Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Half-integer

From Wikipedia, the free encyclopedia
Rational number equal to an integer plus 1/2

Inmathematics, ahalf-integer is anumber of the formn+12,{\displaystyle n+{\tfrac {1}{2}},}wheren{\displaystyle n} is an integer. For example,412,7/2,132,8.5{\displaystyle 4{\tfrac {1}{2}},\quad 7/2,\quad -{\tfrac {13}{2}},\quad 8.5}are allhalf-integers. The name "half-integer" is perhaps misleading, as each integern{\displaystyle n} is itself half of the integer2n{\displaystyle 2n}. A name such as "integer-plus-half" may be more accurate, but while not literally true, "half integer" is the conventional term.[citation needed] Half-integers occur frequently enough in mathematics and inquantum mechanics that a distinct term is convenient.

Note that halving an integer does not always produce a half-integer; this is only true forodd integers. For this reason, half-integers are also sometimes calledhalf-odd-integers. Half-integers are a subset of thedyadic rationals (numbers produced by dividing an integer by apower of two).[1]

Notation and algebraic structure

[edit]

Theset of all half-integers is often denotedZ+12=(12Z)Z .{\displaystyle \mathbb {Z} +{\tfrac {1}{2}}\quad =\quad \left({\tfrac {1}{2}}\mathbb {Z} \right)\smallsetminus \mathbb {Z} ~.}The integers and half-integers together form agroup under the addition operation, which may be denoted[2]12Z .{\displaystyle {\tfrac {1}{2}}\mathbb {Z} ~.}However, these numbers do not form aring because the product of two half-integers is not a half-integer; e.g. 12×12 = 14  12Z .{\displaystyle ~{\tfrac {1}{2}}\times {\tfrac {1}{2}}~=~{\tfrac {1}{4}}~\notin ~{\tfrac {1}{2}}\mathbb {Z} ~.}[3] Thesmallest ring containing them isZ[12]{\displaystyle \mathbb {Z} \left[{\tfrac {1}{2}}\right]}, the ring ofdyadic rationals.

Properties

[edit]

Uses

[edit]

Sphere packing

[edit]

The densestlattice packing ofunit spheres in four dimensions (called theD4 lattice) places a sphere at every point whose coordinates are either all integers or all half-integers. This packing is closely related to theHurwitz integers:quaternions whose real coefficients are either all integers or all half-integers.[4]

Physics

[edit]

In physics, thePauli exclusion principle results from definition offermions as particles which havespins that are half-integers.[5]

Theenergy levels of thequantum harmonic oscillator occur at half-integers and thus its lowest energy is not zero.[6]

Sphere volume

[edit]

Although thefactorial function is defined only for integer arguments, it can be extended to fractional arguments using thegamma function. The gamma function for half-integers is an important part of the formula for thevolume of ann-dimensional ball of radiusR{\displaystyle R},[7]Vn(R)=πn/2Γ(n2+1)Rn .{\displaystyle V_{n}(R)={\frac {\pi ^{n/2}}{\Gamma ({\frac {n}{2}}+1)}}R^{n}~.}The values of the gamma function on half-integers are integer multiples of the square root ofpi:Γ(12+n) = (2n1)!!2nπ = (2n)!4nn!π {\displaystyle \Gamma \left({\tfrac {1}{2}}+n\right)~=~{\frac {\,(2n-1)!!\,}{2^{n}}}\,{\sqrt {\pi \,}}~=~{\frac {(2n)!}{\,4^{n}\,n!\,}}{\sqrt {\pi \,}}~}wheren!!{\displaystyle n!!} denotes thedouble factorial.

References

[edit]
  1. ^Sabin, Malcolm (2010).Analysis and Design of Univariate Subdivision Schemes. Geometry and Computing. Vol. 6. Springer. p. 51.ISBN 9783642136481.
  2. ^Turaev, Vladimir G. (2010).Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics. Vol. 18 (2nd ed.). Walter de Gruyter. p. 390.ISBN 9783110221848.
  3. ^Boolos, George; Burgess, John P.; Jeffrey, Richard C. (2002).Computability and Logic. Cambridge University Press. p. 105.ISBN 9780521007580.
  4. ^Baez, John C. (2005)."ReviewOn Quaternions and Octonions: Their geometry, arithmetic, and symmetry by John H. Conway and Derek A. Smith".Bulletin of the American Mathematical Society (book review).42:229–243.doi:10.1090/S0273-0979-05-01043-8.
  5. ^Mészáros, Péter (2010).The High Energy Universe: Ultra-high energy events in astrophysics and cosmology. Cambridge University Press. p. 13.ISBN 9781139490726.
  6. ^Fox, Mark (2006).Quantum Optics: An introduction. Oxford Master Series in Physics. Vol. 6. Oxford University Press. p. 131.ISBN 9780191524257.
  7. ^"Equation 5.19.4".NIST Digital Library of Mathematical Functions. U.S.National Institute of Standards and Technology. 6 May 2013. Release 1.0.6.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Half-integer&oldid=1278472875"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp