program. Also, Ribbed Upper plains material is visible in the upper right of the picture. It is forming from the upper plains unit, and in turn is being eroded into brain terrain.
    Dipping layers, as seen by HiRISE under HiWish program. Also, Ribbed Upper plains material is visible in the upper right of the picture. It is forming from the upper plains unit, and in turn is being eroded into brain terrain.
  • Wide view showing ribbed terrain and brain terrain, as seen by HiRISE under HiWish program
    Wide view showing ribbed terrain and brain terrain, as seen by HiRISE under HiWish program
  • Ribbed terrain being formed from upper plains unit, as seen by HiRISE under HiWish program. Formation begins with cracks that enhance sublimation. Box shows the size of football field.
    Ribbed terrain being formed from upper plains unit, as seen by HiRISE under HiWish program. Formation begins with cracks that enhance sublimation. Box shows the size of football field.
  • Wide view of upper plains with many hollows
    Wide view of upper plains with many hollows
  • Close view of upper plains unit showing hollows--where ice left the ground. Picture is about 1 Km across. This is part of an image named HiRISE picture of the day for October 21, 2024.
    Close view of upper plains unit showing hollows--where ice left the ground. Picture is about 1 Km across. This is part of an image named HiRISE picture of the day for October 21, 2024.
  • Close view of upper plains unit showing hollows--where ice left the ground. Picture is about 1 Km across. This is part of an image named HiRISE picture of the day for October 21, 2024.
    Close view of upper plains unit showing hollows--where ice left the ground. Picture is about 1 Km across. This is part of an image named HiRISE picture of the day for October 21, 2024.
  • Close view of upper plains unit showing hollows--where ice left the ground. Picture is about 1 Km across. This is part of an image named HiRISE picture of the day for October 21, 2024.
    Close view of upper plains unit showing hollows--where ice left the ground. Picture is about 1 Km across. This is part of an image named HiRISE picture of the day for October 21, 2024.

Small cracks often contain small pits and chains of pits; these are thought to be fromsublimation of ice in the ground.[131][132]Large areas of the Martian surface are loaded with ice that is protected by a meters thick layer of dust and other material. However, if cracks appear, a fresh surface will expose ice to the thin atmosphere.[133][134] In a short time, the ice will disappear into the cold, thin atmosphere in a process called sublimation. Dry ice behaves in a similar fashion on the Earth. On Mars sublimation has been observed when thePhoenix lander uncovered chunks of ice that disappeared in a few days.[51][135] In addition, HiRISE has seen fresh craters with ice at the bottom. After a time, HiRISE saw the ice deposit disappear.[136]

The upper plains unit is thought to have fallen from the sky. It drapes various surfaces, as if it fell evenly. As is the case for other mantle deposits, the upper plains unit has layers, is fine-grained, and is ice-rich. It is widespread; it does not seem to have a point source. The surface appearance of some regions of Mars is due to how this unit has degraded. It is a major cause of the surface appearance oflobate debris aprons.[132]The layering of the upper plains mantling unit and other mantling units are believed to be caused by major changes in the planet's climate. Models predict that the obliquity or tilt of the rotational axis has varied from its present 25 degrees to maybe over 80 degrees over geological time. Periods of high tilt will cause the ice in the polar caps to be redistributed and change the amount of dust in the atmosphere. Dust woill gain a coating of ice and then fall to the ground when the ice layer is heavy enough.[137][138][139]

Linear ridge networks

[edit]

Linear ridge networks are found in various places on Mars in and around craters.[140] Ridges often appear as mostly straight segments that intersect in a lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind.Since the ridges occur in locations with clay, these formations could serve as a marker for clay which requires water for its formation. Water here could have supported life.[141][142][143]

  • Network of ridges, as seen by HiRISE under HiWish program. Ridges may be formed in various ways.
    Network of ridges, as seen by HiRISE under HiWish program. Ridges may be formed in various ways.
  • Close-up and color image of linear ridge network, as seen by HiRISE under HiWish program
    Close-up and color image of linear ridge network, as seen by HiRISE under HiWish program
  • Linear ridge networks, as seen by HiRISE under HiWish program. Location is Amazonis quadrangle.
    Linear ridge networks, as seen by HiRISE under HiWish program. Location isAmazonis quadrangle.
  • Linear ridge network, as seen by HiRISE under HiWish program. Location is Mare Tyrrhenum quadrangle.
    Linear ridge network, as seen by HiRISE under HiWish program. Location isMare Tyrrhenum quadrangle.
  • Linear ridge network, as seen by HiRISE under HiWish program. Location is Casius quadrangle.
    Linear ridge network, as seen by HiRISE under HiWish program. Location isCasius quadrangle.
  • Wide view of ridge network, as seen by HiRISE under HiWish program. Location is Arcadia quadrangle.
    Wide view of ridge network, as seen by HiRISE under HiWish program. Location isArcadia quadrangle.
  • Close view of ridge networks, as seen by HiRISE under HiWish program. Arrow points to small, straight ridge. Location is Arcadia quadrangle.
    Close view of ridge networks, as seen by HiRISE under HiWish program. Arrow points to small, straight ridge. Location isArcadia quadrangle.
  • Wide view of network of ridges, as seen by HiRISE under HiWish program. Portions of this image are enlarged in following images.
    Wide view of network of ridges, as seen by HiRISE under HiWish program. Portions of this image are enlarged in following images.
  • Close view of network of ridges, as seen by HiRISE under HiWish program. This is an enlargement of a previous image.
    Close view of network of ridges, as seen by HiRISE under HiWish program. This is an enlargement of a previous image.
  • Close view of network of ridges, as seen by HiRISE under HiWish program. This is an enlargement of a previous image. Box shows the size of a football field.
    Close view of network of ridges, as seen by HiRISE under HiWish program. This is an enlargement of a previous image. Box shows the size of a football field.
  • Close, color view of network of ridges, as seen by HiRISE under HiWish program. This is an enlargement of a previous image.
    Close, color view of network of ridges, as seen by HiRISE under HiWish program. This is an enlargement of a previous image.
  • Wide view of large ridge network, as seen by HiRISE under HiWish program
    Wide view of large ridge network, as seen by HiRISE under HiWish program
  • Close view of ridge network, as seen by HiRISE under HiWish program. Box shows size of football field.
    Close view of ridge network, as seen by HiRISE under HiWish program. Box shows size of football field.
  • Close, color view of ridges, as seen by HiRISE under HiWish program
    Close, color view of ridges, as seen by HiRISE under HiWish program

Fractured ground

[edit]

Some places on Mars break up with large fractures that created a terrain with mesas and valleys. Some of these can be quite pretty.

  • Wide view of fractured ground, as seen by HiRISE under HiWish program
    Wide view of fractured ground, as seen by HiRISE under HiWish program
  • Close view of fractured ground, as seen by HiRISE under HiWish program
    Close view of fractured ground, as seen by HiRISE under HiWish program
  • Close view of fractured ground, as seen by HiRISE under HiWish program. Box shows size of football field. The boulders are the size of houses.
    Close view of fractured ground, as seen by HiRISE under HiWish program. Box shows size of football field. The boulders are the size of houses.
  • Close, color view of fractured ground, as seen by HiRISE under HiWish program
    Close, color view of fractured ground, as seen by HiRISE under HiWish program

Mesas

[edit]
  • Mesa, as seen by HiRISE under HiWish program. This may make for a good race around a mesa someday in the far future.
    Mesa, as seen by HiRISE under HiWish program. This may make for a good race around a mesa someday in the far future.
  • Mesa with layers, as seen by HiRISE under HiWish program. Location is Mare Acidalium quadrangle.
    Mesa with layers, as seen by HiRISE under HiWish program. Location isMare Acidalium quadrangle.
  • Close view of layers in mesa, as seen by HiRISE under HiWish program
    Close view of layers in mesa, as seen by HiRISE under HiWish program
  • Wide view of layered buttes and small mesas, as seen by HiRISE under HiWish program. Some dark slope streaks are visible. Location is Aeolis quadrangle. Parts of this image are enlarged in next three pictures.
    Wide view of layered buttes and small mesas, as seen by HiRISE under HiWish program. Somedark slope streaks are visible. Location isAeolis quadrangle. Parts of this image are enlarged in next three pictures.
  • Layered mesa and mounds with dark slope streaks, as seen by HiRISE under HiWish program
    Layered mesa and mounds with dark slope streaks, as seen by HiRISE under HiWish program
  • Close view of layered small mesa with dark slope streak, as seen by HiRISE under HiWish program. Box shows the size of a football field.
    Close view of layered small mesa with dark slope streak, as seen by HiRISE under HiWish program. Box shows the size of a football field.
  • Very close view of individual blocks breaking off layer in a butte, as seen by HiRISE under HiWish program. Blocks have angular shapes. Box shows size of football field.
    Very close view of individual blocks breaking off layer in a butte, as seen by HiRISE under HiWish program. Blocks have angular shapes. Box shows size of football field.
  • Layered mesa, as seen by HiRISE under HiWish program
    Layered mesa, as seen by HiRISE under HiWish program
  • Layered mesa, as seen by HiRISE under HiWish program Box is the size of a football field.
    Layered mesa, as seen by HiRISE under HiWish program Box is the size of a football field.

Mesas formed by ground collapse

[edit]
  • Group of mesas, as seen by HiRISE under HiWish program. Oval box contains mesas that may have moved apart.
    Group of mesas, as seen by HiRISE under HiWish program. Oval box contains mesas that may have moved apart.
  • Enlarged view of a group of mesas, as seen by HiRISE under HiWish program. One surface is forming square shapes.
    Enlarged view of a group of mesas, as seen by HiRISE under HiWish program. One surface is forming square shapes.
  • Mesas breaking up forming straight edges, as seen by HiRISE under HiWish program
    Mesas breaking up forming straight edges, as seen by HiRISE under HiWish program

Volcanoes under ice

[edit]

There is evidence that volcanoes sometimes erupt under ice, as they do on Earth at times. What seems to happen it that much ice melts, the water escapes, and then the surface cracks and collapses. These exhibit concentric fractures and large pieces of ground that seemed to have been pulled apart.[144] Sites like this may have recently had held liquid water, hence they may be fruitful places to search for evidence of life.[145][146]

  • Large group of concentric cracks, as seen by HiRISE, under HiWish program. Location is Ismenius Lacus quadrangle. Cracks were formed by a volcano under ice.[145]
    Large group of concentric cracks, as seen by HiRISE, under HiWish program. Location isIsmenius Lacus quadrangle. Cracks were formed by a volcano under ice.[145]
  • Tilted layers formed when ground collapsed, as seen by HiRISE, under HiWish program
    Tilted layers formed when ground collapsed, as seen by HiRISE, under HiWish program
  • Tilted layers formed from ground collapse, as seen by HiRISE, under HiWish program
    Tilted layers formed from ground collapse, as seen by HiRISE, under HiWish program
  • Mesas breaking up into blocks, as seen by HiRISE, under HiWish program
    Mesas breaking up into blocks, as seen by HiRISE, under HiWish program

Fractures forming blocks

[edit]

In places large fractures break up surfaces. Sometimes straight edges are formed and large cubes are created by the fractures.

  • Wide view of mesas that are forming fractures, as seen by HiRISE under HiWish program
    Wide view of mesas that are forming fractures, as seen by HiRISE under HiWish program
  • Enlarged view of a part of previous image, as seen by HiRISE under HiWish program. The rectangle represents the size of a football field.
    Enlarged view of a part of previous image, as seen by HiRISE under HiWish program. The rectangle represents the size of a football field.
  • Close-up of blocks being formed, as seen by HiRISE under HiWish program
    Close-up of blocks being formed, as seen by HiRISE under HiWish program
  • Close-up of blocks being formed, as seen by HiRISE under HiWish program. The rectangle represents the size of a football field, so blocks are the size of buildings.
    Close-up of blocks being formed, as seen by HiRISE under HiWish program. The rectangle represents the size of a football field, so blocks are the size of buildings.
  • Close-up of blocks being formed, as seen by HiRISE under HiWish program. Many long fractures are visible on the surface.
    Close-up of blocks being formed, as seen by HiRISE under HiWish program. Many long fractures are visible on the surface.
  • Surface breaking up, as seen by HiRISE under HiWish program. Near the top the surface is eroding into brain terrain.
    Surface breaking up, as seen by HiRISE under HiWish program. Near the top the surface is eroding into brain terrain.
  • Wide view showing light-toned feature that is breaking into blocks, as seen by HiRISE under HiWish program
    Wide view showing light-toned feature that is breaking into blocks, as seen by HiRISE under HiWish program
  • Close view showing blocks being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image. Box represents size of football field.
    Close view showing blocks being formed, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image. Box represents size of football field.

Lava flows

[edit]
  • Lava flow in Tharsis quadrangle, as seen by HiRISE under HiWish program
    Lava flow in Tharsis quadrangle, as seen by HiRISE under HiWish program
  • Close-up of lava flow with labels, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image of lava flows.
    Close-up of lava flow with labels, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image of lava flows.
  • Lava flows with older and younger flows labeled, as seen by HiRISE under HiWish program
    Lava flows with older and younger flows labeled, as seen by HiRISE under HiWish program
  • Edge of lava flow, as seen by HiRISE under HiWish program. Location is Solis Planum in Phoenicis Lacus quadrangle.
    Edge of lava flow, as seen by HiRISE under HiWish program. Location isSolis Planum inPhoenicis Lacus quadrangle.
  • Wide view of streamlined shape and rafts of lava, as seen by HiRISE under HiWish program
    Wide view of streamlined shape and rafts of lava, as seen by HiRISE under HiWish program
  • Close view of lava rafts from previous image, as seen by HiRISE under HiWish program
    Close view of lava rafts from previous image, as seen by HiRISE under HiWish program

Rootless cones

[edit]

So-called "rootless cones" are caused by explosions of lava with ground ice under the flow.[147][148] The ice melts and turns into a vapor that expands in an explosion that produces a cone or ring. Featureslike these are found in Iceland, when lavas cover water-saturated substrates.[149][147][150]

  • Wide view of field of rootless cones, as seen by HiRISE under HiWish program. Location is Elysium quadrangle.
    Wide view of field of rootless cones, as seen by HiRISE under HiWish program. Location isElysium quadrangle.
  • Close view of rootless cones with tails that suggest lava was moving toward the Southwest over ice-rich ground, as seen by HiRISE under HiWish program
    Close view of rootless cones with tails that suggest lava was moving toward the Southwest over ice-rich ground, as seen by HiRISE under HiWish program
  • Close view of cones with the size of a football field shown, as seen by HiRISE under HiWish program
    Close view of cones with the size of a football field shown, as seen by HiRISE under HiWish program
  • Close view of cones, as seen by HiRISE under HiWish program. These cones probably formed when hot lava flowed over ice-rich ground. The location is the Elysium quadrangle.
    Close view of cones, as seen by HiRISE under HiWish program. These cones probably formed when hot lava flowed over ice-rich ground. The location is theElysium quadrangle.
  • Rootless Cones, as seen by HiRISE under HiWish program. These group of rings or cones are believed to be caused by lava flowing over water ice or ground containing water ice. The ice quickly changes to steam which blows out a ring or cone. Here the kink in the chain may have been caused by the lava changing direction. Some of the forms do not have the shape of rings or cones because maybe the lava moved too quickly; thereby not allowing a complete cone shape to form. The location is the Elysium quadrangle.
    Rootless Cones, as seen by HiRISE under HiWish program. These group of rings or cones are believed to be caused by lava flowing over water ice or ground containing water ice. The ice quickly changes to steam which blows out a ring or cone. Here the kink in the chain may have been caused by the lava changing direction. Some of the forms do not have the shape of rings or cones because maybe the lava moved too quickly; thereby not allowing a complete cone shape to form. The location is theElysium quadrangle.

Mud volcanoes

[edit]

Some features look like volcanoes. Some of them may bemud volcanoes where pressurized mud is forced upward forming cones. These features may be places to look for life as they bring to the surface possible life that has been protected from radiation.

  • Large field of cones that may be mud volcanoes, as seen by HiRISE under HiWish program. Location is Mare Acidalium quadrangle.
    Large field of cones that may be mud volcanoes, as seen by HiRISE under HiWish program. Location isMare Acidalium quadrangle.
  • Close-up of possible mud volcanoes, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image.
    Close-up of possible mud volcanoes, as seen by HiRISE under HiWish program. Note: this is an enlargement of the previous image.
  • Mud volcanoes, as seen by HiRISE under HiWish program. The location is Mare Acidalium quadrangle. There are many mud volcanoes in Mare Acidalium quadrangle.
    Mud volcanoes, as seen by HiRISE under HiWish program. The location isMare Acidalium quadrangle. There are many mud volcanoes in Mare Acidalium quadrangle.
  • Possible mud volcano, as seen by HiRISE under HiWish program. The location is Mare Acidalium quadrangle.
    Possible mud volcano, as seen by HiRISE under HiWish program. The location is Mare Acidalium quadrangle.
  • Wide view of field of mud volcanoes, as seen by HiRISE under HiWish program
    Wide view of field of mud volcanoes, as seen by HiRISE under HiWish program
  • Close view of mud volcanoes, as seen by HiRISE under HiWish program
    Close view of mud volcanoes, as seen by HiRISE under HiWish program
  • Close view of mud volcanoes and boulders, as seen by HiRISE under HiWish program
    Close view of mud volcanoes and boulders, as seen by HiRISE under HiWish program
  • Close view of mud volcano, as seen by HiRISE. Picture is about 1 km across. This mud volcano has a different color than the surroundings because it consists of material brought up from depth. These structures may be useful to explore for remains of past life since they contain samples that would have been protected from the strong radiation at the surface.
    Close view of mud volcano, as seen by HiRISE. Picture is about 1 km across. This mud volcano has a different color than the surroundings because it consists of material brought up from depth. These structures may be useful to explore for remains of past life since they contain samples that would have been protected from the strong radiation at the surface.

Hellas floor features

[edit]

Strange terrain was discovered on parts of the floor ofHellas Planitia. Scientists are not sure of how it formed.

  • Twisted bands on the floor of Hellas Planitia, as seen by HiRISE under HiWish program
    Twisted bands on the floor of Hellas Planitia, as seen by HiRISE under HiWish program
  • Floor features in Hellas Planitia, as seen by HiRISE under HiWish program
    Floor features in Hellas Planitia, as seen by HiRISE under HiWish program
  • Floor features in Hellas Planitia, as seen by HiRISE under HiWish program
    Floor features in Hellas Planitia, as seen by HiRISE under HiWish program
  • Close view of groups of ridges on Hellas floor, as seen by HiRISE under HiWish program
    Close view of groups of ridges on Hellas floor, as seen by HiRISE under HiWish program

Exhumed craters

[edit]

Exhumed craters seem to be in the process of being uncovered.[151] It is believed that they formed, were covered over, and now are being exhumed as material is being eroded. When a crater forms, it will destroy what is under it. In the example below, only part of the crater is visible. if the crater came after the layered feature, it would have removed part of the feature and we would see the entire crater.

  • Wide view of exhumed craters, as seen by HiRISE under HiWish program
    Wide view of exhumed craters, as seen by HiRISE under HiWish program
  • Close view of exhumed crater, as seen by HiRISE under HiWish program. This crater is and was under a set of dipping layers.
    Close view of exhumed crater, as seen by HiRISE under HiWish program. This crater is and was under a set of dipping layers.

How to suggest image

[edit]

To suggest a location for HiRISE to image visit the site athttp://www.uahirise.org/hiwish

In the sign up process you will need to come up with an ID and a password. When you choose a target to be imaged, you have to pick an exact location on a map and write about why the image should be taken. If your suggestion is accepted, it may take 3 months or more to see your image. You will be sent an email telling you about your images. The emails usually arrive on the first Wednesday of the month in the late afternoon.

See also

[edit]

References

[edit]
  1. ^"Public Invited To Pick Pixels On Mars". Mars Daily. January 22, 2010. RetrievedJanuary 10, 2011.
  2. ^"Take control of a Mars orbiter". 28 August 2018.
  3. ^"HiWishing for 3D Mars images, part II".
  4. ^Interview with Alfred McEwen on Planetary Radio, 3/15/2010
  5. ^"Your Personal Photoshoot on Mars?".www.planetary.org. Retrieved20 November 2018.
  6. ^"NASA releases first eight "HiWish" selections of people's choice Mars images". TopNews. April 2, 2010. Archived fromthe original on March 12, 2012. RetrievedJanuary 10, 2011.
  7. ^McEwen, A. et al. 2016. THE FIRST DECADE OF HIRISE AT MARS. 47th Lunar and Planetary Science Conference (2016) 1372.pdf
  8. ^Milliken, R.; Mustard, J.; Goldsby, D. (2003). "Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images".J. Geophys. Res.108 (E6): 5057.Bibcode:2003JGRE..108.5057M.doi:10.1029/2002JE002005.
  9. ^Arfstrom, J; Hartmann, W. (2005). "Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships".Icarus.174 (2):321–335.Bibcode:2005Icar..174..321A.doi:10.1016/j.icarus.2004.05.026.
  10. ^Hubbard, B.; Milliken, R.; Kargel, J.; Limaye, A.; Souness, C. (2011)."Geomorphological characterisation and interpretation of a mid-latitude glacier-like form: Hellas Planitia, Mars".Icarus.211 (1):330–346.Bibcode:2011Icar..211..330H.doi:10.1016/j.icarus.2010.10.021.
  11. ^ Yuval Steinberg et al, "Physical properties of subsurface water ice deposits in Mars's Mid-Latitudes from the shallow radar.", Icarus (2025)
  12. ^https://www.space.com/astronomy/mars/good-news-for-mars-settlers-red-planet-glaciers-are-mostly-pure-water-ice-study-suggests
  13. ^https://www.youtube.com/watch?v=nzh2sirXfD8
  14. ^ Steinberg, Y. et al. 2025. Physical properties of subsurface water ice deposits in Mars’s Mid-Latitudes from the shallow radar. Icarus. vol. 441 116716
  15. ^https://www.uahirise.org/hipod/PSP_008809_2215[bare URL]
  16. ^"HiRISE - Spider Webs (ESP_046359_1250)".www.uahirise.org. Retrieved20 November 2018.
  17. ^Soare, E., et al. 2019. Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus.https://doi.org/10.1016/j.icarus.2019.03.010
  18. ^Penn State. "Gulf of Mars: Rover finds evidence of 'vacation-style' beaches on Mars." ScienceDaily. ScienceDaily, 24 February 2025. <www.sciencedaily.com/releases/2025/02/250224155110.htm>.
  19. ^Jianhui Li, Hai Liu, Xu Meng, Diwen Duan, Haijing Lu, Jinhai Zhang, Fengshou Zhang, Derek Elsworth, Benjamin T. Cardenas, Michael Manga, Bin Zhou, Guangyou Fang. Ancient ocean coastal deposits imaged on Mars. Proceedings of the National Academy of Sciences, 2025; 122 (9) DOI: 10.1073/pnas.2422213122
  20. ^Baker, V. 1982. The Channels of Mars. Univ. of Tex. Press, Austin, TX
  21. ^NASA.gov
  22. ^"HiRISE - Candidate Landing Site for 2020 Mission in Firsoff Crater (ESP_039404_1820)".hirise.lpl.arizona.edu. Retrieved20 November 2018.
  23. ^Pondrelli, M., A. Rossi, L. Deit, S. van Gasselt, F. Fueten, E. Hauber, B. Cavalazzi, M. Glamoclija, and F. Franchi. 2014. A PROPOSED LANDING SITE FOR THE 2020 MARS MISSION: FIRSOFF CRATER.http://marsnext.jpl.nasa.gov/workshops/2014_05/33_Pondrelli_Firsoff_LS2020.pdf
  24. ^Golombek, J. et al. 2016. Downselection of landing Sites for the Mars 2020 Rover Mission. 47th Lunar and Planetary Science Conference (2016). 2324.pdf
  25. ^Valentin, T. and A. Valantinas. 2025. Streaks on martian slopes are dry. Nature Communications.
  26. ^A. Bhardwaj, L. Sam, F.J. Martín-Torres, M.P. Zorzano. 2019. Are slope streaks indicative of global-scale aqueous processes on contemporary Mars?Rev. Geophys. 10.1029/2018RG000617
  27. ^Bickel, V.T. Dust, sand and wind drive slope streaks on Mars. Nat Commun 16, 9583 (2025).https://doi.org/10.1038/s41467-025-65522-4
  28. ^Bickel, V.T. Dust, sand and wind drive slope streaks on Mars. Nat Commun 16, 9583 (2025).https://doi.org/10.1038/s41467-025-65522-4
  29. ^McEwen, A.; et al. (2014). "Recurring slope lineae in equatorial regions of Mars".Nature Geoscience.7 (1):53–58.Bibcode:2014NatGe...7...53M.doi:10.1038/ngeo2014.
  30. ^McEwen, A.; et al. (2011). "Seasonal Flows on Warm Martian Slopes".Science.333 (6043):740–743.Bibcode:2011Sci...333..740M.doi:10.1126/science.1204816.PMID 21817049.S2CID 10460581.
  31. ^"recurring slope lineae - Red Planet Report".redplanet.asu.edu. Retrieved20 November 2018.
  32. ^Bishop, J. L.; Yeşilbaş, M.; Hinman, N. W.; Burton, Z. F. M.; Englert, P. A. J.; Toner, J. D.; McEwen, A. S.; Gulick, V. C.; Gibson, E. K.; Koeberl, C. (2021)."Martian subsurface cryosalt expansion and collapse as trigger for landslides".Science Advances.7 (6) eabe4459.Bibcode:2021SciA....7.4459B.doi:10.1126/sciadv.abe4459.PMC 7857681.PMID 33536216.S2CID 231805052.
  33. ^Bishop, J., et al. 2021. Martian subsurface cryosalt expansion and collapse as trigger for landslides. Science Advances. Vol. 7, no. 6, eabe4459 DOI: 10.1126/sciadv.abe4459
  34. ^"Lines on Mars could be created by salty water triggering landslides".
  35. ^"HiRISE | Transient Slope Lineae Formation in a Well-Preserved Crater (ESP_023184_1335)".
  36. ^Stillman, D., et al. 2017. Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars. Icarus. Volume 285. Pages 195-210
  37. ^"HiRISE | High Resolution Imaging Science Experiment". Hirise.lpl.arizona.edu?psp_008437_1750. Retrieved2012-08-04.
  38. ^Malin, M.; Edgett, K. (2000). "Evidence for recent groundwater seepage and surface runoff on Mars".Science.288 (5475):2330–2335.Bibcode:2000Sci...288.2330M.doi:10.1126/science.288.5475.2330.PMID 10875910.
  39. ^C.M. Dundas, S. Diniega, A.S. McEwen. 2014. Long-term monitoring of martian gully formation and evolution with MRO/HiRISE. Icarus, 251. pp. 244-263, 10.1016/j.icarus.2014.05.013
  40. ^abHecht, M (2002). "Metastability of water on Mars".Icarus.156 (2):373–386.Bibcode:2002Icar..156..373H.doi:10.1006/icar.2001.6794.
  41. ^abMustard, J.; et al. (2001). "Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice".Nature.412 (6845):411–414.Bibcode:2001Natur.412..411M.doi:10.1038/35086515.PMID 11473309.S2CID 4409161.
  42. ^Pollack, J.; Colburn, D.; Flaser, F.; Kahn, R.; Carson, C.; Pidek, D. (1979). "Properties and effects of dust suspended in the martian atmosphere".J. Geophys. Res.84:2929–2945.Bibcode:1979JGR....84.2929P.doi:10.1029/jb084ib06p02929.
  43. ^"HiRISE - Layered Mantling Deposits in the Northern Mid-Latitudes (ESP_048897_2125)".www.uahirise.org. Retrieved20 November 2018.
  44. ^Boynton, W.; et al. (2002)."Distribution of hydrogen in the nearsurface of Mars: Evidence for sub-surface ice deposits".Science.297 (5578):81–85.Bibcode:2002Sci...297...81B.doi:10.1126/science.1073722.PMID 12040090.S2CID 16788398.
  45. ^Kuzmin, R; et al. (2004). "Regions of potential existence of free water (ice) in the near-surface martian ground: Results from the Mars Odyssey High-Energy Neutron Detector (HEND)".Solar System Research.38 (1):1–11.Bibcode:2004SoSyR..38....1K.doi:10.1023/b:sols.0000015150.61420.5b.S2CID 122295205.
  46. ^Mitrofanov, I. et al. 2007a. Burial depth of water ice in Mars permafrost subsurface. In: LPSC 38, Abstract #3108. Houston, TX.
  47. ^Mitrofanov, I.; et al. (2007b)."Water ice permafrost on Mars: Layering structure and subsurface distribution according to HEND/Odyssey and MOLA/MGS data".Geophys. Res. Lett.34 (18) 2007GL030030: 18.Bibcode:2007GeoRL..3418102M.doi:10.1029/2007GL030030.S2CID 45615143.
  48. ^Mangold, N.; et al. (2004)."Spatial relationships between patterned ground and ground ice detected by the neutron spectrometer on Mars"(PDF).J. Geophys. Res.109 (E8) 2004JE002235: E8.Bibcode:2004JGRE..109.8001M.doi:10.1029/2004JE002235.
  49. ^Feldman, W.; et al. (2002)."Global distribution of neutrons from Mars: Results from Mars Odyssey".Science.297 (5578):75–78.Bibcode:2002Sci...297...75F.doi:10.1126/science.1073541.PMID 12040088.S2CID 11829477.
  50. ^Feldman, W.; et al. (2008). "North to south asymmetries in the water-equivalent hydrogen distribution at high latitudes on Mars".J. Geophys. Res.113 (E8) 2007JE003020.Bibcode:2008JGRE..113.8006F.doi:10.1029/2007JE003020.hdl:2027.42/95381.
  51. ^abBright Chunks atPhoenix Lander's Mars Site Must Have Been IceArchived 2016-03-04 at theWayback Machine – Official NASA press release (19.06.2008)
  52. ^"Confirmation of Water on Mars". Nasa.gov. 2008-06-20. Archived fromthe original on 2008-07-01. Retrieved2012-07-13.
  53. ^Mutch, T.A., and 24 colleagues, 1976. The surface of Mars: The view from the Viking2 landerScience 194 (4271), 1277–1283.
  54. ^Mutch, T.; et al. (1977). "The geology of the Viking Lander 2 site".J. Geophys. Res.82 (28):4452–4467.Bibcode:1977JGR....82.4452M.doi:10.1029/js082i028p04452.
  55. ^Levy, J.; et al. (2009)."Thermal contraction crack polygons on Mars: Classification, distribution, and climate implications from HiRISE observations".J. Geophys. Res.114 (E1) 2008JE003273.Bibcode:2009JGRE..114.1007L.doi:10.1029/2008JE003273.
  56. ^Washburn, A. 1973. Periglacial Processes and Environments. St. Martin's Press,New York, pp. 1–2, 100–147.
  57. ^Mellon, M. 1997. Small-scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrostJ. Geophys. Res. 102, 25,617-25,628.
  58. ^abMangold, N (2005). "High latitude patterned grounds on Mars: Classification, distribution and climatic control".Icarus.174 (2):336–359.Bibcode:2005Icar..174..336M.doi:10.1016/j.icarus.2004.07.030.
  59. ^Marchant, D.; Head, J. (2007). "Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars".Icarus.192 (1):187–222.Bibcode:2007Icar..192..187M.doi:10.1016/j.icarus.2007.06.018.
  60. ^"Refubium - Suche"(PDF).www.diss.fu-berlin.de. Retrieved20 November 2018.
  61. ^Kostama, V.-P.; Kreslavsky, Head (2006)."Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement".Geophys. Res. Lett.33 (11): L11201.Bibcode:2006GeoRL..3311201K.doi:10.1029/2006GL025946.S2CID 17229252.
  62. ^Malin, M.; Edgett, K. (2001)."Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission".J. Geophys. Res.106 (E10):23429–23540.Bibcode:2001JGR...10623429M.doi:10.1029/2000je001455.
  63. ^Milliken, R.; et al. (2003). "Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images".J. Geophys. Res.108 (E6) 2002JE002005: E6.Bibcode:2003JGRE..108.5057M.doi:10.1029/2002JE002005.
  64. ^Kreslavsky, M.; Head, J. (2000)."Kilometer-scale roughness on Mars: Results from MOLA data analysis".J. Geophys. Res.105 (E11):26695–26712.Bibcode:2000JGR...10526695K.doi:10.1029/2000je001259.
  65. ^Seibert, N.; Kargel, J. (2001). "Small-scale martian polygonal terrain: Implications for liquid surface water".Geophys. Res. Lett.28 (5):899–902.Bibcode:2001GeoRL..28..899S.doi:10.1029/2000gl012093.S2CID 129590052.
  66. ^Soare, Richard J.; Gallagher, Colman J.; Garvin, James B.; Williams, Jean-Pierre; Hepburn, Adam J.; Costard, Francois; Koutnik, Michelle; Li, An Y. (November 2025). "'Icy' scarp exposures, 'ice-rich' overburdens and ephemeral climate-warming at Mars' mid-latitudes in the very late Amazonian epoch".Icarus.441 116727.doi:10.1016/j.icarus.2025.116727.
  67. ^Soare, R., et al. 2025. “Icy” scarp exposures, “ice-rich” overburdens and ephemeral climate-warming at Mars' mid-latitudes in the very late Amazonian epoch. Icarus. Volume 441, 15 November 2025, 116727
  68. ^"HiRISE | on Frozen Ground (ESP_066782_1110)".
  69. ^"HiRISE | Cracks in a Crater's Ice (ESP_047247_1150)".
  70. ^Kreslavsky, M.A., Head, J.W., 2002. High-latitude Recent Surface Mantle on Mars: New Results from MOLA and MOC. European Geophysical Society XXVII, Nice.
  71. ^Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; Marchant, D.R. (2003). "Recent ice ages on Mars".Nature.426 (6968):797–802.Bibcode:2003Natur.426..797H.doi:10.1038/nature02114.PMID 14685228.S2CID 2355534.
  72. ^Steep Slopes on Mars Reveal Structure of Buried Ice. NASA Press Release. 11 January 2018.
  73. ^Ice cliffs spotted on Mars.Science News. Paul Voosen. 11 January 2018.
  74. ^"Exposed subsurface ice sheets in the Martian mid-latitudes".www.slideshare.net. 13 January 2018. Retrieved20 November 2018.
  75. ^"Steep Slopes on Mars Reveal Structure of Buried Ice - SpaceRef".spaceref.com. 11 January 2018. Retrieved20 November 2018.[permanent dead link]
  76. ^Dundas, Colin M.; et al. (2018)."Exposed subsurface ice sheets in the Martian mid-latitudes".Science.359 (6372):199–201.Bibcode:2018Sci...359..199D.doi:10.1126/science.aao1619.PMID 29326269.S2CID 206662378.
  77. ^abSupplementary Materials Exposed subsurface ice sheets in the Martian mid-latitudes Colin M. Dundas, Ali M. Bramson, Lujendra Ojha, James J. Wray, Michael T. Mellon, Shane Byrne, Alfred S. McEwen, Nathaniel E. Putzig, Donna Viola, Sarah Sutton, Erin Clark, John W. Holt
  78. ^Lefort, A.; Russell, P. S.; Thomas, N.; McEwen, A. S.; Dundas, C. M.; Kirk, R. L. (2009)."Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE)".Journal of Geophysical Research.114 (E4): E04005.Bibcode:2009JGRE..114.4005L.doi:10.1029/2008JE003264.S2CID 129442086.
  79. ^Morgenstern, A; Hauber, E; Reiss, D; van Gasselt, S; Grosse, G; Schirrmeister, L (2007)."Deposition and degradation of a volatile-rich layer in Utopia Planitia, and implications for climate history on Mars"(PDF).Journal of Geophysical Research: Planets.112 (E6): E06010.Bibcode:2007JGRE..112.6010M.doi:10.1029/2006JE002869. Archived fromthe original(PDF) on 2011-10-04.
  80. ^Lefort, A.; Russell, P.S.; Thomas, N. (2010). "Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE".Icarus.205 (1): 259.Bibcode:2010Icar..205..259L.doi:10.1016/j.icarus.2009.06.005.
  81. ^Zanetti, M.; Hiesinger, H.; Reiss, D.; Hauber, E.; Neukum, G. (2009)."Scalloped Depression Development on Malea Planum and the Southern Wall of the Hellas Basin, Mars"(PDF).Lunar and Planetary Science.40. p. 2178, abstract 2178.Bibcode:2009LPI....40.2178Z.
  82. ^http://hiroc.lpl.arizona.edu/images/PSP?diafotizo.php?ID=PSP_002296_1215[permanent dead link]
  83. ^"Huge Underground Ice Deposit on Mars Is Bigger Than New Mexico".Space.com. 22 November 2016. Retrieved20 November 2018.
  84. ^Staff (November 22, 2016)."Scalloped Terrain Led to Finding of Buried Ice on Mars".NASA. RetrievedNovember 23, 2016.
  85. ^"Lake of frozen water the size of New Mexico found on Mars – NASA".The Register. November 22, 2016. RetrievedNovember 23, 2016.
  86. ^Bramson, A, et al. 2015. Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters: 42, 6566-6574
  87. ^"Widespread, Thick Water Ice found in Utopia Planitia, Mars | Cassie Stuurman". Archived from the original on 2016-11-30. Retrieved2016-11-29.
  88. ^Stuurman, C., et al. 2016. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters: 43, 9484_9491.
  89. ^http://hirise.lpl.eduPSP_008508_1870[permanent dead link]
  90. ^Bleacher, J. and S. Sakimoto.Pedestal Craters, A Tool For Interpreting Geological Histories and Estimating Erosion Rates. LPSC
  91. ^"Mars Odyssey Mission THEMIS: Feature Image: Pedestal Craters in Utopia". Archived fromthe original on 2010-01-18. Retrieved2010-03-26.
  92. ^McCauley, J. F. (1973). "Mariner 9 evidence for wind erosion in the equatorial and mid-latitude regions of Mars".Journal of Geophysical Research.78 (20):4123–4137.Bibcode:1973JGR....78.4123M.doi:10.1029/JB078i020p04123.
  93. ^Baker, David M.H.; Carter, Lynn M. (2019)."Probing supraglacial debris on Mars 2: Crater morphology".Icarus.319:264–280.Bibcode:2019Icar..319..264B.doi:10.1016/j.icarus.2018.09.009.S2CID 126156734.
  94. ^Baker, D. and L. Carter. 2019. Probing supraglacial debris on Mars 2: Crater morphology. Icarus. Volume 319. Pages 264-280
  95. ^Levy, J. et al. 2008. Origin and arrangement of boulders on the martian northern plains: Assessment of emplacement and modification environments> In 39th Lunar and Planetary Science Conference, Abstract #1172. League City, TX
  96. ^"Perseverance Rover Witnesses One Martian Dust Devil Eating Another".Jet Propulsion Laboratory.
  97. ^ Edgett, K. S., and M. C. Malin (2000), Martian dust raising and surface albedo controls: thin, dark (and sometimes bright) streaks and dust devils in MGS high-resolution images, Lunar Planet. Sci. [CDROM], XXXI, Abstract 1073.
  98. ^ Malin, M. C., and K. S. Edgett (2001), Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission, J. Geophys. Res., 106, 23,429–23,570.
  99. ^"Dust devils on Mars may spark lightning — possibly threatening NASA's Perseverance rover".Space.com. 2 July 2025.
  100. ^Sheel, V., et.al. 2025. Electric fields due to charged dust within a vortex. Phys. Plasmas 32, 033704.
  101. ^H. F. Eden and B. Vonnegut, Science 180(4089), 962–963 (1973).https://doi.org/10.1126/science.180.4089.962
  102. ^ Fisher, J. A., M. I. Richardson, C. E. Newman, M. A. Szwast, C. Graf, S. Basu, S. P. Ewald, A. D. Toigo, and R. J. Wilson (2005), A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images, J. Geophys. Res., 110, E03004, doi:10.1029/2003JE002165.
  103. ^Balme, M., and R. Greeley (2006), Dust devils on Earth and Mars, Rev. Geophys., 44, RG3003, doi:10.1029/2005RG000188.
  104. ^NASA.gov
  105. ^NASA.gov
  106. ^Mars Exploration Rover Mission: Press Release Images: Spirit. Marsrovers.jpl.nasa.gov. Retrieved on 7 August 2011.
  107. ^"HiRISE - Dust Devils Dancing on Dunes (PSP_005383_1255)".hirise.lpl.arizona.edu. Retrieved20 November 2018.
  108. ^Reiss, D.; et al. (2011). "Multitemporal observations of identical active dust devils on Mars with High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC)".Icarus.215 (1):358–369.Bibcode:2011Icar..215..358R.doi:10.1016/j.icarus.2011.06.011.
  109. ^https://www.science.org/doi/10.1126/sciadv.adw5170?adobe_mc=MCMID%3D68227027333727904592434133527388632768%7CMCORGID%3D242B6472541199F70A4C98A6%2540AdobeOrg%7CTS%3D1759927070&adobe_mc=MCMID%3D68227027333727904592434133527388632768%7CMCORGID%3D242B6472541199F70A4C98A6%2540AdobeOrg%7CTS%3D1759927073&adobe_mc=MCMID%3D68227027333727904592434133527388632768%7CMCORGID%3D242B6472541199F70A4C98A6%2540AdobeOrg%7CTS%3D1759927544%27
  110. ^Valentin T. Bickel et al. ,Dust devil migration patterns reveal strong near-surface winds across Mars.Sci. Adv.11,eadw5170(2025).DOI:10.1126/sciadv.adw5170
  111. ^Ward, A. Wesley (20 November 1979). "Yardangs on Mars: Evidence of recent wind erosion".Journal of Geophysical Research.84 (B14):8147–8166.Bibcode:1979JGR....84.8147W.doi:10.1029/JB084iB14p08147.
  112. ^esa."'Yardangs' on Mars". Retrieved20 November 2018.
  113. ^"Medusae Fossae Formation - Mars Odyssey Mission THEMIS".themis.asu.edu. Retrieved20 November 2018.
  114. ^https://www.uahirise.org/ESP_064469_0945
  115. ^ab"Gas jets spawn dark 'spiders' and spots on Mars icecap - Mars Odyssey Mission THEMIS".themis.asu.edu. Retrieved20 November 2018.
  116. ^Thomas, N., G. Portyankina, C.J. Hansen, A. Pommerol. 2011. HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: IV. Fluid dynamics models of CO2 jetsIcarus: 212, pp. 66–85
  117. ^Buhler, Peter, Andrew Ingersoll, Bethany Ehlmann, Cale Fassett, James Head. 2017. How the martian residual south polar cap develops quasi-circular and heart-shaped pits, troughs, and moats. Icarus: 286, 69–93
  118. ^Benson, M. 2012. Planetfall: New Solar System Visions
  119. ^"Spiders invade Mars".Astrobiology Magazine. 17 August 2006. Retrieved20 November 2018.
  120. ^Kieffer H, Christensen P, Titus T. 2006 Aug 17. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap. Nature: 442(7104):793-6.
  121. ^"Thawing 'Dry Ice' Drives Groovy Action on Mars".NASA/JPL. Retrieved20 November 2018.
  122. ^
  123. ^Kieffer, Hugh H. (2003)."Third Mars Polar Science Conference (2003)- Behavior of Solid CO"(PDF). Retrieved6 September 2009.
  124. ^Portyankina, G., ed. (2006)."Fourth Mars Polar Science Conference - Simulations of Geyser-Type Eruptions in Cryptic Region of Martian South"(PDF). Retrieved11 August 2009.
  125. ^Sz. Bérczi; et al., eds. (2004)."Lunar and Planetary Science XXXV (2004) - Stratigraphy of Special Layers – Transient Ones on Permeable Ones: Examples"(PDF). Retrieved12 August 2009.
  126. ^"NASA Findings Suggest Jets Bursting From Martian Ice Cap".Jet Propulsion Laboratory. NASA. 16 August 2006. Archived fromthe original on 25 February 2021. Retrieved11 August 2009.
  127. ^C.J. Hansen; N. Thomas; G. Portyankina; et al. (2010)."HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: I. Erosion of the surface"(PDF).Icarus.205 (1):283–295.Bibcode:2010Icar..205..283H.doi:10.1016/j.icarus.2009.07.021. Retrieved26 July 2010.
  128. ^"'Spiders on Mars' fully awakened on Earth for 1st time — and scientists are shrieking with joy".Live Science. 16 September 2024.
  129. ^Carr, M. 2001.
  130. ^Blanc, E., et al. 2024. ORIGIN OF WIDESPREAD LAYERED DEPOSITS ASSOCIATED WITH MARTIAN DEBRIS COVERED GLACIERS. 55th LPSC (2024). 1466.pdf
  131. ^Morgenstern, A., et al. 2007
  132. ^abBaker, D.; Head, J. (2015). "Extensive Middle Amazonian mantling of debris aprons and plains in Deuteronilus Mensae, Mars: Implication for the record of mid-latitude glaciation".Icarus.260:269–288.Bibcode:2015Icar..260..269B.doi:10.1016/j.icarus.2015.06.036.
  133. ^Mangold, N (2003)."Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures".J. Geophys. Res.108 (E4) 2002JE001885: 8021.Bibcode:2003JGRE..108.8021M.doi:10.1029/2002je001885.
  134. ^Levy, J. et al. 2009. Concentric
  135. ^"NASA - Bright Chunks at Phoenix Lander's Mars Site Must Have Been Ice".www.nasa.gov. Archived fromthe original on 4 March 2016. Retrieved20 November 2018.
  136. ^Byrne, S.; et al. (2009). "Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters".Science.325 (5948):1674–1676.Bibcode:2009Sci...325.1674B.doi:10.1126/science.1175307.PMID 19779195.S2CID 10657508.
  137. ^Head, J. et al. 2003.
  138. ^Madeleine, et al. 2014.
  139. ^Schon; et al. (2009)."A recent ice age on Mars: Evidence for climate oscillations from regional layering in mid-latitude mantling deposits".Geophys. Res. Lett.36 (15) 2009GL038554: L15202.Bibcode:2009GeoRL..3615202S.doi:10.1029/2009GL038554.S2CID 18570952.
  140. ^Head, J.; Mustard, J. (2006). "Breccia dikes and crater-related faults in impact craters on Mars: Erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary".Meteorit. Planet Science.41 (10):1675–1690.Bibcode:2006M&PS...41.1675H.doi:10.1111/j.1945-5100.2006.tb00444.x.S2CID 12036114.
  141. ^Mangold; et al. (2007)."Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust".J. Geophys. Res.112 (E8) 2006JE002835.Bibcode:2007JGRE..112.8S04M.doi:10.1029/2006JE002835.S2CID 15188454.
  142. ^Mustard; et al. (2007)."Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian".J. Geophys. Res.112 (E8) 2006JE002834.Bibcode:2007JGRE..112.8S03M.doi:10.1029/2006JE002834.
  143. ^Mustard; et al. (2009)."Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis Basin"(PDF).J. Geophys. Res.114 (7) 2009JE003349.Bibcode:2009JGRE..114.0D12M.doi:10.1029/2009JE003349.
  144. ^Smellie, J., B. Edwards. 2016. Glaciovolcanism on Earth and Mars. Cambridge University Press.
  145. ^abLevy, J., et al. 2017. Candidate volcanic and impact-induced ice depressions on Mars. Icarus: 285, 185-194.
  146. ^University of Texas at Austin. "A funnel on Mars could be a place to look for life." ScienceDaily. ScienceDaily, 10 November 2016. <sciencedaily.com/releases/2016/11/161110125408.htm>.
  147. ^ab"PSR Discoveries: Rootless cones on Mars".www.psrd.hawaii.edu. Retrieved20 November 2018.
  148. ^Lanagan, P., A. McEwen, L. Keszthelyi, and T. Thordarson. 2001. Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times, Geophysical Research Letters: 28, 2365-2368.
  149. ^S. Fagents1, a., P. Lanagan, R. Greeley. 2002. Rootless cones on Mars: a consequence of lava-ground ice interaction. Geological Society, Londo. Special Publications: 202, 295-317.
  150. ^Jaeger, W., L. Keszthelyi, A. McEwen, C. Dundas, P. Russell, and the HiRISE team. 2007. EARLY HiRISE OBSERVATIONS OF RING/MOUND LANDFORMS IN ATHABASCA VALLES, MARS. Lunar and Planetary Science XXXVIII 1955.pdf.
  151. ^"Exhumed Craters near Kaiser". 2004.

Further reading

[edit]
  • Lorenz, R. 2014. The Dune Whisperers. The Planetary Report: 34, 1, 8-14
  • Lorenz, R., J. Zimbelman. 2014. Dune Worlds: How Windblown Sand Shapes Planetary Landscapes. Springer Praxis Books / Geophysical Sciences.
  • Grotzinger, J. and R. Milliken (eds.). 2012. Sedimentary Geology of Mars. SEPM.

External links

[edit]
  • McEwen, A., et al. 2024. The high-resolution imaging science experiment (HiRISE) in the MRO extended science phases (2009–2023). Icarus. Available online 16 September 2023, 115795. In Press.
Instruments
Related
Geography
Atmosphere
Regions
Physical
features
Geology
History
Astronomy
Moons
Transits
Asteroids
Comets
General
Exploration
Concepts
Missions
Advocacy
Related
Portal:
Retrieved from "https://en.wikipedia.org/w/index.php?title=HiWish_program&oldid=1321934891"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp