Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Heptadecagon

From Wikipedia, the free encyclopedia
Polygon with 17 edges

Regular heptadecagon
A regular heptadecagon
TypeRegular polygon
Edges andvertices17
Schläfli symbol{17}
Coxeter–Dynkin diagrams
Symmetry groupDihedral (D17), order 2×17
Internal angle (degrees)≈158.82°
PropertiesConvex,cyclic,equilateral,isogonal,isotoxal
Dual polygonSelf

Ingeometry, aheptadecagon,septadecagon or17-gon is a seventeen-sidedpolygon.

Regular heptadecagon

[edit]

Aregular heptadecagon is represented by theSchläfli symbol {17}.

Construction

[edit]
Publication by C. F. Gauss inIntelligenzblatt der allgemeinen Literatur-Zeitung

As 17 is aFermat prime, the regular heptadecagon is aconstructible polygon (that is, one that can be constructed using acompass and unmarked straightedge): this was shown byCarl Friedrich Gauss in 1796.[1] This proof represented the first progress in regular polygon construction in over 2000 years.[1] Gauss's proof relies firstly on the fact that constructibility is equivalent to expressibility of thetrigonometric functions of the common angle in terms ofarithmetic operations andsquare root extractions, and secondly on his proof that this can be done if the odd prime factors ofN{\displaystyle N}, the number of sides of the regular polygon, are distinct Fermat primes, which are of the formFn=22n+1{\displaystyle F_{n}=2^{2^{n}}+1} for some nonnegative integern{\displaystyle n}. Constructing a regular heptadecagon thus involves finding the cosine of2π/17{\displaystyle 2\pi /17} in terms of square roots. Gauss's bookDisquisitiones Arithmeticae[2] gives this (in modern notation) as[3]

cos2π17=116(171+34217)+18(17+31734217234+217).{\displaystyle {\begin{aligned}\cos {\frac {2\pi }{17}}=&{\frac {1}{16}}\left({\sqrt {17}}-1+{\sqrt {34-2{\sqrt {17}}}}\right)\\&+{\frac {1}{8}}\left({\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}}\right).\\\end{aligned}}}
Gaussian construction of the regular heptadecagon.

Constructions for theregular triangle,pentagon,pentadecagon, and polygons with2h times as many sides had been given by Euclid, but constructions based on the Fermat primes other than 3 and 5 were unknown to the ancients. (The only known Fermat primes areFn forn = 0, 1, 2, 3, 4. They are 3, 5, 17, 257, and 65537.)

The explicit construction of a heptadecagon was given byHerbert William Richmond in 1893. The following method of construction usesCarlyle circles, as shown below. Based on the construction of the regular 17-gon, one can readily constructn-gons withn being the product of 17 with 3 or 5 (or both) and any power of 2: a regular 51-gon, 85-gon or 255-gon and any regularn-gon with2h times as many sides.

Construction according to Duane W. DeTemple with Carlyle circles,[4] animation 1 min 57 s

Another construction of the regular heptadecagon using straightedge and compass is the following:

T. P. Stowell of Rochester, N. Y., responded to Query, by W.E. Heal, Wheeling, Indiana inThe Analyst in the year 1877:[5]

"To construct a regular polygon of seventeen sides in a circle.Draw the radius CO at right-angles to the diameter AB: On OC and OB, take OQ equal to the half, and OD equal to the eighth part of the radius: Make DE and DF each equal to DQ and EG and FH respectively equal to EQ and FQ; take OK a mean proportional between OH and OQ, and through K, draw KM parallel to AB, meeting the semicircle described on OG in M; draw MN parallel to OC, cutting the given circle in N – the arc AN is the seventeenth part of the whole circumference."

Construction according to
"sent by T. P. Stowell, credited to Leybourn's Math. Repository, 1818".
Added:"take OK amean proportional between OH and OQ"
Construction according to
"sent by T. P. Stowell, credited to Leybourn's Math. Repository, 1818".
Added:"take OK a mean proportional between OH and OQ", animation

The following simple design comes from Herbert William Richmond from the year 1893:[6]

"LET OA, OB (fig. 6) be two perpendicular radii of a circle. Make OI one-fourth of OB, and the angle OIE one-fourth of OIA; also find in OA produced a point F such that EIF is 45°. Let the circle on AF as diameter cut OB in K, and let the circle whose centre is E and radius EK cut OA in N3 and N5; then if ordinates N3P3, N5P5 are drawn to the circle, the arcs AP3, AP5 will be 3/17 and 5/17 of the circumference."
Construction according to H. W. Richmond
Construction according to H. W. Richmond as animation

The following construction is a variation of H. W. Richmond's construction.

The differences to the original:

  • The circle k2 determines the point H instead of the bisector w3.
  • The circle k4 around the point G' (reflection of the point G at m) yields the point N, which is no longer so close to M, for the construction of the tangent.
  • Some names have been changed.
Heptadecagon in principle according to H.W. Richmond, a variation of the design regarding to point N

Another more recent construction is given by Callagy.[3]

Trigonometric derivation using nested quadratic equations

[edit]

Combine nested double-angle formula with supplementary-angle formula to get the nested quadratic polynomial below.

cos2mπ17=2cos2mπ171{\displaystyle \cos {\frac {2m\pi }{17}}=2\cos ^{2}{\frac {m\pi }{17}}-1}, AND
cos16π17=cos(ππ17)=cosπ17=X{\displaystyle \cos {\frac {16\pi }{17}}=\cos({\pi -{\frac {\pi }{17}}})=-\cos {\frac {\pi }{17}}=-X}

Therefore,

X=cosπ17=cos16π17=2cos28π171=2×(2cos24π171)21{\displaystyle -X=-\cos {\frac {\pi }{17}}=\cos {\frac {16\pi }{17}}=2\cos ^{2}{\frac {8\pi }{17}}-1=2\times {(2\cos ^{2}{\frac {4\pi }{17}}-1)}^{2}-1}
cos4π17=2cos22π171=2×(2cos2π171)21=2(2X21)21{\displaystyle \cos {\frac {4\pi }{17}}=2\cos ^{2}{\frac {2\pi }{17}}-1=2\times {(2\cos ^{2}{\frac {\pi }{17}}-1)}^{2}-1=2(2X^{2}-1)^{2}-1}

On simplifying and solving for X,

32768X16131072X14+212992X12180224X10+84480X821504X6+2688X4128X2+1=X{\displaystyle 32768X^{16}-131072X^{14}+212992X^{12}-180224X^{10}+84480X^{8}-21504X^{6}+2688X^{4}-128X^{2}+1=-X}
cosπ17=X=346817+1+23468+17117+27216{\displaystyle \cos {\frac {\pi }{17}}=X={\frac {{\sqrt {34-{\sqrt {68}}}}-{\sqrt {17}}+1+2{\sqrt {{\sqrt {34-{\sqrt {68}}}}+{\sqrt {17}}-1}}{\sqrt {\sqrt {17+{\sqrt {272}}}}}}{16}}}

Exact value of sin and cos ofmπ/(17 × 2n)

[edit]

IfA=2(17±17){\displaystyle A={\sqrt {2(17\pm {\sqrt {17}})}}},B=(17±1){\displaystyle B=({\sqrt {17}}\pm 1)} andC=17417{\displaystyle C=17\mp 4{\sqrt {17}}} then, depending on any integer m

cosmπ17=±(A±B)±2(AB)C16{\displaystyle \cos {\frac {m\pi }{17}}=\pm {\frac {(A\pm B)\pm 2{\sqrt {(A\mp B){\sqrt {C}}}}}{16}}}
=±34±68±(17±1)±234±68(17±1)1727216{\displaystyle =\pm {\frac {{\sqrt {34\pm {\sqrt {68}}}}\pm ({\sqrt {17}}\pm 1)\pm 2{\sqrt {{\sqrt {34\pm {\sqrt {68}}}}\mp ({\sqrt {17}}\pm 1)}}{\sqrt {\sqrt {17\mp {\sqrt {272}}}}}}{16}}}

For example, if m = 1

cosπ17=346817+1+23468+17117+27216{\displaystyle \cos {\frac {\pi }{17}}={\frac {{\sqrt {34-{\sqrt {68}}}}-{\sqrt {17}}+1+2{\sqrt {{\sqrt {34-{\sqrt {68}}}}+{\sqrt {17}}-1}}{\sqrt {\sqrt {17+{\sqrt {272}}}}}}{16}}}

Here are the expressions simplified into the following table.

Cos and Sin (m π / 17) in first quadrant, from which other quadrants are computable.
m16 cos (m π / 17)8 sin (m π / 17)
1+117+3468+68+2448+2720+6284288{\displaystyle +1-{\sqrt {17}}+{\sqrt {34-{\sqrt {68}}}}+{\sqrt {68+{\sqrt {2448}}+{\sqrt {2720+{\sqrt {6284288}}}}}}}34681361088272+3916843520+1608777728{\displaystyle {\sqrt {34-{\sqrt {68}}-{\sqrt {136-{\sqrt {1088}}}}-{\sqrt {272+{\sqrt {39168}}-{\sqrt {43520+{\sqrt {1608777728}}}}}}}}}
21+17+3468+68+24482720+6284288{\displaystyle -1+{\sqrt {17}}+{\sqrt {34-{\sqrt {68}}}}+{\sqrt {68+{\sqrt {2448}}-{\sqrt {2720+{\sqrt {6284288}}}}}}}3468+1361088272+39168+43520+1608777728{\displaystyle {\sqrt {34-{\sqrt {68}}+{\sqrt {136-{\sqrt {1088}}}}-{\sqrt {272+{\sqrt {39168}}+{\sqrt {43520+{\sqrt {1608777728}}}}}}}}}
3+1+17+34+68+68244827206284288{\displaystyle +1+{\sqrt {17}}+{\sqrt {34+{\sqrt {68}}}}+{\sqrt {68-{\sqrt {2448}}-{\sqrt {2720-{\sqrt {6284288}}}}}}}34+68136+108827239168+435201608777728{\displaystyle {\sqrt {34+{\sqrt {68}}-{\sqrt {136+{\sqrt {1088}}}}-{\sqrt {272-{\sqrt {39168}}+{\sqrt {43520-{\sqrt {1608777728}}}}}}}}}
41+173468+68+2448+2720+6284288{\displaystyle -1+{\sqrt {17}}-{\sqrt {34-{\sqrt {68}}}}+{\sqrt {68+{\sqrt {2448}}+{\sqrt {2720+{\sqrt {6284288}}}}}}}34681361088+272+3916843520+1608777728{\displaystyle {\sqrt {34-{\sqrt {68}}-{\sqrt {136-{\sqrt {1088}}}}+{\sqrt {272+{\sqrt {39168}}-{\sqrt {43520+{\sqrt {1608777728}}}}}}}}}
5+1+17+34+6868244827206284288{\displaystyle +1+{\sqrt {17}}+{\sqrt {34+{\sqrt {68}}}}-{\sqrt {68-{\sqrt {2448}}-{\sqrt {2720-{\sqrt {6284288}}}}}}}34+68136+1088+27239168+435201608777728{\displaystyle {\sqrt {34+{\sqrt {68}}-{\sqrt {136+{\sqrt {1088}}}}+{\sqrt {272-{\sqrt {39168}}+{\sqrt {43520-{\sqrt {1608777728}}}}}}}}}
6117+34+68+682448+27206284288{\displaystyle -1-{\sqrt {17}}+{\sqrt {34+{\sqrt {68}}}}+{\sqrt {68-{\sqrt {2448}}+{\sqrt {2720-{\sqrt {6284288}}}}}}}34+68+136+108827239168435201608777728{\displaystyle {\sqrt {34+{\sqrt {68}}+{\sqrt {136+{\sqrt {1088}}}}-{\sqrt {272-{\sqrt {39168}}-{\sqrt {43520-{\sqrt {1608777728}}}}}}}}}
7+1+1734+68+682448+27206284288{\displaystyle +1+{\sqrt {17}}-{\sqrt {34+{\sqrt {68}}}}+{\sqrt {68-{\sqrt {2448}}+{\sqrt {2720-{\sqrt {6284288}}}}}}}34+68+136+1088+27239168435201608777728{\displaystyle {\sqrt {34+{\sqrt {68}}+{\sqrt {136+{\sqrt {1088}}}}+{\sqrt {272-{\sqrt {39168}}-{\sqrt {43520-{\sqrt {1608777728}}}}}}}}}
81+17+346868+24482720+6284288{\displaystyle -1+{\sqrt {17}}+{\sqrt {34-{\sqrt {68}}}}-{\sqrt {68+{\sqrt {2448}}-{\sqrt {2720+{\sqrt {6284288}}}}}}}3468+1361088+272+39168+43520+1608777728{\displaystyle {\sqrt {34-{\sqrt {68}}+{\sqrt {136-{\sqrt {1088}}}}+{\sqrt {272+{\sqrt {39168}}+{\sqrt {43520+{\sqrt {1608777728}}}}}}}}}

Therefore, applying induction with m=1 and starting with n=0:

cosπ17×20=117+3468+68+2448+2720+628428816{\displaystyle \cos {\frac {\pi }{17\times 2^{0}}}={\frac {1-{\sqrt {17}}+{\sqrt {34-{\sqrt {68}}}}+{\sqrt {68+{\sqrt {2448}}+{\sqrt {2720+{\sqrt {6284288}}}}}}}{16}}}
cosπ17×2n+1=2+2cosπ17×2n2{\displaystyle \cos {\frac {\pi }{17\times 2^{n+1}}}={\frac {\sqrt {2+2\cos {\frac {\pi }{17\times 2^{n}}}}}{2}}} andsinπ17×2n+1=22cosπ17×2n2.{\displaystyle \sin {\frac {\pi }{17\times 2^{n+1}}}={\frac {\sqrt {2-2\cos {\frac {\pi }{17\times 2^{n}}}}}{2}}.}

Symmetry

[edit]
Symmetries of a regular heptadecagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center.

Theregular heptadecagon hasDih17 symmetry, order 34. Since 17 is aprime number there is one subgroup with dihedral symmetry: Dih1, and 2cyclic group symmetries: Z17, and Z1.

These 4 symmetries can be seen in 4 distinct symmetries on the heptadecagon.John Conway labels these by a letter and group order.[7] Full symmetry of the regular form isr34 and no symmetry is labeleda1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), andi when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled asg for their central gyration orders.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only theg17 subgroup has no degrees of freedom but can be seen asdirected edges.

Related polygons

[edit]

Heptadecagrams

[edit]

A heptadecagram is a 17-sidedstar polygon. There are seven regular forms given bySchläfli symbols: {17/2}, {17/3}, {17/4}, {17/5}, {17/6}, {17/7}, and {17/8}. Since 17 is a prime number, all of these are regular stars and not compound figures.

Picture
{17/2}

{17/3}

{17/4}

{17/5}

{17/6}

{17/7}

{17/8}
Interior angle≈137.647°≈116.471°≈95.2941°≈74.1176°≈52.9412°≈31.7647°≈10.5882°

Petrie polygons

[edit]

The regular heptadecagon is thePetrie polygon for one higher-dimensional regular convex polytope, projected in a skeworthogonal projection:


16-simplex (16D)

References

[edit]
  1. ^abArthur Jones, Sidney A. Morris, Kenneth R. Pearson,Abstract Algebra and Famous Impossibilities, Springer, 1991,ISBN 0387976612,p. 178.
  2. ^Carl Friedrich Gauss "Disquisitiones Arithmeticae" eod books2ebooks, p. 662 item 365.
  3. ^abCallagy, James J. "The central angle of the regular 17-gon",Mathematical Gazette 67, December 1983, 290–292.
  4. ^Duane W. DeTemple "Carlyle Circles and the Lemoine Simplicity of Polygon Constructions" inThe American Mathematical Monthly, Volume 98, Issuc 1 (Feb. 1991), 97–108."4. Construction of the Regular Heptadecagon (17-gon)" pp. 101–104, p.103, web.archive document, selected on 28 January 2017
  5. ^Hendricks, J. E. (1877)."Answer to Mr. Heal's Query; T. P. Stowell of Rochester, N. Y."The Analyst: A Monthly Journal of Pure and Applied Mathematicus.1:94–95.Query, by W. E. Heal, Wheeling, Indiana p. 64; accessdate 30 April 2017
  6. ^Herbert W. Richmond,description "A Construction for a regular polygon of seventeen side"illustration (Fig. 6), The Quarterly Journal of Pure and Applied Mathematics 26: pp. 206–207. Retrieved 4 December 2015
  7. ^John H. Conway, Heidi Burgiel,Chaim Goodman-Strauss, (2008) The Symmetries of Things,ISBN 978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275–278)

Further reading

[edit]

External links

[edit]
Wikimedia Commons has media related to17-gons.
Triangles
Quadrilaterals
By number
of sides
1–10 sides
11–20 sides
>20 sides
Star polygons
Classes
Retrieved from "https://en.wikipedia.org/w/index.php?title=Heptadecagon&oldid=1311753363"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp