Some evolutionaryanatomists use the termhand to refer to the appendage of digits on the forelimb more generally—for example, in the context of whether the threedigits of thebird hand involved the samehomologous loss of two digits as in thedinosaur hand.[2]
Fingers contain some of the densest areas of nerve endings in the body, and are the richest source oftactile feedback. They also have the greatest positioning capability of the body; thus, thesense of touch is intimately associated with hands. Like other paired organs (eyes, feet, legs) each hand is dominantly controlled by the opposingbrain hemisphere, so thathandedness—the preferred hand choice for single-handed activities such as writing with a pencil—reflects individual brain functioning.
Among humans, the hands play an important function inbody language andsign language. Likewise, the ten digits of two hands and the twelvephalanges of four fingers (touchable by the thumb) have given rise to number systems and calculation techniques.
Structure
Manymammals and otheranimals havegrasping appendages similar in form to a hand such aspaws,claws, and talons, but these are not scientifically considered to be grasping hands. The scientific use of the termhand in this sense to distinguish the terminations of the front paws from the hind ones is an example ofanthropomorphism. The only true grasping hands appear in the mammalian order ofprimates. Hands must also have opposablethumbs, as described later in the text.
The hand is located at the distal end of each arm.Apes andmonkeys are sometimes described as having four hands, because the toes are long and thehallux is opposable and looks more like athumb, thus enabling the feet to be used as hands.
The word "hand" is sometimes used by evolutionary anatomists to refer to the appendage of digits on the forelimb such as when researching the homology between the threedigits of thebird hand and thedinosaur hand.[2]
An adult human male's hand weighs about a pound.[9]
Areas
Human hand parts
Areas of the human hand include:
Thepalm (volar), which is the central region of the anterior part of the hand, located superficially to themetacarpus. The skin in this area containsdermal papillae to increase friction, such as are also present on the fingers and used forfingerprints.
Theopisthenar area (dorsal) is the corresponding area on the posterior part of the hand.
Theheel of the hand is the area anteriorly to thebases of the metacarpal bones, located in the proximal part of the palm. It is the area that sustains most pressure when using the palm of the hand for support, such as inhandstand. Its skeletal foundation is formed by the distal row ofcarpal bones (specifically thehamate,capitate,trapezoid, andtrapezium) and the bases of themetacarpal bones. The skin is thick and tough, adapted for pressure and friction, a layer ofsubcutaneous fat and connective tissue provides cushioning, andpalmar fascia contributes to the palm's shape and stability.
There are fivedigits attached to the hand, notably with anail fixed to the end in place of the normalclaw. The fourfingers can be folded over the palm which allows the grasping of objects. Each finger, starting with the one closest to the thumb, has a colloquial name to distinguish it from the others:
index finger, pointer finger, forefinger, or 2nd digit
little finger, pinky finger, small finger, baby finger, or 5th digit
Thethumb (connected to thefirst metacarpal bone andtrapezium) is located on one of the sides, parallel to the arm. A reliable way of identifying human hands is from the presence of opposable thumbs. Opposable thumbs are identified by the ability to be brought opposite to the fingers, a muscle action known as opposition.
Bones
Bones of the human handHand-bone animation (metacarpal movement is exaggerated, other than on the thumb)Image showing thecarpal bones
Theskeleton of the human hand consists of 27 bones:[10] the eightshortcarpal bones of thewrist are organized into a proximal row (scaphoid,lunate,triquetral andpisiform) which articulates with the bones of the forearm, and a distal row (trapezium,trapezoid,capitate andhamate), which articulates with the bases of the fivemetacarpal bones of the hand. The heads of the metacarpals will each in turn articulate with the bases of the proximalphalanx of the fingers and thumb. These articulations with the fingers are themetacarpophalangeal joints known as the knuckles. At the palmar aspect of the first metacarpophalangeal joints are small, almost spherical bones called the sesamoid bones. The fourteen phalanges make up the fingers and thumb, and are numbered I-V (thumb to little finger) when the hand is viewed from an anatomical position (palm up). The four fingers each consist of three phalanx bones: proximal, middle, and distal. The thumb only consists of a proximal and distal phalanx.[11] Together with the phalanges of the fingers and thumb these metacarpal bones form five rays or poly-articulated chains.
Becausesupination andpronation (rotation about the axis of the forearm) are added to the two axes of movements of the wrist, theulna andradius are sometimes considered part of the skeleton of the hand.
There are numeroussesamoid bones in the hand, smallossified nodes embedded in tendons; the exact number varies between people:[7] whereas a pair of sesamoid bones are found at virtually all thumb metacarpophalangeal joints, sesamoid bones are also common at the interphalangeal joint of the thumb (72.9%) and at the metacarpophalangeal joints of the little finger (82.5%) and the index finger (48%). In rare cases, sesamoid bones have been found in all the metacarpophalangeal joints and all distal interphalangeal joints except that of the long finger.
wrist (may also be viewed as belonging to theforearm).
Arches
Arches of the hand Red: one of the oblique arches Brown: one of the longitudinal arches of the digits Dark green: transverse carpal arch Light green: transverse metacarpal arch
The fixed and mobile parts of the hand adapt to various everyday tasks by forming bony arches: longitudinal arches (the rays formed by the finger bones and their associated metacarpal bones), transverse arches (formed by the carpal bones and distal ends of the metacarpal bones), and oblique arches (between the thumb and four fingers):
Of the longitudinal arches or rays of the hand, that of the thumb is the most mobile (and the least longitudinal). While the ray formed by the little finger and its associated metacarpal bone still offers some mobility, the remaining rays are firmly rigid. The phalangeal joints of the index finger, however, offer some independence to its finger, due to the arrangement of its flexor and extension tendons.[12]
The carpal bones form two transversal rows, each forming an arch concave on the palmar side. Because the proximal arch simultaneously has to adapt to the articular surface of the radius and to the distal carpal row, it is by necessity flexible. In contrast, the capitate, the "keystone" of the distal arch, moves together with the metacarpal bones and the distal arch is therefore rigid. The stability of these arches is more dependent of the ligaments and capsules of the wrist than of the interlocking shapes of the carpal bones, and the wrist is therefore more stable in flexion than in extension.[12] The distal carpal arch affects the function of the CMC joints and the hands, but not the function of the wrist or the proximal carpal arch. The ligaments that maintain the distal carpal arches are thetransverse carpal ligament and the intercarpal ligaments (also oriented transversally). These ligaments also form thecarpal tunnel and contribute to thedeep andsuperficial palmar arches. Several muscle tendons attaching to the TCL and the distal carpals also contribute to maintaining the carpal arch.[13]
Compared to the carpal arches, the arch formed by the distal ends of the metacarpal bones is flexible due to the mobility of the peripheral metacarpals (thumb and little finger). As these two metacarpals approach each other, the palmar gutter deepens. The central-most metacarpal (middle finger) is the most rigid. It and its two neighbors are tied to the carpus by the interlocking shapes of the metacarpal bones. The thumb metacarpal only articulates with the trapezium and is therefore completely independent, while the fifth metacarpal (little finger) is semi-independent with the fourth metacarpal (ring finger) which forms a transitional element to the fifth metacarpal.[12]
Together with the thumb, the four fingers form four oblique arches, of which the arch of the index finger functionally is the most important, especially for precision grip, while the arch of the little finger contribute an important locking mechanism for power grip. The thumb is undoubtedly the "master digit" of the hand, giving value to all the other fingers. Together with the index and middle finger, it forms the dynamic tridactyl configuration responsible for most grips not requiring force. The ring and little fingers are more static, a reserve ready to interact with the palm when great force is needed.[12]
The muscles acting on the hand can be subdivided into two groups: the extrinsic and intrinsic muscle groups. The extrinsic muscle groups are the longflexors andextensors. They are called extrinsic because the muscle belly is located on the forearm.
The fingers have two long flexors, located on the underside of the forearm. They insert by tendons to the phalanges of the fingers. The deep flexor attaches to the distal phalanx, and the superficial flexor attaches to the middle phalanx. The flexors allow for the actual bending of the fingers. The thumb has one long flexor and a short flexor in the thenar muscle group. The human thumb also has other muscles in the thenar group (opponens andabductor brevis muscle), moving the thumb in opposition, making grasping possible.
The extensors are located on the back of the forearm and are connected in a more complex way than the flexors to the dorsum of the fingers. The tendons unite with the interosseous and lumbrical muscles to form the extensorhood mechanism. The primary function of the extensors is to straighten out the digits. The thumb has two extensors in the forearm; the tendons of these form theanatomical snuff box. Also, the index finger and the little finger have an extra extensor used, for instance, for pointing. The extensors are situated within 6 separate compartments.
The first four compartments are located in the grooves present on the dorsum of inferior side of radius while the 5th compartment is in between radius and ulna. The 6th compartment is in the groove on the dorsum of inferior side of ulna.
The radial nerve supplies the finger extensors and the thumbabductor, thus the muscles that extends at the wrist and metacarpophalangeal joints (knuckles); and that abducts and extends the thumb.The median nerve supplies the flexors of the wrist and digits, the abductors andopponens of the thumb, the first and second lumbrical.The ulnar nerve supplies the remaining intrinsic muscles of the hand.[15]
All muscles of the hand are innervated by thebrachial plexus (C5–T1) and can be classified by innervation:[16]
The radial nerve supplies the skin on the back of the hand from the thumb to the ring finger and the dorsal aspects of the index, middle, and half ring fingers as far as the proximal interphalangeal joints.The median nerve supplies the palmar side of the thumb, index, middle, and half ring fingers. Dorsal branches innervates the distal phalanges of the index, middle, and half ring fingers.The ulnar nerve supplies the ulnar third of the hand, both at the palm and the back of the hand, and the little and half ring fingers.[15]
There is a considerable variation to this general pattern, except for the little finger and volar surface of the index finger. For example, in some individuals, the ulnar nerve supplies the entire ring finger and the ulnar side of the middle finger, whilst, in others, the median nerve supplies the entire ring finger.[15]
Blood supply
Arteries of the right hand (palmar view)
The hand is supplied with blood from two arteries, theulnar artery and theradial artery. These arteries form three arches over the dorsal and palmar aspects of the hand, thedorsal carpal arch (across the back of the hand), thedeep palmar arch, and thesuperficial palmar arch. Together these three arches and theiranastomoses provide oxygenated blood to the palm, the fingers, and the thumb.
Theglabrous (hairless) skin on the front of the hand, the palm, is relatively thick and can be bent along the hand's flexure lines where the skin is tightly bound to the underlying tissue and bones. Compared to the rest of the body's skin, the hands' palms (as well as the soles of thefeet) are usually lighter—and even much lighter in dark-skinned individuals, compared to the other side of the hand. Indeed, genes specifically expressed in thedermis of palmoplantar skin inhibitmelanin production and thus the ability totan, and promote the thickening of thestratum lucidum andstratum corneum layers of theepidermis. All parts of the skin involved in grasping are covered by papillary ridges (fingerprints) acting as friction pads. In contrast, the hairy skin on the dorsal side is thin, soft, and pliable, so that the skin can recoil when the fingers are stretched. On the dorsal side, the skin can be moved across the hand up to 3 cm (1.2 in); an important input the cutaneousmechanoreceptors.[17]
The web of the hand is a "fold of skin which connects the digits".[18] These webs, located between each set of digits, are known asskin folds (interdigital folds or plica interdigitalis). They are defined as "one of the folds of skin, or rudimentary web, between the fingers and toes".[19]
The ratio of the length of the index finger to the length of the ring finger in adults is affected by the level of exposure to malesex hormones of theembryoin utero. This digit ratio is below 1 for both sexes but it is lower in males than in females on average.
Functions
In primates, hands are not only used for locomotion, but can be used for hand movements like grasping and gripping onto objects. In apes, hands are also good at hand movements not involving grasping, like pushing, lifting, or tapping the keys of a typewriter or piano.[20]
Clinical significance
X-ray of the left hand of a ten-year-old boy withpolydactyly
A number ofgenetic disorders affect the hand.Polydactyly is the presence of more than the usual number of fingers. One of the disorders that can cause this isCatel-Manzke syndrome. The fingers may be fused in a disorder known assyndactyly. Or there may be an absence of one or more central fingers—a condition known asectrodactyly. Additionally, some people are born without one or both hands (amelia).Hereditary multiple exostoses of the forearm—also known as hereditary multiple osteochondromas—is another cause of hand and forearm deformity in children and adults.[21]
Some conditions can be treated byhand surgery. These includecarpal tunnel syndrome, a painful condition of the hand and fingers caused by compression of themedian nerve, andDupuytren's contracture, a condition in which fingers bend towards the palm and cannot be straightened. Similarly, injury to theulnar nerve may result in a condition in which some of the fingers cannot be flexed.
Theprehensile hands and feet ofprimatesevolved from the mobile hands of semi-arborealtree shrews that lived about60 million years ago. This development has been accompanied by important changes in the brain and the relocation of the eyes to the front of the face, together allowing the muscle control andstereoscopic vision necessary for controlled grasping. This grasping, also known as power grip, is supplemented by the precision grip between the thumb and the distal finger pads made possible by the opposable thumbs.Hominidae (great apes including humans) acquired an erectbipedal posture about3.6 million years ago, which freed the hands from the task of locomotion and paved the way for the precision and range of motion in human hands.[22] Functional analyses of the features unique to the hand of modern humans have shown that they are consistent with the stresses and requirements associated with the effective use ofPaleolithic stone tools.[23] It is possible that the refinement of the bipedal posture in the earliest hominids evolved to facilitate the use of the trunk as leverage in accelerating the hand.[24]
While the human hand has unique anatomical features, including a longer thumb and fingers that can be controlled individually to a higher degree, the hands of other primates are anatomically similar and the dexterity of the human hand can not be explained solely on anatomical factors. The neural machinery underlying hand movements is a major contributing factor; primates have evolved direct connections between neurons incortical motor areas and spinalmotoneurons, giving the cerebral cortexmonosynaptic control over the motoneurons of the hand muscles; placing the hands "closer" to the brain.[25] The recent evolution of the human hand is thus a direct result of the development of thecentral nervous system, and the hand, therefore, is a direct tool of our consciousness—the main source of differentiated tactile sensations—and a precise working organ enabling gestures—the expressions of our personalities.[26]
A gorilla, a large extant primate with small thumbs, and the hand skeleton ofArdipithecus ramidus, a large Pliocene primate with relatively human-like thumbs
There are nevertheless severalprimitive features left in the human hand, includingpentadactyly (having five fingers), the hairless skin of the palm and fingers, and theos centrale found in human embryos, prosimians, and apes. Furthermore, the precursors of the intrinsic muscles of the hand are present in the earliest fishes, reflecting that the hand evolved from the pectoral fin and thus is much older than the arm in evolutionary terms.[22]
The proportions of the human hand areplesiomorphic (shared by both ancestors and extant primate species); the elongated thumbs and short hands more closely resemble the hand proportions ofMiocene apes than those of extant primates.[27] Humans did not evolve from knuckle-walking apes,[28] andchimpanzees andgorillas independently acquired elongated metacarpals as part of their adaptation to their modes of locomotion.[29] Several primitive hand features most likely present in thechimpanzee–human last common ancestor (CHLCA) and absent inmodern humans are still present in the hands ofAustralopithecus,Paranthropus, andHomo floresiensis. This suggests that thederived changes in modern humans andNeanderthals did not evolve until2.5 to 1.5 million years ago or after the appearance of the earliestAcheulian stone tools, and that these changes are associated with tool-related tasks beyond those observed in other hominins.[30] The thumbs ofArdipithecus ramidus, an early hominin, are almost as robust as in humans, so this may be a primitive trait, while the palms of other extant higher primates are elongated to the extent that some of the thumb's original function has been lost (most notably in highly arboreal primates such as thespider monkey). In humans, thebig toe is thus more derived than the thumb.[29]
There is a hypothesis suggesting the form of the modern human hand is especially conducive to the formation of a compact fist, presumably for fighting purposes. The fist is compact and thus effective as a weapon. It also provides protection for the fingers.[31][32][33] However, this is not widely accepted to be one of the primary selective pressures acting on hand morphology throughout human evolution, with tool use and production being thought to be far more influential.[23]
^Thomas, Dorcas MacClintock; illustrated by J. Sharkey (2002).A natural history of raccoons. Caldwell, N.J.: Blackburn Press. p. 15.ISBN978-1-930665-67-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
^Goldfinger, Eliot (1991).Human Anatomy for Artists : The Elements of Form: The Elements of Form. Oxford University Press. pp. 177, 295.ISBN9780199763108.
^O'Rahilly, Ronan; Müller, Fabiola (1983).Basic Human Anatomy: A Regional Study of Human Structure. Saunders. p. 93.ISBN9780721669908.
^Austin, Noelle M. (2005). "Chapter 9: The Wrist and Hand Complex". In Levangie, Pamela K.; Norkin, Cynthia C. (eds.).Joint Structure and Function: A Comprehensive Analysis (4th ed.). Philadelphia: F. A. Davis Company. pp. 319–320.ISBN978-0-8036-1191-7.
^Ross, Lawrence M.; Lamperti, Edward D., eds. (2006).Thieme Atlas of Anatomy: General Anatomy and Musculoskeletal System. Thieme. p. 257.ISBN978-1-58890-419-5.
^abKey, Alastair J.M.; Lycett, Stephen J. (2011). "Technology based evolution? A biometric test of the effects of handsize versus tool form on efficiency in an experimental cutting task".Journal of Archaeological Science.38 (7):1663–1670.Bibcode:2011JArSc..38.1663K.doi:10.1016/j.jas.2011.02.032.
^abLovejoy, C. Owen; Suwa, Gen; Simpson, Scott W.; Matternes, Jay H.; White, Tim D. (October 2009). "The Great Divides: Ardipithecus ramidus Reveals the Postcrania of Our Last Common Ancestors with African Apes".Science.326 (5949):101–102.Bibcode:2009Sci...326..100L.doi:10.1126/science.1175833.PMID19810199.S2CID19629241.