Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Hahn–Banach theorem

From Wikipedia, the free encyclopedia
(Redirected fromHahn-Banach theorem)
Theorem on extension of bounded linear functionals

Infunctional analysis, theHahn–Banach theorem is a central result that allows the extension ofbounded linear functionals defined on avector subspace of somevector space to the whole space. The theorem also shows that there are sufficientcontinuous linear functionals defined on everynormed vector space in order to study thedual space. Another version of the Hahn–Banach theorem is known as theHahn–Banach separation theorem or thehyperplane separation theorem, and has numerous uses inconvex geometry.

History

[edit]

The theorem is named for the mathematiciansHans Hahn andStefan Banach, who proved it independently in the late 1920s. The special case of the theorem for the spaceC[a,b]{\displaystyle C[a,b]} of continuous functions on an interval was proved earlier (in 1912) byEduard Helly,[1] and a more general extension theorem, theM. Riesz extension theorem, from which the Hahn–Banach theorem can be derived, was proved in 1923 byMarcel Riesz.[2]

The first Hahn–Banach theorem was proved byEduard Helly in 1912 who showed that certain linear functionals defined on a subspace of a certain type of normed space (CN{\displaystyle \mathbb {C} ^{\mathbb {N} }}) had an extension of the same norm. Helly did this through the technique of first proving that a one-dimensionalextension exists (where the linear functional has its domain extended by one dimension) and then usinginduction. In 1927, Hahn defined generalBanach spaces and used Helly's technique to prove a norm-preserving version of Hahn–Banach theorem for Banach spaces (where a bounded linear functional on a subspace has a bounded linear extension of the same norm to the whole space). In 1929, Banach, who was unaware of Hahn's result, generalized it by replacing the norm-preserving version with the dominated extension version that usessublinear functions. Whereas Helly's proof used mathematical induction, Hahn and Banach both usedtransfinite induction.[3]

The Hahn–Banach theorem arose from attempts to solve infinite systems of linear equations. This is needed to solve problems such as themoment problem, whereby given all the potentialmoments of a function one must determine if a function having these moments exists, and, if so, find it in terms of those moments. Another such problem is theFourier cosine series problem, whereby given all the potential Fourier cosine coefficients one must determine if a function having those coefficients exists, and, again, find it if so.

Riesz and Helly solved the problem for certain classes of spaces (such asLp([0,1]){\displaystyle L^{p}([0,1])} andC([a,b]){\displaystyle C([a,b])}) where they discovered that the existence of a solution was equivalent to the existence and continuity of certain linear functionals. In effect, they needed to solve the following problem:[3]

(The vector problem) Given a collection(fi)iI{\displaystyle \left(f_{i}\right)_{i\in I}} of bounded linear functionals on anormed spaceX{\displaystyle X} and a collection of scalars(ci)iI,{\displaystyle \left(c_{i}\right)_{i\in I},} determine if there is anxX{\displaystyle x\in X} such thatfi(x)=ci{\displaystyle f_{i}(x)=c_{i}} for alliI.{\displaystyle i\in I.}

IfX{\displaystyle X} happens to be areflexive space then to solve the vector problem, it suffices to solve the following dual problem:[3]

(The functional problem) Given a collection(xi)iI{\displaystyle \left(x_{i}\right)_{i\in I}} of vectors in a normed spaceX{\displaystyle X} and a collection of scalars(ci)iI,{\displaystyle \left(c_{i}\right)_{i\in I},} determine if there is a bounded linear functionalf{\displaystyle f} onX{\displaystyle X} such thatf(xi)=ci{\displaystyle f\left(x_{i}\right)=c_{i}} for alliI.{\displaystyle i\in I.}

Riesz went on to defineLp([0,1]){\displaystyle L^{p}([0,1])} space (1<p<{\displaystyle 1<p<\infty }) in 1910 and thep{\displaystyle \ell ^{p}} spaces in 1913. While investigating these spaces he proved a special case of the Hahn–Banach theorem. Helly also proved a special case of the Hahn–Banach theorem in 1912. In 1910, Riesz solved the functional problem for some specific spaces and in 1912, Helly solved it for a more general class of spaces. It wasn't until 1932 that Banach, in one of the first important applications of the Hahn–Banach theorem, solved the general functional problem. The following theorem states the general functional problem and characterizes its solution.[3]

Theorem[3] (The functional problem)Let(xi)iI{\displaystyle \left(x_{i}\right)_{i\in I}} be vectors in areal orcomplex normed spaceX{\displaystyle X} and let(ci)iI{\displaystyle \left(c_{i}\right)_{i\in I}} be scalars alsoindexed byI.{\displaystyle I\neq \varnothing .}

There exists a continuous linear functionalf{\displaystyle f} onX{\displaystyle X} such thatf(xi)=ci{\displaystyle f\left(x_{i}\right)=c_{i}} for alliI{\displaystyle i\in I} if and only if there exists aK>0{\displaystyle K>0} such that for any choice of scalars(si)iI{\displaystyle \left(s_{i}\right)_{i\in I}} where all but finitely manysi{\displaystyle s_{i}} are0,{\displaystyle 0,} the following holds:|iIsici|KiIsixi.{\displaystyle \left|\sum _{i\in I}s_{i}c_{i}\right|\leq K\left\|\sum _{i\in I}s_{i}x_{i}\right\|.}

The Hahn–Banach theorem can be deduced from the above theorem.[3] IfX{\displaystyle X} isreflexive then this theorem solves the vector problem.

Hahn–Banach theorem

[edit]

A real-valued functionf:MR{\displaystyle f:M\to \mathbb {R} } defined on a subsetM{\displaystyle M} ofX{\displaystyle X} is said to bedominated (above) by a functionp:XR{\displaystyle p:X\to \mathbb {R} } iff(m)p(m){\displaystyle f(m)\leq p(m)} for everymM.{\displaystyle m\in M.} For this reason, the following version of the Hahn–Banach theorem is calledthe dominatedextension theorem.

Hahn–Banach dominated extension theorem (for real linear functionals)[4][5][6]Ifp:XR{\displaystyle p:X\to \mathbb {R} } is asublinear function (such as anorm orseminorm for example) defined on a real vector spaceX{\displaystyle X} then anylinear functional defined on a vector subspace ofX{\displaystyle X} that isdominated above byp{\displaystyle p} has at least onelinear extension to all ofX{\displaystyle X} that is also dominated above byp.{\displaystyle p.}

Explicitly, ifp:XR{\displaystyle p:X\to \mathbb {R} } is asublinear function, which by definition means that it satisfiesp(x+y)p(x)+p(y) and p(tx)=tp(x) for all x,yX and all real t0,{\displaystyle p(x+y)\leq p(x)+p(y)\quad {\text{ and }}\quad p(tx)=tp(x)\qquad {\text{ for all }}\;x,y\in X\;{\text{ and all real }}\;t\geq 0,} and iff:MR{\displaystyle f:M\to \mathbb {R} } is a linear functional defined on a vector subspaceM{\displaystyle M} ofX{\displaystyle X} such thatf(m)p(m) for all mM{\displaystyle f(m)\leq p(m)\quad {\text{ for all }}m\in M} then there exists a linear functionalF:XR{\displaystyle F:X\to \mathbb {R} } such thatF(m)=f(m) for all mM,{\displaystyle F(m)=f(m)\quad {\text{ for all }}m\in M,}F(x)p(x)  for all xX.{\displaystyle F(x)\leq p(x)\quad ~\;\,{\text{ for all }}x\in X.} Moreover, ifp{\displaystyle p} is aseminorm then|F(x)|p(x){\displaystyle |F(x)|\leq p(x)} necessarily holds for allxX.{\displaystyle x\in X.}

The theorem remains true if the requirements onp{\displaystyle p} are relaxed to require only thatp{\displaystyle p} be aconvex function:[7][8]p(tx+(1t)y)tp(x)+(1t)p(y) for all 0<t<1 and x,yX.{\displaystyle p(tx+(1-t)y)\leq tp(x)+(1-t)p(y)\qquad {\text{ for all }}0<t<1{\text{ and }}x,y\in X.} A functionp:XR{\displaystyle p:X\to \mathbb {R} } is convex and satisfiesp(0)0{\displaystyle p(0)\leq 0} if and only ifp(ax+by)ap(x)+bp(y){\displaystyle p(ax+by)\leq ap(x)+bp(y)} for all vectorsx,yX{\displaystyle x,y\in X} and all non-negative reala,b0{\displaystyle a,b\geq 0} such thata+b1.{\displaystyle a+b\leq 1.} Everysublinear function is a convex function. On the other hand, ifp:XR{\displaystyle p:X\to \mathbb {R} } is convex withp(0)0,{\displaystyle p(0)\geq 0,} then the function defined byp0(x)=definft>0p(tx)t{\displaystyle p_{0}(x)\;{\stackrel {\scriptscriptstyle {\text{def}}}{=}}\;\inf _{t>0}{\frac {p(tx)}{t}}} ispositively homogeneous (because for allx{\displaystyle x} andr>0{\displaystyle r>0} one hasp0(rx)=inft>0p(trx)t=rinft>0p(trx)tr=rinfτ>0p(τx)τ=rp0(x){\displaystyle p_{0}(rx)=\inf _{t>0}{\frac {p(trx)}{t}}=r\inf _{t>0}{\frac {p(trx)}{tr}}=r\inf _{\tau >0}{\frac {p(\tau x)}{\tau }}=rp_{0}(x)}), hence, being convex,it is sublinear. It is also bounded above byp0p,{\displaystyle p_{0}\leq p,} and satisfiesFp0{\displaystyle F\leq p_{0}} for every linear functionalFp.{\displaystyle F\leq p.} So the extension of the Hahn–Banach theorem to convex functionals does not have a much larger content than the classical one stated for sublinear functionals.

IfF:XR{\displaystyle F:X\to \mathbb {R} } is linear thenFp{\displaystyle F\leq p} if and only if[4]p(x)F(x)p(x) for all xX,{\displaystyle -p(-x)\leq F(x)\leq p(x)\quad {\text{ for all }}x\in X,} which is the (equivalent) conclusion that some authors[4] write instead ofFp.{\displaystyle F\leq p.}It follows that ifp:XR{\displaystyle p:X\to \mathbb {R} } is alsosymmetric, meaning thatp(x)=p(x){\displaystyle p(-x)=p(x)} holds for allxX,{\displaystyle x\in X,} thenFp{\displaystyle F\leq p} if and only|F|p.{\displaystyle |F|\leq p.} Everynorm is aseminorm and both are symmetricbalanced sublinear functions. A sublinear function is a seminorm if and only if it is abalanced function. On a real vector space (although not on a complex vector space), a sublinear function is a seminorm if and only if it is symmetric. Theidentity functionRR{\displaystyle \mathbb {R} \to \mathbb {R} } onX:=R{\displaystyle X:=\mathbb {R} } is an example of a sublinear function that is not a seminorm.

For complex or real vector spaces

[edit]

The dominated extension theorem for real linear functionals implies the following alternative statement of the Hahn–Banach theorem that can be applied to linear functionals on real or complex vector spaces.

Hahn–Banach theorem[3][9]Supposep:XR{\displaystyle p:X\to \mathbb {R} } aseminorm on a vector spaceX{\displaystyle X} over the fieldK,{\displaystyle \mathbf {K} ,} which is eitherR{\displaystyle \mathbb {R} } orC.{\displaystyle \mathbb {C} .} Iff:MK{\displaystyle f:M\to \mathbf {K} } is a linear functional on a vector subspaceM{\displaystyle M} such that|f(m)|p(m) for all mM,{\displaystyle |f(m)|\leq p(m)\quad {\text{ for all }}m\in M,}then there exists a linear functionalF:XK{\displaystyle F:X\to \mathbf {K} } such thatF(m)=f(m) for all mM,{\displaystyle F(m)=f(m)\quad \;{\text{ for all }}m\in M,}|F(x)|p(x) for all xX.{\displaystyle |F(x)|\leq p(x)\quad \;\,{\text{ for all }}x\in X.}

The theorem remains true if the requirements onp{\displaystyle p} are relaxed to require only that for allx,yX{\displaystyle x,y\in X} and all scalarsa{\displaystyle a} andb{\displaystyle b} satisfying|a|+|b|1,{\displaystyle |a|+|b|\leq 1,}[8]p(ax+by)|a|p(x)+|b|p(y).{\displaystyle p(ax+by)\leq |a|p(x)+|b|p(y).}This condition holds if and only ifp{\displaystyle p} is aconvex andbalanced function satisfyingp(0)0,{\displaystyle p(0)\leq 0,} or equivalently, if and only if it is convex, satisfiesp(0)0,{\displaystyle p(0)\leq 0,} andp(ux)p(x){\displaystyle p(ux)\leq p(x)} for allxX{\displaystyle x\in X} and allunit length scalarsu.{\displaystyle u.}

A complex-valued functionalF{\displaystyle F} is said to bedominated byp{\displaystyle p} if|F(x)|p(x){\displaystyle |F(x)|\leq p(x)} for allx{\displaystyle x} in the domain ofF.{\displaystyle F.} With this terminology, the above statements of the Hahn–Banach theorem can be restated more succinctly:

Hahn–Banach dominated extension theorem: Ifp:XR{\displaystyle p:X\to \mathbb {R} } is aseminorm defined on a real or complex vector spaceX,{\displaystyle X,} then everydominated linear functional defined on a vector subspace ofX{\displaystyle X} has a dominated linear extension to all ofX.{\displaystyle X.} In the case whereX{\displaystyle X} is a real vector space andp:XR{\displaystyle p:X\to \mathbb {R} } is merely aconvex orsublinear function, this conclusion will remain true if both instances of "dominated" (meaning|F|p{\displaystyle |F|\leq p}) are weakened to instead mean "dominatedabove" (meaningFp{\displaystyle F\leq p}).[7][8]

Proof

The following observations allow theHahn–Banach theorem for real vector spaces to be applied to (complex-valued) linear functionals on complex vector spaces.

Every linear functionalF:XC{\displaystyle F:X\to \mathbb {C} } on a complex vector space iscompletely determined by itsreal partReF:XR{\displaystyle \;\operatorname {Re} F:X\to \mathbb {R} \;} through the formula[6][proof 1]F(x)=ReF(x)iReF(ix) for all xX{\displaystyle F(x)\;=\;\operatorname {Re} F(x)-i\operatorname {Re} F(ix)\qquad {\text{ for all }}x\in X}and moreover, if{\displaystyle \|\cdot \|} is anorm onX{\displaystyle X} then theirdual norms are equal:F=ReF.{\displaystyle \|F\|=\|\operatorname {Re} F\|.}[10] In particular, a linear functional onX{\displaystyle X} extends another one defined onMX{\displaystyle M\subseteq X} if and only if their real parts are equal onM{\displaystyle M} (in other words, a linear functionalF{\displaystyle F} extendsf{\displaystyle f} if and only ifReF{\displaystyle \operatorname {Re} F} extendsRef{\displaystyle \operatorname {Re} f}). The real part of a linear functional onX{\displaystyle X} is always areal-linear functional (meaning that it is linear whenX{\displaystyle X} is considered as a real vector space) and ifR:XR{\displaystyle R:X\to \mathbb {R} } is a real-linear functional on a complex vector space thenxR(x)iR(ix){\displaystyle x\mapsto R(x)-iR(ix)} defines the unique linear functional onX{\displaystyle X} whose real part isR.{\displaystyle R.}

IfF{\displaystyle F} is a linear functional on a (complex or real) vector spaceX{\displaystyle X} and ifp:XR{\displaystyle p:X\to \mathbb {R} } is a seminorm then[6][proof 2]|F|p if and only if ReFp.{\displaystyle |F|\,\leq \,p\quad {\text{ if and only if }}\quad \operatorname {Re} F\,\leq \,p.}Stated in simpler language, a linear functional isdominated by a seminormp{\displaystyle p} if and only if itsreal part is dominated above byp.{\displaystyle p.}

Proof ofHahn–Banach for complex vector spaces by reduction to real vector spaces[3]

Supposep:XR{\displaystyle p:X\to \mathbb {R} } is a seminorm on a complex vector spaceX{\displaystyle X} and letf:MC{\displaystyle f:M\to \mathbb {C} } be a linear functional defined on a vector subspaceM{\displaystyle M} ofX{\displaystyle X} that satisfies|f|p{\displaystyle |f|\leq p} onM.{\displaystyle M.} ConsiderX{\displaystyle X} as a real vector space and apply theHahn–Banach theorem for real vector spaces to thereal-linear functionalRef:MR{\displaystyle \;\operatorname {Re} f:M\to \mathbb {R} \;} to obtain a real-linear extensionR:XR{\displaystyle R:X\to \mathbb {R} } that is also dominated above byp,{\displaystyle p,} so that it satisfiesRp{\displaystyle R\leq p} onX{\displaystyle X} andR=Ref{\displaystyle R=\operatorname {Re} f} onM.{\displaystyle M.} The mapF:XC{\displaystyle F:X\to \mathbb {C} } defined byF(x)=R(x)iR(ix){\displaystyle F(x)\;=\;R(x)-iR(ix)} is a linear functional onX{\displaystyle X} that extendsf{\displaystyle f} (because their real parts agree onM{\displaystyle M}) and satisfies|F|p{\displaystyle |F|\leq p} onX{\displaystyle X} (becauseReFp{\displaystyle \operatorname {Re} F\leq p} andp{\displaystyle p} is a seminorm).{\displaystyle \blacksquare }

The proof above shows that whenp{\displaystyle p} is a seminorm then there is a one-to-one correspondence between dominated linear extensions off:MC{\displaystyle f:M\to \mathbb {C} } and dominated real-linear extensions ofRef:MR;{\displaystyle \operatorname {Re} f:M\to \mathbb {R} ;} the proof even gives a formula for explicitly constructing a linear extension off{\displaystyle f} from any given real-linear extension of its real part.

Continuity

A linear functionalF{\displaystyle F} on atopological vector space iscontinuous if and only if this is true of its real partReF;{\displaystyle \operatorname {Re} F;} if the domain is a normed space thenF=ReF{\displaystyle \|F\|=\|\operatorname {Re} F\|} (where one side is infinite if and only if the other side is infinite).[10] AssumeX{\displaystyle X} is atopological vector space andp:XR{\displaystyle p:X\to \mathbb {R} } issublinear function. Ifp{\displaystyle p} is acontinuous sublinear function that dominates a linear functionalF{\displaystyle F} thenF{\displaystyle F} is necessarily continuous.[6] Moreover, a linear functionalF{\displaystyle F} is continuous if and only if itsabsolute value|F|{\displaystyle |F|} (which is aseminorm that dominatesF{\displaystyle F}) is continuous.[6] In particular, a linear functional is continuous if and only if it is dominated by some continuous sublinear function.

Proof

[edit]

TheHahn–Banach theorem for real vector spaces ultimately follows from Helly's initial result for the special case where the linear functional is extended fromM{\displaystyle M} to a larger vector space in whichM{\displaystyle M} hascodimension1.{\displaystyle 1.}[3]

Lemma[6] (One–dimensional dominated extension theorem)Letp:XR{\displaystyle p:X\to \mathbb {R} } be asublinear function on a real vector spaceX,{\displaystyle X,} letf:MR{\displaystyle f:M\to \mathbb {R} } alinear functional on apropervector subspaceMX{\displaystyle M\subsetneq X} such thatfp{\displaystyle f\leq p} onM{\displaystyle M} (meaningf(m)p(m){\displaystyle f(m)\leq p(m)} for allmM{\displaystyle m\in M}), and letxX{\displaystyle x\in X} be a vectornot inM{\displaystyle M} (soMRx=span{M,x}{\displaystyle M\oplus \mathbb {R} x=\operatorname {span} \{M,x\}}). There exists a linear extensionF:MRxR{\displaystyle F:M\oplus \mathbb {R} x\to \mathbb {R} } off{\displaystyle f} such thatFp{\displaystyle F\leq p} onMRx.{\displaystyle M\oplus \mathbb {R} x.}

Proof[6]

Given any real numberb,{\displaystyle b,} the mapFb:MRxR{\displaystyle F_{b}:M\oplus \mathbb {R} x\to \mathbb {R} } defined byFb(m+rx)=f(m)+rb{\displaystyle F_{b}(m+rx)=f(m)+rb} is always a linear extension off{\displaystyle f} toMRx{\displaystyle M\oplus \mathbb {R} x}[note 1] but it might not satisfyFbp.{\displaystyle F_{b}\leq p.} It will be shown thatb{\displaystyle b} can always be chosen so as to guarantee thatFbp,{\displaystyle F_{b}\leq p,} which will complete the proof.

Ifm,nM{\displaystyle m,n\in M} thenf(m)f(n)=f(mn)p(mn)=p(m+xxn)p(m+x)+p(xn){\displaystyle f(m)-f(n)=f(m-n)\leq p(m-n)=p(m+x-x-n)\leq p(m+x)+p(-x-n)}which impliesp(nx)f(n)  p(m+x)f(m).{\displaystyle -p(-n-x)-f(n)~\leq ~p(m+x)-f(m).}So definea=supnM[p(nx)f(n)] and c=infmM[p(m+x)f(m)]{\displaystyle a=\sup _{n\in M}[-p(-n-x)-f(n)]\qquad {\text{ and }}\qquad c=\inf _{m\in M}[p(m+x)-f(m)]}whereac{\displaystyle a\leq c} are real numbers. To guaranteeFbp,{\displaystyle F_{b}\leq p,} it suffices thatabc{\displaystyle a\leq b\leq c} (in fact, this is also necessary[note 2]) because thenb{\displaystyle b} satisfies "the decisive inequality"[6]p(nx)f(n)  b  p(m+x)f(m) for all m,nM.{\displaystyle -p(-n-x)-f(n)~\leq ~b~\leq ~p(m+x)-f(m)\qquad {\text{ for all }}\;m,n\in M.}

To see thatf(m)+rbp(m+rx){\displaystyle f(m)+rb\leq p(m+rx)} follows,[note 3] assumer0{\displaystyle r\neq 0} and substitute1rm{\displaystyle {\tfrac {1}{r}}m} in for bothm{\displaystyle m} andn{\displaystyle n} to obtainp(1rmx)1rf(m)  b  p(1rm+x)1rf(m).{\displaystyle -p\left(-{\tfrac {1}{r}}m-x\right)-{\tfrac {1}{r}}f\left(m\right)~\leq ~b~\leq ~p\left({\tfrac {1}{r}}m+x\right)-{\tfrac {1}{r}}f\left(m\right).} Ifr>0{\displaystyle r>0} (respectively, ifr<0{\displaystyle r<0}) then the right (respectively, the left) hand side equals1r[p(m+rx)f(m)]{\displaystyle {\tfrac {1}{r}}\left[p(m+rx)-f(m)\right]} so that multiplying byr{\displaystyle r} givesrbp(m+rx)f(m).{\displaystyle rb\leq p(m+rx)-f(m).}{\displaystyle \blacksquare }

This lemma remains true ifp:XR{\displaystyle p:X\to \mathbb {R} } is merely aconvex function instead of a sublinear function.[7][8]

Proof

Assume thatp{\displaystyle p} is convex, which means thatp(ty+(1t)z)tp(y)+(1t)p(z){\displaystyle p(ty+(1-t)z)\leq tp(y)+(1-t)p(z)} for all0t1{\displaystyle 0\leq t\leq 1} andy,zX.{\displaystyle y,z\in X.} LetM,{\displaystyle M,}f:MR,{\displaystyle f:M\to \mathbb {R} ,} andxXM{\displaystyle x\in X\setminus M} be as inthe lemma's statement. Given anym,nM{\displaystyle m,n\in M} and any positive realr,s>0,{\displaystyle r,s>0,} the positive real numberst:=sr+s{\displaystyle t:={\tfrac {s}{r+s}}} andrr+s=1t{\displaystyle {\tfrac {r}{r+s}}=1-t} sum to1{\displaystyle 1} so that the convexity ofp{\displaystyle p} onX{\displaystyle X} guaranteesp(sr+sm+rr+sn) = p(sr+s(mrx)+rr+s(n+sx)) sr+sp(mrx)+rr+sp(n+sx){\displaystyle {\begin{alignedat}{9}p\left({\tfrac {s}{r+s}}m+{\tfrac {r}{r+s}}n\right)~&=~p{\big (}{\tfrac {s}{r+s}}(m-rx)&&+{\tfrac {r}{r+s}}(n+sx){\big )}&&\\&\leq ~{\tfrac {s}{r+s}}\;p(m-rx)&&+{\tfrac {r}{r+s}}\;p(n+sx)&&\\\end{alignedat}}}and hencesf(m)+rf(n) = (r+s)f(sr+sm+rr+sn) by linearity of f (r+s)p(sr+sm+rr+sn)fp on M sp(mrx)+rp(n+sx){\displaystyle {\begin{alignedat}{9}sf(m)+rf(n)~&=~(r+s)\;f\left({\tfrac {s}{r+s}}m+{\tfrac {r}{r+s}}n\right)&&\qquad {\text{ by linearity of }}f\\&\leq ~(r+s)\;p\left({\tfrac {s}{r+s}}m+{\tfrac {r}{r+s}}n\right)&&\qquad f\leq p{\text{ on }}M\\&\leq ~sp(m-rx)+rp(n+sx)\\\end{alignedat}}}thus proving thatsp(mrx)+sf(m)  rp(n+sx)rf(n),{\displaystyle -sp(m-rx)+sf(m)~\leq ~rp(n+sx)-rf(n),} which after multiplying both sides by1rs{\displaystyle {\tfrac {1}{rs}}} becomes1r[p(mrx)+f(m)]  1s[p(n+sx)f(n)].{\displaystyle {\tfrac {1}{r}}[-p(m-rx)+f(m)]~\leq ~{\tfrac {1}{s}}[p(n+sx)-f(n)].} This implies that the values defined bya=supr>0mM1r[p(mrx)+f(m)] and c=infs>0nM1s[p(n+sx)f(n)]{\displaystyle a=\sup _{\stackrel {m\in M}{r>0}}{\tfrac {1}{r}}[-p(m-rx)+f(m)]\qquad {\text{ and }}\qquad c=\inf _{\stackrel {n\in M}{s>0}}{\tfrac {1}{s}}[p(n+sx)-f(n)]} are real numbers that satisfyac.{\displaystyle a\leq c.} As in the above proof of theone–dimensional dominated extension theorem above, for any realbR{\displaystyle b\in \mathbb {R} } defineFb:MRxR{\displaystyle F_{b}:M\oplus \mathbb {R} x\to \mathbb {R} } byFb(m+rx)=f(m)+rb.{\displaystyle F_{b}(m+rx)=f(m)+rb.} It can be verified that ifabc{\displaystyle a\leq b\leq c} thenFbp{\displaystyle F_{b}\leq p} whererbp(m+rx)f(m){\displaystyle rb\leq p(m+rx)-f(m)} follows frombc{\displaystyle b\leq c} whenr>0{\displaystyle r>0} (respectively, follows fromab{\displaystyle a\leq b} whenr<0{\displaystyle r<0}).{\displaystyle \blacksquare }

Thelemma above is the key step in deducing the dominated extension theorem fromZorn's lemma.

Proof of dominated extension theorem usingZorn's lemma

The set of all possible dominated linear extensions off{\displaystyle f} are partially ordered by extension of each other, so there is a maximal extensionF.{\displaystyle F.} By the codimension-1 result, ifF{\displaystyle F} is not defined on all ofX,{\displaystyle X,} then it can be further extended. ThusF{\displaystyle F} must be defined everywhere, as claimed.{\displaystyle \blacksquare }

WhenM{\displaystyle M} has countable codimension, then using induction and the lemma completes the proof of the Hahn–Banach theorem. The standard proof of the general case usesZorn's lemma although the strictly weakerultrafilter lemma[11] (which is equivalent to thecompactness theorem and to theBoolean prime ideal theorem) may be used instead. Hahn–Banach can also be proved usingTychonoff's theorem forcompactHausdorff spaces[12] (which is also equivalent to the ultrafilter lemma)

TheMizar project has completely formalized and automatically checked the proof of the Hahn–Banach theorem in the HAHNBAN file.[13]

Continuous extension theorem

[edit]

The Hahn–Banach theorem can be used to guarantee the existence ofcontinuous linear extensions ofcontinuous linear functionals.

Hahn–Banach continuous extension theorem[14]Every continuous linear functionalf{\displaystyle f} defined on a vector subspaceM{\displaystyle M} of a (real or complex)locally convextopological vector spaceX{\displaystyle X} has a continuous linear extensionF{\displaystyle F} to all ofX.{\displaystyle X.} If in additionX{\displaystyle X} is anormed space, then this extension can be chosen so that itsdual norm is equal to that off.{\displaystyle f.}

Incategory-theoretic terms, the underlying field of the vector space is aninjective object in the category of locally convex vector spaces.

On anormed (orseminormed) space, a linear extensionF{\displaystyle F} of abounded linear functionalf{\displaystyle f} is said to benorm-preserving if it has the samedual norm as the original functional:F=f.{\displaystyle \|F\|=\|f\|.}Because of this terminology, the second part ofthe above theorem is sometimes referred to as the "norm-preserving" version of the Hahn–Banach theorem.[15] Explicitly:

Norm-preserving Hahn–Banach continuous extension theorem[15]Every continuous linear functionalf{\displaystyle f} defined on a vector subspaceM{\displaystyle M} of a (real or complex) normed spaceX{\displaystyle X} has a continuous linear extensionF{\displaystyle F} to all ofX{\displaystyle X} that satisfiesf=F.{\displaystyle \|f\|=\|F\|.}

Proof of the continuous extension theorem

[edit]

The following observations allow thecontinuous extension theorem to be deduced from theHahn–Banach theorem.[16]

The absolute value of a linear functional is always a seminorm. A linear functionalF{\displaystyle F} on atopological vector spaceX{\displaystyle X} is continuous if and only if its absolute value|F|{\displaystyle |F|} is continuous, which happens if and only if there exists a continuous seminormp{\displaystyle p} onX{\displaystyle X} such that|F|p{\displaystyle |F|\leq p} on the domain ofF.{\displaystyle F.}[17] IfX{\displaystyle X} is a locally convex space then this statement remains true when the linear functionalF{\displaystyle F} is defined on aproper vector subspace ofX.{\displaystyle X.}

Proof of thecontinuous extension theorem for locally convex spaces[16]

Letf{\displaystyle f} be a continuous linear functional defined on a vector subspaceM{\displaystyle M} of alocally convex topological vector spaceX.{\displaystyle X.} BecauseX{\displaystyle X} is locally convex, there exists a continuous seminormp:XR{\displaystyle p:X\to \mathbb {R} } onX{\displaystyle X} thatdominatesf{\displaystyle f} (meaning that|f(m)|p(m){\displaystyle |f(m)|\leq p(m)} for allmM{\displaystyle m\in M}). By theHahn–Banach theorem, there exists a linear extension off{\displaystyle f} toX,{\displaystyle X,} call itF,{\displaystyle F,} that satisfies|F|p{\displaystyle |F|\leq p} onX.{\displaystyle X.} This linear functionalF{\displaystyle F} is continuous since|F|p{\displaystyle |F|\leq p} andp{\displaystyle p} is a continuous seminorm.

Proof for normed spaces

A linear functionalf{\displaystyle f} on anormed space iscontinuous if and only if it isbounded, which means that itsdual normf=sup{|f(m)|:m1,mdomainf}{\displaystyle \|f\|=\sup\{|f(m)|:\|m\|\leq 1,m\in \operatorname {domain} f\}}is finite, in which case|f(m)|fm{\displaystyle |f(m)|\leq \|f\|\|m\|} holds for every pointm{\displaystyle m} in its domain. Moreover, ifc0{\displaystyle c\geq 0} is such that|f(m)|cm{\displaystyle |f(m)|\leq c\|m\|} for allm{\displaystyle m} in the functional's domain, then necessarilyfc.{\displaystyle \|f\|\leq c.}IfF{\displaystyle F} is a linear extension of a linear functionalf{\displaystyle f} then their dual norms always satisfyfF{\displaystyle \|f\|\leq \|F\|}[proof 3] so that equalityf=F{\displaystyle \|f\|=\|F\|} is equivalent toFf,{\displaystyle \|F\|\leq \|f\|,} which holds if and only if|F(x)|fx{\displaystyle |F(x)|\leq \|f\|\|x\|} for every pointx{\displaystyle x} in the extension's domain. This can be restated in terms of the functionf:XR{\displaystyle \|f\|\,\|\cdot \|:X\to \mathbb {R} } defined byxfx,{\displaystyle x\mapsto \|f\|\,\|x\|,} which is always aseminorm:[note 4]

A linear extension of abounded linear functionalf{\displaystyle f} isnorm-preserving if and only if the extension isdominated by the seminormf.{\displaystyle \|f\|\,\|\cdot \|.}

Applying theHahn–Banach theorem tof{\displaystyle f} with this seminormf{\displaystyle \|f\|\,\|\cdot \|} thus produces a dominated linear extension whose norm is (necessarily) equal to that off,{\displaystyle f,} which proves the theorem:

Proof of thenorm-preserving Hahn–Banach continuous extension theorem[15]

Letf{\displaystyle f} be a continuous linear functional defined on a vector subspaceM{\displaystyle M} of a normed spaceX.{\displaystyle X.} Then the functionp:XR{\displaystyle p:X\to \mathbb {R} } defined byp(x)=fx{\displaystyle p(x)=\|f\|\,\|x\|} is a seminorm onX{\displaystyle X} thatdominatesf,{\displaystyle f,} meaning that|f(m)|p(m){\displaystyle |f(m)|\leq p(m)} holds for everymM.{\displaystyle m\in M.}By theHahn–Banach theorem, there exists a linear functionalF{\displaystyle F} onX{\displaystyle X} that extendsf{\displaystyle f} (which guaranteesfF{\displaystyle \|f\|\leq \|F\|}) and that is also dominated byp,{\displaystyle p,} meaning that|F(x)|p(x){\displaystyle |F(x)|\leq p(x)} for everyxX.{\displaystyle x\in X.} The fact thatf{\displaystyle \|f\|} is a real number such that|F(x)|fx{\displaystyle |F(x)|\leq \|f\|\|x\|} for everyxX,{\displaystyle x\in X,} guaranteesFf.{\displaystyle \|F\|\leq \|f\|.} SinceF=f{\displaystyle \|F\|=\|f\|} is finite, the linear functionalF{\displaystyle F} is bounded and thus continuous.

Non-locally convex spaces

[edit]

Thecontinuous extension theorem might fail if thetopological vector space (TVS)X{\displaystyle X} is notlocally convex. For example, for0<p<1,{\displaystyle 0<p<1,} theLebesgue spaceLp([0,1]){\displaystyle L^{p}([0,1])} is acompletemetrizable TVS (anF-space) that isnot locally convex (in fact, its only convex open subsets are itselfLp([0,1]){\displaystyle L^{p}([0,1])} and the empty set) and the only continuous linear functional onLp([0,1]){\displaystyle L^{p}([0,1])} is the constant0{\displaystyle 0} function (Rudin 1991, §1.47). SinceLp([0,1]){\displaystyle L^{p}([0,1])} is Hausdorff, every finite-dimensional vector subspaceMLp([0,1]){\displaystyle M\subseteq L^{p}([0,1])} islinearly homeomorphic toEuclidean spaceRdimM{\displaystyle \mathbb {R} ^{\dim M}} orCdimM{\displaystyle \mathbb {C} ^{\dim M}} (byF. Riesz's theorem) and so every non-zero linear functionalf{\displaystyle f} onM{\displaystyle M} is continuous but none has a continuous linear extension to all ofLp([0,1]).{\displaystyle L^{p}([0,1]).} However, it is possible for a TVSX{\displaystyle X} to not be locally convex but nevertheless have enough continuous linear functionals that itscontinuous dual spaceX{\displaystyle X^{*}}separates points; for such a TVS, a continuous linear functional defined on a vector subspacemight have a continuous linear extension to the whole space.

If theTVSX{\displaystyle X} is notlocally convex then there might not exist any continuous seminormp:XR{\displaystyle p:X\to \mathbb {R} }defined onX{\displaystyle X} (not just onM{\displaystyle M}) that dominatesf,{\displaystyle f,} in which case the Hahn–Banach theorem can not be applied as it was inthe above proof of the continuous extension theorem. However, the proof's argument can be generalized to give a characterization of when a continuous linear functional has a continuous linear extension: IfX{\displaystyle X} is any TVS (not necessarily locally convex), then a continuous linear functionalf{\displaystyle f} defined on a vector subspaceM{\displaystyle M} has a continuous linear extensionF{\displaystyle F} to all ofX{\displaystyle X} if and only if there exists some continuous seminormp{\displaystyle p} onX{\displaystyle X} thatdominatesf.{\displaystyle f.} Specifically, if given a continuous linear extensionF{\displaystyle F} thenp:=|F|{\displaystyle p:=|F|} is a continuous seminorm onX{\displaystyle X} that dominatesf;{\displaystyle f;} and conversely, if given a continuous seminormp:XR{\displaystyle p:X\to \mathbb {R} } onX{\displaystyle X} that dominatesf{\displaystyle f} then any dominated linear extension off{\displaystyle f} toX{\displaystyle X} (the existence of which is guaranteed by the Hahn–Banach theorem) will be a continuous linear extension.

Geometric Hahn–Banach (the Hahn–Banach separation theorems)

[edit]
See also:Hyperplane separation theorem

The key element of the Hahn–Banach theorem is fundamentally a result about the separation of two convex sets:{p(xn)f(n):nM},{\displaystyle \{-p(-x-n)-f(n):n\in M\},} and{p(m+x)f(m):mM}.{\displaystyle \{p(m+x)-f(m):m\in M\}.} This sort of argument appears widely inconvex geometry,[18]optimization theory, andeconomics. Lemmas to this end derived from the original Hahn–Banach theorem are known as theHahn–Banach separation theorems.[19][20] They are generalizations of thehyperplane separation theorem, which states that two disjoint nonempty convex subsets of a finite-dimensional spaceRn{\displaystyle \mathbb {R} ^{n}} can be separated by someaffine hyperplane, which is afiber (level set) of the formf1(s)={x:f(x)=s}{\displaystyle f^{-1}(s)=\{x:f(x)=s\}} wheref0{\displaystyle f\neq 0} is a non-zero linear functional ands{\displaystyle s} is a scalar.

Theorem[19]LetA{\displaystyle A} andB{\displaystyle B} be non-empty convex subsets of a reallocally convex topological vector spaceX.{\displaystyle X.} IfIntA{\displaystyle \operatorname {Int} A\neq \varnothing } andBIntA={\displaystyle B\cap \operatorname {Int} A=\varnothing } then there exists a continuous linear functionalf{\displaystyle f} onX{\displaystyle X} such thatsupf(A)inff(B){\displaystyle \sup f(A)\leq \inf f(B)} andf(a)<inff(B){\displaystyle f(a)<\inf f(B)} for allaIntA{\displaystyle a\in \operatorname {Int} A} (such anf{\displaystyle f} is necessarily non-zero).

When the convex sets have additional properties, such as beingopen orcompact for example, then the conclusion can be substantially strengthened:

Theorem[3][21]LetA{\displaystyle A} andB{\displaystyle B} be convex non-empty disjoint subsets of a realtopological vector spaceX.{\displaystyle X.}

IfX{\displaystyle X} is complex (rather than real) then the same claims hold, but for thereal part off.{\displaystyle f.}

Then following important corollary is known as theGeometric Hahn–Banach theorem orMazur's theorem (also known asAscoli–Mazur theorem[22]). It follows from the first bullet above and the convexity ofM.{\displaystyle M.}

Theorem (Mazur)[23]LetM{\displaystyle M} be a vector subspace of the topological vector spaceX{\displaystyle X} and supposeK{\displaystyle K} is a non-empty convex open subset ofX{\displaystyle X} withKM=.{\displaystyle K\cap M=\varnothing .} Then there is a closedhyperplane (codimension-1 vector subspace)NX{\displaystyle N\subseteq X} that containsM,{\displaystyle M,} but remains disjoint fromK.{\displaystyle K.}

Mazur's theorem clarifies that vector subspaces (even those that are not closed) can be characterized by linear functionals.

Corollary[24] (Separation of a subspace and an open convex set)LetM{\displaystyle M} be a vector subspace of alocally convex topological vector spaceX,{\displaystyle X,} andU{\displaystyle U} be a non-empty open convex subset disjoint fromM.{\displaystyle M.} Then there exists a continuous linear functionalf{\displaystyle f} onX{\displaystyle X} such thatf(m)=0{\displaystyle f(m)=0} for allmM{\displaystyle m\in M} andRef>0{\displaystyle \operatorname {Re} f>0} onU.{\displaystyle U.}

Supporting hyperplanes

[edit]

Since points are triviallyconvex, geometric Hahn–Banach implies that functionals can detect theboundary of a set. In particular, letX{\displaystyle X} be a real topological vector space andAX{\displaystyle A\subseteq X} be convex withIntA.{\displaystyle \operatorname {Int} A\neq \varnothing .} Ifa0AIntA{\displaystyle a_{0}\in A\setminus \operatorname {Int} A} then there is a functional that is vanishing ata0,{\displaystyle a_{0},} but supported on the interior ofA.{\displaystyle A.}[19]

Call a normed spaceX{\displaystyle X}smooth if at each pointx{\displaystyle x} in its unit ball there exists a unique closed hyperplane to the unit ball atx.{\displaystyle x.} Köthe showed in 1983 that a normed space is smooth at a pointx{\displaystyle x} if and only if the norm isGateaux differentiable at that point.[3]

Balanced or disked neighborhoods

[edit]

LetU{\displaystyle U} be a convexbalanced neighborhood of the origin in alocally convex topological vector spaceX{\displaystyle X} and supposexX{\displaystyle x\in X} is not an element ofU.{\displaystyle U.} Then there exists a continuous linear functionalf{\displaystyle f} onX{\displaystyle X} such that[3]sup|f(U)||f(x)|.{\displaystyle \sup |f(U)|\leq |f(x)|.}

Applications

[edit]

The Hahn–Banach theorem is the first sign of an important philosophy infunctional analysis: to understand a space, one should understand itscontinuous functionals.

For example, linear subspaces are characterized by functionals: ifX is a normed vector space with linear subspaceM (not necessarily closed) and ifz{\displaystyle z} is an element ofX not in theclosure ofM, then there exists a continuous linear mapf:XK{\displaystyle f:X\to \mathbf {K} } withf(m)=0{\displaystyle f(m)=0} for allmM,{\displaystyle m\in M,}f(z)=1,{\displaystyle f(z)=1,} andf=dist(z,M)1.{\displaystyle \|f\|=\operatorname {dist} (z,M)^{-1}.} (To see this, note thatdist(,M){\displaystyle \operatorname {dist} (\cdot ,M)} is a sublinear function.) Moreover, ifz{\displaystyle z} is an element ofX, then there exists a continuous linear mapf:XK{\displaystyle f:X\to \mathbf {K} } such thatf(z)=z{\displaystyle f(z)=\|z\|} andf1.{\displaystyle \|f\|\leq 1.} This implies that thenatural injectionJ{\displaystyle J} from a normed spaceX into itsdouble dualV{\displaystyle V^{**}} is isometric.

That last result also suggests that the Hahn–Banach theorem can often be used to locate a "nicer" topology in which to work. For example, many results in functional analysis assume that a space isHausdorff orlocally convex. However, supposeX is a topological vector space, not necessarily Hausdorff orlocally convex, but with a nonempty, proper, convex, open setM. Then geometric Hahn–Banach implies that there is a hyperplane separatingM from any other point. In particular, there must exist a nonzero functional onX — that is, thecontinuous dual spaceX{\displaystyle X^{*}} is non-trivial.[3][25] ConsideringX with theweak topology induced byX,{\displaystyle X^{*},} thenX becomes locally convex; by the second bullet of geometric Hahn–Banach, the weak topology on this new spaceseparates points. ThusX with this weak topology becomesHausdorff. This sometimes allows some results from locally convex topological vector spaces to be applied to non-Hausdorff and non-locally convex spaces.

Partial differential equations

[edit]

The Hahn–Banach theorem is often useful when one wishes to apply the method ofa priori estimates. Suppose that we wish to solve the linear differential equationPu=f{\displaystyle Pu=f} foru,{\displaystyle u,} withf{\displaystyle f} given in some Banach spaceX. If we have control on the size ofu{\displaystyle u} in terms offX{\displaystyle \|f\|_{X}} and we can think ofu{\displaystyle u} as a bounded linear functional on some suitable space of test functionsg,{\displaystyle g,} then we can viewf{\displaystyle f} as a linear functional by adjunction:(f,g)=(u,Pg).{\displaystyle (f,g)=(u,P^{*}g).} At first, this functional is only defined on the image ofP,{\displaystyle P,} but using the Hahn–Banach theorem, we can try to extend it to the entire codomainX. The resulting functional is often defined to be aweak solution to the equation.

Characterizing reflexive Banach spaces

[edit]

Theorem[26]A real Banach space isreflexive if and only if every pair of non-empty disjoint closed convex subsets, one of which is bounded, can be strictly separated by a hyperplane.

Example from Fredholm theory

[edit]

To illustrate an actual application of the Hahn–Banach theorem, we will now prove a result that follows almost entirely from the Hahn–Banach theorem.

PropositionSupposeX{\displaystyle X} is a Hausdorff locally convex TVS over the fieldK{\displaystyle \mathbf {K} } andY{\displaystyle Y} is a vector subspace ofX{\displaystyle X} that isTVS–isomorphic toKI{\displaystyle \mathbf {K} ^{I}} for some setI.{\displaystyle I.} ThenY{\displaystyle Y} is a closed andcomplemented vector subspace ofX.{\displaystyle X.}

Proof

SinceKI{\displaystyle \mathbf {K} ^{I}} is a complete TVS so isY,{\displaystyle Y,} and since any complete subset of a Hausdorff TVS is closed,Y{\displaystyle Y} is a closed subset ofX.{\displaystyle X.} Letf=(fi)iI:YKI{\displaystyle f=\left(f_{i}\right)_{i\in I}:Y\to \mathbf {K} ^{I}} be a TVS isomorphism, so that eachfi:YK{\displaystyle f_{i}:Y\to \mathbf {K} } is a continuous surjective linear functional. By the Hahn–Banach theorem, we may extend eachfi{\displaystyle f_{i}} to a continuous linear functionalFi:XK{\displaystyle F_{i}:X\to \mathbf {K} } onX.{\displaystyle X.} LetF:=(Fi)iI:XKI{\displaystyle F:=\left(F_{i}\right)_{i\in I}:X\to \mathbf {K} ^{I}} soF{\displaystyle F} is a continuous linear surjection such that its restriction toY{\displaystyle Y} isF|Y=(Fi|Y)iI=(fi)iI=f.{\displaystyle F{\big \vert }_{Y}=\left(F_{i}{\big \vert }_{Y}\right)_{i\in I}=\left(f_{i}\right)_{i\in I}=f.} LetP:=f1F:XY,{\displaystyle P:=f^{-1}\circ F:X\to Y,} which is a continuous linear map whose restriction toY{\displaystyle Y} isP|Y=f1F|Y=f1f=1Y,{\displaystyle P{\big \vert }_{Y}=f^{-1}\circ F{\big \vert }_{Y}=f^{-1}\circ f=\mathbf {1} _{Y},} where1Y{\displaystyle \mathbb {1} _{Y}} denotes theidentity map onY.{\displaystyle Y.} This shows thatP{\displaystyle P} is a continuouslinear projection ontoY{\displaystyle Y} (that is,PP=P{\displaystyle P\circ P=P}). ThusY{\displaystyle Y} is complemented inX{\displaystyle X} andX=YkerP{\displaystyle X=Y\oplus \ker P} in the category of TVSs.{\displaystyle \blacksquare }

The above result may be used to show that every closed vector subspace ofRN{\displaystyle \mathbb {R} ^{\mathbb {N} }} is complemented because any such space is either finite dimensional or else TVS–isomorphic toRN.{\displaystyle \mathbb {R} ^{\mathbb {N} }.}

Generalizations

[edit]

General template

There are now many other versions of the Hahn–Banach theorem. The general template for the various versions of the Hahn–Banach theorem presented in this article is as follows:

p:XR{\displaystyle p:X\to \mathbb {R} } is asublinear function (possibly aseminorm) on a vector spaceX,{\displaystyle X,}M{\displaystyle M} is a vector subspace ofX{\displaystyle X} (possibly closed), andf{\displaystyle f} is a linear functional onM{\displaystyle M} satisfying|f|p{\displaystyle |f|\leq p} onM{\displaystyle M} (and possibly some other conditions). One then concludes that there exists a linear extensionF{\displaystyle F} off{\displaystyle f} toX{\displaystyle X} such that|F|p{\displaystyle |F|\leq p} onX{\displaystyle X} (possibly with additional properties).

Theorem[3]IfD{\displaystyle D} is anabsorbingdisk in a real or complex vector spaceX{\displaystyle X} and iff{\displaystyle f} be a linear functional defined on a vector subspaceM{\displaystyle M} ofX{\displaystyle X} such that|f|1{\displaystyle |f|\leq 1} onMD,{\displaystyle M\cap D,} then there exists a linear functionalF{\displaystyle F} onX{\displaystyle X} extendingf{\displaystyle f} such that|F|1{\displaystyle |F|\leq 1} onD.{\displaystyle D.}

For seminorms

[edit]

Hahn–Banach theorem for seminorms[27][28]Ifp:MR{\displaystyle p:M\to \mathbb {R} } is aseminorm defined on a vector subspaceM{\displaystyle M} ofX,{\displaystyle X,} and ifq:XR{\displaystyle q:X\to \mathbb {R} } is a seminorm onX{\displaystyle X} such thatpq|M,{\displaystyle p\leq q{\big \vert }_{M},} then there exists a seminormP:XR{\displaystyle P:X\to \mathbb {R} } onX{\displaystyle X} such thatP|M=p{\displaystyle P{\big \vert }_{M}=p} onM{\displaystyle M} andPq{\displaystyle P\leq q} onX.{\displaystyle X.}

Proof of theHahn–Banach theorem for seminorms

LetS{\displaystyle S} be the convex hull of{mM:p(m)1}{xX:q(x)1}.{\displaystyle \{m\in M:p(m)\leq 1\}\cup \{x\in X:q(x)\leq 1\}.} BecauseS{\displaystyle S} is anabsorbingdisk inX,{\displaystyle X,} itsMinkowski functionalP{\displaystyle P} is a seminorm. Thenp=P{\displaystyle p=P} onM{\displaystyle M} andPq{\displaystyle P\leq q} onX.{\displaystyle X.}

So for example, suppose thatf{\displaystyle f} is abounded linear functional defined on a vector subspaceM{\displaystyle M} of anormed spaceX,{\displaystyle X,} so its theoperator normf{\displaystyle \|f\|} is a non-negative real number. Then the linear functional'sabsolute valuep:=|f|{\displaystyle p:=|f|} is a seminorm onM{\displaystyle M} and the mapq:XR{\displaystyle q:X\to \mathbb {R} } defined byq(x)=fx{\displaystyle q(x)=\|f\|\,\|x\|} is a seminorm onX{\displaystyle X} that satisfiespq|M{\displaystyle p\leq q{\big \vert }_{M}} onM.{\displaystyle M.} TheHahn–Banach theorem for seminorms guarantees the existence of a seminormP:XR{\displaystyle P:X\to \mathbb {R} } that is equal to|f|{\displaystyle |f|} onM{\displaystyle M} (sinceP|M=p=|f|{\displaystyle P{\big \vert }_{M}=p=|f|}) and is bounded above byP(x)fx{\displaystyle P(x)\leq \|f\|\,\|x\|} everywhere onX{\displaystyle X} (sincePq{\displaystyle P\leq q}).

Geometric separation

[edit]

Hahn–Banach sandwich theorem[3]Letp:XR{\displaystyle p:X\to \mathbb {R} } be a sublinear function on a real vector spaceX,{\displaystyle X,} letSX{\displaystyle S\subseteq X} be any subset ofX,{\displaystyle X,} and letf:SR{\displaystyle f:S\to \mathbb {R} } beany map. If there exist positive real numbersa{\displaystyle a} andb{\displaystyle b} such that0infsS[p(saxby)f(s)af(x)bf(y)] for all x,yS,{\displaystyle 0\geq \inf _{s\in S}[p(s-ax-by)-f(s)-af(x)-bf(y)]\qquad {\text{ for all }}x,y\in S,}then there exists a linear functionalF:XR{\displaystyle F:X\to \mathbb {R} } onX{\displaystyle X} such thatFp{\displaystyle F\leq p} onX{\displaystyle X} andfFp{\displaystyle f\leq F\leq p} onS.{\displaystyle S.}

Maximal dominated linear extension

[edit]

Theorem[3] (Andenaes, 1970)Letp:XR{\displaystyle p:X\to \mathbb {R} } be a sublinear function on a real vector spaceX,{\displaystyle X,} letf:MR{\displaystyle f:M\to \mathbb {R} } be a linear functional on a vector subspaceM{\displaystyle M} ofX{\displaystyle X} such thatfp{\displaystyle f\leq p} onM,{\displaystyle M,} and letSX{\displaystyle S\subseteq X} be any subset ofX.{\displaystyle X.} Then there exists a linear functionalF:XR{\displaystyle F:X\to \mathbb {R} } onX{\displaystyle X} that extendsf,{\displaystyle f,} satisfiesFp{\displaystyle F\leq p} onX,{\displaystyle X,} and is (pointwise) maximal onS{\displaystyle S} in the following sense: ifF^:XR{\displaystyle {\widehat {F}}:X\to \mathbb {R} } is a linear functional onX{\displaystyle X} that extendsf{\displaystyle f} and satisfiesF^p{\displaystyle {\widehat {F}}\leq p} onX,{\displaystyle X,} thenFF^{\displaystyle F\leq {\widehat {F}}} onS{\displaystyle S} impliesF=F^{\displaystyle F={\widehat {F}}} onS.{\displaystyle S.}

IfS={s}{\displaystyle S=\{s\}} is a singleton set (wheresX{\displaystyle s\in X} is some vector) and ifF:XR{\displaystyle F:X\to \mathbb {R} } is such a maximal dominated linear extension off:MR,{\displaystyle f:M\to \mathbb {R} ,} thenF(s)=infmM[f(s)+p(sm)].{\displaystyle F(s)=\inf _{m\in M}[f(s)+p(s-m)].}[3]

Vector valued Hahn–Banach

[edit]
See also:Vector-valued Hahn–Banach theorems

Vector–valued Hahn–Banach theorem[3]IfX{\displaystyle X} andY{\displaystyle Y} are vector spaces over the same field and iff:MY{\displaystyle f:M\to Y} is a linear map defined on a vector subspaceM{\displaystyle M} ofX,{\displaystyle X,} then there exists a linear mapF:XY{\displaystyle F:X\to Y} that extendsf.{\displaystyle f.}

Invariant Hahn–Banach

[edit]
See also:Vector-valued Hahn–Banach theorems

A setΓ{\displaystyle \Gamma } of mapsXX{\displaystyle X\to X} iscommutative (with respect tofunction composition{\displaystyle \,\circ \,}) ifFG=GF{\displaystyle F\circ G=G\circ F} for allF,GΓ.{\displaystyle F,G\in \Gamma .} Say that a functionf{\displaystyle f} defined on a subsetM{\displaystyle M} ofX{\displaystyle X} isΓ{\displaystyle \Gamma }-invariant ifL(M)M{\displaystyle L(M)\subseteq M} andfL=f{\displaystyle f\circ L=f} onM{\displaystyle M} for everyLΓ.{\displaystyle L\in \Gamma .}

An invariant Hahn–Banach theorem[29]SupposeΓ{\displaystyle \Gamma } is acommutative set of continuous linear maps from anormed spaceX{\displaystyle X} into itself and letf{\displaystyle f} be a continuous linear functional defined some vector subspaceM{\displaystyle M} ofX{\displaystyle X} that isΓ{\displaystyle \Gamma }-invariant, which means thatL(M)M{\displaystyle L(M)\subseteq M} andfL=f{\displaystyle f\circ L=f} onM{\displaystyle M} for everyLΓ.{\displaystyle L\in \Gamma .} Thenf{\displaystyle f} has a continuous linear extensionF{\displaystyle F} to all ofX{\displaystyle X} that has the sameoperator normf=F{\displaystyle \|f\|=\|F\|} and is alsoΓ{\displaystyle \Gamma }-invariant, meaning thatFL=F{\displaystyle F\circ L=F} onX{\displaystyle X} for everyLΓ.{\displaystyle L\in \Gamma .}

This theorem may be summarized:

EveryΓ{\displaystyle \Gamma }-invariant continuous linear functional defined on a vector subspace of a normed spaceX{\displaystyle X} has aΓ{\displaystyle \Gamma }-invariant Hahn–Banach extension to all ofX.{\displaystyle X.}[29]

For nonlinear functions

[edit]

The following theorem of Mazur–Orlicz (1953) is equivalent to the Hahn–Banach theorem.

Mazur–Orlicz theorem[3]Letp:XR{\displaystyle p:X\to \mathbb {R} } be asublinear function on a real or complex vector spaceX,{\displaystyle X,} letT{\displaystyle T} be any set, and letR:TR{\displaystyle R:T\to \mathbb {R} } andv:TX{\displaystyle v:T\to X} be any maps. The following statements are equivalent:

  1. there exists a real-valued linear functionalF{\displaystyle F} onX{\displaystyle X} such thatFp{\displaystyle F\leq p} onX{\displaystyle X} andRFv{\displaystyle R\leq F\circ v} onT{\displaystyle T};
  2. for any finite sequences1,,sn{\displaystyle s_{1},\ldots ,s_{n}} ofn>0{\displaystyle n>0} non-negative real numbers, and any sequencet1,,tnT{\displaystyle t_{1},\ldots ,t_{n}\in T} of elements ofT,{\displaystyle T,}i=1nsiR(ti)p(i=1nsiv(ti)).{\displaystyle \sum _{i=1}^{n}s_{i}R\left(t_{i}\right)\leq p\left(\sum _{i=1}^{n}s_{i}v\left(t_{i}\right)\right).}

The following theorem characterizes whenany scalar function onX{\displaystyle X} (not necessarily linear) has a continuous linear extension to all ofX.{\displaystyle X.}

Theorem (The extension principle[30])Letf{\displaystyle f} a scalar-valued function on a subsetS{\displaystyle S} of atopological vector spaceX.{\displaystyle X.} Then there exists a continuous linear functionalF{\displaystyle F} onX{\displaystyle X} extendingf{\displaystyle f} if and only if there exists a continuous seminormp{\displaystyle p} onX{\displaystyle X} such that|i=1naif(si)|p(i=1naisi){\displaystyle \left|\sum _{i=1}^{n}a_{i}f(s_{i})\right|\leq p\left(\sum _{i=1}^{n}a_{i}s_{i}\right)}for all positive integersn{\displaystyle n} and all finite sequencesa1,,an{\displaystyle a_{1},\ldots ,a_{n}} of scalars and elementss1,,sn{\displaystyle s_{1},\ldots ,s_{n}} ofS.{\displaystyle S.}

Converse

[edit]

LetX be a topological vector space. A vector subspaceM ofX hasthe extension property if any continuous linear functional onM can be extended to a continuous linear functional onX, and we say thatX has theHahn–Banach extension property (HBEP) if every vector subspace ofX has the extension property.[31]

The Hahn–Banach theorem guarantees that every Hausdorff locally convex space has the HBEP. For completemetrizable topological vector spaces there is a converse, due to Kalton: every complete metrizable TVS with the Hahn–Banach extension property is locally convex.[31] On the other hand, a vector spaceX of uncountable dimension, endowed with thefinest vector topology, then this is a topological vector spaces with the Hahn–Banach extension property that is neither locally convex nor metrizable.[31]

A vector subspaceM of a TVSX hasthe separation property if for every element ofX such thatxM,{\displaystyle x\not \in M,} there exists a continuous linear functionalf{\displaystyle f} onX such thatf(x)0{\displaystyle f(x)\neq 0} andf(m)=0{\displaystyle f(m)=0} for allmM.{\displaystyle m\in M.} Clearly, the continuous dual space of a TVSX separates points onX if and only if{0},{\displaystyle \{0\},} has the separation property. In 1992, Kakol proved that any infinite dimensional vector spaceX, there exist TVS-topologies onX that do not have the HBEP despite having enough continuous linear functionals for the continuous dual space to separate points onX. However, ifX is a TVS thenevery vector subspace ofX has the extension property if and only ifevery vector subspace ofX has the separation property.[31]

Relation to axiom of choice and other theorems

[edit]
See also:Krein–Milman theorem § Relation to other statements

The proof of theHahn–Banach theorem for real vector spaces (HB) commonly usesZorn's lemma, which in the axiomatic framework ofZermelo–Fraenkel set theory (ZF) is equivalent to theaxiom of choice (AC). It was discovered byŁoś andRyll-Nardzewski[12] and independently byLuxemburg[11] thatHB can be proved using theultrafilter lemma (UL), which is equivalent (underZF) to theBoolean prime ideal theorem (BPI).BPI is strictly weaker than the axiom of choice and it was later shown thatHB is strictly weaker thanBPI.[32]

Theultrafilter lemma is equivalent (underZF) to theBanach–Alaoglu theorem,[33] which is another foundational theorem infunctional analysis. Although the Banach–Alaoglu theorem impliesHB,[34] it is not equivalent to it (said differently, the Banach–Alaoglu theorem is strictly stronger thanHB). However,HB is equivalent toa certain weakened version of the Banach–Alaoglu theorem for normed spaces.[35] The Hahn–Banach theorem is also equivalent to the following statement:[36]

(∗): On everyBoolean algebraB there exists a "probability charge", that is: a non-constant finitely additive map fromB{\displaystyle B} into[0,1].{\displaystyle [0,1].}

(BPI is equivalent to the statement that there are always non-constant probability charges which take only the values 0 and 1.)

InZF, the Hahn–Banach theorem suffices to derive the existence of a non-Lebesgue measurable set.[37] Moreover, the Hahn–Banach theorem implies theBanach–Tarski paradox.[38]

ForseparableBanach spaces, D. K. Brown and S. G. Simpson proved that the Hahn–Banach theorem follows from WKL0, a weak subsystem ofsecond-order arithmetic that takes a form ofKőnig's lemma restricted to binary trees as an axiom. In fact, they prove that under a weak set of assumptions, the two are equivalent, an example ofreverse mathematics.[39][40]

See also

[edit]

Notes

[edit]
  1. ^This definition means, for instance, thatFb(x)=Fb(0+1x)=f(0)+1b=b{\displaystyle F_{b}(x)=F_{b}(0+1x)=f(0)+1b=b} and ifmM{\displaystyle m\in M} thenFb(m)=Fb(m+0x)=f(m)+0b=f(m).{\displaystyle F_{b}(m)=F_{b}(m+0x)=f(m)+0b=f(m).} In fact, ifG:MRxR{\displaystyle G:M\oplus \mathbb {R} x\to \mathbb {R} } is any linear extension off{\displaystyle f} toMRx{\displaystyle M\oplus \mathbb {R} x} thenG=Fb{\displaystyle G=F_{b}} forb:=G(x).{\displaystyle b:=G(x).} In other words, every linear extension off{\displaystyle f} toMRx{\displaystyle M\oplus \mathbb {R} x} is of the formFb{\displaystyle F_{b}} for some (unique)b.{\displaystyle b.}
  2. ^Explicitly, for any real numberbR,{\displaystyle b\in \mathbb {R} ,}Fbp{\displaystyle F_{b}\leq p} onMRx{\displaystyle M\oplus \mathbb {R} x} if and only ifabc.{\displaystyle a\leq b\leq c.} Combined with the fact thatFb(x)=b,{\displaystyle F_{b}(x)=b,} it follows that the dominated linear extension off{\displaystyle f} toMRx{\displaystyle M\oplus \mathbb {R} x} is unique if and only ifa=c,{\displaystyle a=c,} in which case this scalar will be the extension's values atx.{\displaystyle x.} Since every linear extension off{\displaystyle f} toMRx{\displaystyle M\oplus \mathbb {R} x} is of the formFb{\displaystyle F_{b}} for someb,{\displaystyle b,} the boundsab=Fb(x)c{\displaystyle a\leq b=F_{b}(x)\leq c} thus also limit the range of possible values (atx{\displaystyle x}) that can be taken by any off{\displaystyle f}'s dominated linear extensions. Specifically, ifF:XR{\displaystyle F:X\to \mathbb {R} } is any linear extension off{\displaystyle f} satisfyingFp{\displaystyle F\leq p} then for everyxXM,{\displaystyle x\in X\setminus M,}supmM[p(mx)f(m)]  F(x)  infmM[p(m+x)f(m)].{\displaystyle \sup _{m\in M}[-p(-m-x)-f(m)]~\leq ~F(x)~\leq ~\inf _{m\in M}[p(m+x)-f(m)].}
  3. ^Geometric illustration:The geometric idea of the above proof can be fully presented in the case ofX=R2,M={(x,0):xR}.{\displaystyle X=\mathbb {R} ^{2},M=\{(x,0):x\in \mathbb {R} \}.}First, define the simple-minded extensionf0(x,y)=f(x),{\displaystyle f_{0}(x,y)=f(x),} It doesn't work, since maybef0p{\displaystyle f_{0}\leq p}. But it is a step in the right direction.pf0{\displaystyle p-f_{0}} is still convex, andpf0ff0.{\displaystyle p-f_{0}\geq f-f_{0}.} Further,ff0{\displaystyle f-f_{0}} is identically zero on the x-axis. Thus we have reduced to the case off=0,p0{\displaystyle f=0,p\geq 0} on the x-axis.Ifp0{\displaystyle p\geq 0} onR2,{\displaystyle \mathbb {R} ^{2},} then we are done. Otherwise, pick somevR2,{\displaystyle v\in \mathbb {R} ^{2},} such thatp(v)<0.{\displaystyle p(v)<0.}The idea now is to perform a simultaneous bounding ofp{\displaystyle p} onv+M{\displaystyle v+M} andv+M{\displaystyle -v+M} such thatpb{\displaystyle p\geq b} onv+M{\displaystyle v+M} andpb{\displaystyle p\geq -b} onv+M,{\displaystyle -v+M,} then definingf~(w+rv)=rb{\displaystyle {\tilde {f}}(w+rv)=rb} would give the desired extension.Sincev+M,v+M{\displaystyle -v+M,v+M} are on opposite sides ofM,{\displaystyle M,} andp<0{\displaystyle p<0} at some point onv+M,{\displaystyle v+M,} by convexity ofp,{\displaystyle p,} we must havep0{\displaystyle p\geq 0} on all points onv+M.{\displaystyle -v+M.} Thusinfuv+Mp(u){\displaystyle \inf _{u\in -v+M}p(u)} is finite.Geometrically, this works because{z:p(z)<0}{\displaystyle \{z:p(z)<0\}} is a convex set that is disjoint fromM,{\displaystyle M,} and thus must lie entirely on one side ofM.{\displaystyle M.}Defineb=infuv+Mp(u).{\displaystyle b=-\inf _{u\in -v+M}p(u).} This satisfiespb{\displaystyle p\geq -b} onv+M.{\displaystyle -v+M.} It remains to check the other side.For allv+wv+M,{\displaystyle v+w\in v+M,} convexity implies that for allv+wv+M,p(v+w)+p(v+w)2p((w+w)/2)=0,{\displaystyle -v+w'\in -v+M,p(v+w)+p(-v+w')\geq 2p((w+w')/2)=0,} thusp(v+w)supuv+Mp(u)=b.{\displaystyle p(v+w)\geq \sup _{u\in -v+M}-p(u)=b.}Since during the proof, we only used convexity ofp{\displaystyle p}, we see that the lemma remains true for merely convexp.{\displaystyle p.}
  4. ^Like every non-negative scalar multiple of anorm, this seminormf{\displaystyle \|f\|\,\|\cdot \|} (the product of the non-negative real numberf{\displaystyle \|f\|} with the norm{\displaystyle \|\cdot \|}) is a norm whenf{\displaystyle \|f\|} is positive, although this fact is not needed for the proof.

Proofs

  1. ^Ifz=a+ibC{\displaystyle z=a+ib\in \mathbb {C} } has real partRez=a{\displaystyle \operatorname {Re} z=a} thenRe(iz)=b,{\displaystyle -\operatorname {Re} (iz)=b,} which proves thatz=ReziRe(iz).{\displaystyle z=\operatorname {Re} z-i\operatorname {Re} (iz).} SubstitutingF(x){\displaystyle F(x)} in forz{\displaystyle z} and usingiF(x)=F(ix){\displaystyle iF(x)=F(ix)} givesF(x)=ReF(x)iReF(ix).{\displaystyle F(x)=\operatorname {Re} F(x)-i\operatorname {Re} F(ix).}{\displaystyle \blacksquare }
  2. ^LetF{\displaystyle F} be anyhomogeneous scalar-valued map onX{\displaystyle X} (such as a linear functional) and letp:XR{\displaystyle p:X\to \mathbb {R} } be any map that satisfiesp(ux)=p(x){\displaystyle p(ux)=p(x)} for allx{\displaystyle x} andunit length scalarsu{\displaystyle u} (such as a seminorm). If|F|p{\displaystyle |F|\leq p} thenReF|ReF||F|p.{\displaystyle \operatorname {Re} F\leq |\operatorname {Re} F|\leq |F|\leq p.} For the converse, assumeReFp{\displaystyle \operatorname {Re} F\leq p} and fixxX.{\displaystyle x\in X.} Letr=|F(x)|{\displaystyle r=|F(x)|} and pick anyθR{\displaystyle \theta \in \mathbb {R} } such thatF(x)=reiθ;{\displaystyle F(x)=re^{i\theta };} it remains to showrp(x).{\displaystyle r\leq p(x).} Homogeneity ofF{\displaystyle F} impliesF(eiθx)=r{\displaystyle F\left(e^{-i\theta }x\right)=r} is real so thatReF(eiθx)=F(eiθx).{\displaystyle \operatorname {Re} F\left(e^{-i\theta }x\right)=F\left(e^{-i\theta }x\right).} By assumption,ReFp{\displaystyle \operatorname {Re} F\leq p} andp(eiθx)=p(x),{\displaystyle p\left(e^{-i\theta }x\right)=p(x),} so thatr=ReF(eiθx)p(eiθx)=p(x),{\displaystyle r=\operatorname {Re} F\left(e^{-i\theta }x\right)\leq p\left(e^{-i\theta }x\right)=p(x),} as desired.{\displaystyle \blacksquare }
  3. ^The mapF{\displaystyle F} being an extension off{\displaystyle f} means thatdomainfdomainF{\displaystyle \operatorname {domain} f\subseteq \operatorname {domain} F} andF(m)=f(m){\displaystyle F(m)=f(m)} for everymdomainf.{\displaystyle m\in \operatorname {domain} f.} Consequently,{|f(m)|:m1,mdomainf}={|F(m)|:m1,mdomainf}{|F(x)|:x1,xdomainF}{\displaystyle \{|f(m)|:\|m\|\leq 1,m\in \operatorname {domain} f\}=\{|F(m)|:\|m\|\leq 1,m\in \operatorname {domain} f\}\subseteq \{|F(x)\,|:\|x\|\leq 1,x\in \operatorname {domain} F\}} and so thesupremum of the set on the left hand side, which isf,{\displaystyle \|f\|,} does not exceed the supremum of the right hand side, which isF.{\displaystyle \|F\|.} In other words,fF.{\displaystyle \|f\|\leq \|F\|.}

References

[edit]
  1. ^O'Connor, John J.;Robertson, Edmund F.,"Hahn–Banach theorem",MacTutor History of Mathematics Archive,University of St Andrews
  2. ^SeeM. Riesz extension theorem. According toGårding, L. (1970)."Marcel Riesz in memoriam".Acta Math.124 (1):I–XI.doi:10.1007/bf02394565.MR 0256837., the argument was known to Riesz already in 1918.
  3. ^abcdefghijklmnopqrsNarici & Beckenstein 2011, pp. 177–220.
  4. ^abcRudin 1991, pp. 56–62.
  5. ^Rudin 1991, Th. 3.2
  6. ^abcdefghNarici & Beckenstein 2011, pp. 177–183.
  7. ^abcSchechter 1996, pp. 318–319.
  8. ^abcdReed & Simon 1980.
  9. ^Rudin 1991, Th. 3.2
  10. ^abNarici & Beckenstein 2011, pp. 126–128.
  11. ^abLuxemburg 1962.
  12. ^abŁoś & Ryll-Nardzewski 1951, pp. 233–237.
  13. ^HAHNBAN file
  14. ^Narici & Beckenstein 2011, pp. 182, 498.
  15. ^abcNarici & Beckenstein 2011, p. 184.
  16. ^abNarici & Beckenstein 2011, p. 182.
  17. ^Narici & Beckenstein 2011, p. 126.
  18. ^Harvey, R.; Lawson, H. B. (1983). "An intrinsic characterisation of Kähler manifolds".Invent. Math.74 (2):169–198.Bibcode:1983InMat..74..169H.doi:10.1007/BF01394312.S2CID 124399104.
  19. ^abcZălinescu, C. (2002).Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co., Inc. pp. 5–7.ISBN 981-238-067-1.MR 1921556.
  20. ^Gabriel Nagy,Real Analysislecture notes
  21. ^Brezis, Haim (2011).Functional Analysis, Sobolev Spaces, and Partial Differential Equations. New York: Springer. pp. 6–7.
  22. ^Kutateladze, Semen (1996).Fundamentals of Functional Analysis. Kluwer Texts in the Mathematical Sciences. Vol. 12. p. 40.doi:10.1007/978-94-015-8755-6.ISBN 978-90-481-4661-1.
  23. ^Trèves 2006, p. 184.
  24. ^Narici & Beckenstein 2011, pp. 195.
  25. ^Schaefer & Wolff 1999, p. 47.
  26. ^Narici & Beckenstein 2011, p. 212.
  27. ^Wilansky 2013, pp. 18–21.
  28. ^Narici & Beckenstein 2011, pp. 150.
  29. ^abRudin 1991, p. 141.
  30. ^Edwards 1995, pp. 124–125.
  31. ^abcdNarici & Beckenstein 2011, pp. 225–273.
  32. ^Pincus 1974, pp. 203–205.
  33. ^Schechter 1996, pp. 766–767.
  34. ^Muger, Michael (2020).Topology for the Working Mathematician.
  35. ^Bell, J.; Fremlin, David (1972)."A Geometric Form of the Axiom of Choice"(PDF).Fundamenta Mathematicae.77 (2):167–170.doi:10.4064/fm-77-2-167-170. Retrieved26 Dec 2021.
  36. ^Schechter, Eric.Handbook of Analysis and its Foundations. p. 620.
  37. ^Foreman, M.; Wehrung, F. (1991)."The Hahn–Banach theorem implies the existence of a non-Lebesgue measurable set"(PDF).Fundamenta Mathematicae.138:13–19.doi:10.4064/fm-138-1-13-19.
  38. ^Pawlikowski, Janusz (1991)."The Hahn–Banach theorem implies the Banach–Tarski paradox".Fundamenta Mathematicae.138:21–22.doi:10.4064/fm-138-1-21-22.
  39. ^Brown, D. K.; Simpson, S. G. (1986). "Which set existence axioms are needed to prove the separable Hahn–Banach theorem?".Annals of Pure and Applied Logic.31:123–144.doi:10.1016/0168-0072(86)90066-7.Source of citation.
  40. ^Simpson, Stephen G. (2009), Subsystems of second order arithmetic, Perspectives in Logic (2nd ed.), Cambridge University Press,ISBN 978-0-521-88439-6,MR2517689

Bibliography

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Types of Banach spaces
Banach spaces are:
Function space Topologies
Linear operators
Operator theory
Theorems
Analysis
Types of sets
Subsets / set operations
Examples
Applications
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hahn–Banach_theorem&oldid=1274977702"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp