Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gibbon

From Wikipedia, the free encyclopedia
Family of apes
This article is about a family of apes. For other uses, seeGibbon (disambiguation).

Gibbons[1][2]
Temporal range:13.8–0 MaLateMiocene–recent
Alar gibbon (Hylobates lar)
CITES Appendix I[4]
Scientific classificationEdit this classification
Kingdom:Animalia
Phylum:Chordata
Class:Mammalia
Order:Primates
Parvorder:Catarrhini
Superfamily:Hominoidea
Family:Hylobatidae
Gray, 1870
Type genus
Hylobates
Illiger, 1811
Genera
Distribution in Southeast Asia
Gibbon Rehabilitation Project, 2013

Gibbons (/ˈɡɪbənz/) areapes in thefamilyHylobatidae (/ˌhləˈbætɪd/;hylobatids). The family historically contained onegenus, but now is split into four extant genera and 20species. Gibbons live in subtropical andtropical forests from easternBangladesh andNortheast India toSoutheast Asia andIndonesia (including the islands ofSumatra,Borneo andJava).

Also called thelesser apes, gibbons differ from thegreat apes (chimpanzees,gorillas,orangutans andhumans) in being smaller, exhibiting lowsexual dimorphism, and not making nests.[5] Like all of the apes, gibbons aretailless. Unlike most of the great apes, gibbons frequently form long-termpair bonds. Their primary mode of locomotion,brachiation, involves swinging from branch to branch for distances up to 15 m (50 ft), at speeds as fast as 55 km/h (34 mph). They can also make leaps up to 8 m (26 ft), and walk bipedally with their arms raised for balance. They are the fastest of all tree-dwelling, nonflying mammals.[6]

Depending on the species and sex, gibbons' fur coloration varies from dark- to light-brown shades, and any shade between black and white, though a completely "white" gibbon is rare.

Etymology

[edit]

The English word "gibbon" is a reborrowing from French and may originally derive from anOrang Asli word.[7]

Evolutionary history

[edit]

Whole genome molecular dating analyses indicate that the gibbon lineage diverged from that of great apes around 16.8 million years ago (Mya) (95% confidence interval: 15.9–17.6 Mya; given a divergence of 29 Mya fromOld World monkeys).[8] Adaptive divergence associated with chromosomal rearrangements led to rapid radiation of the four genera 5–7 Mya. Each genus comprises a distinct, well-delineated lineage, but the sequence and timing of divergences among these genera has been hard to resolve, even with whole genome data, due to radiative speciations and extensiveincomplete lineage sorting.[8][9] An analysis based onmorphology suggests that the four genera are ordered as (Symphalangus, (Nomascus, (Hoolock,Hylobates))).[10]

Hominoidea (hominoids, apes)
Hylobatidae
Hominidae (hominids, great apes)
Ponginae
(orangutans)
Homininae
Gorillini
(gorillas)
Hominini
Panina
(bonobos and chimpanzees)
Hominina
(humans)

Acoalescent-based species tree analysis of genome-scale datasets suggests a phylogeny for the four genera ordered as (Hylobates, (Nomascus, (Hoolock,Symphalangus))).[11]

Hominoidea (hominoids, apes)
Hylobatidae
Hominidae (hominids, great apes)
Ponginae
(orangutans)
Homininae
Gorillini
(gorillas)
Hominini
Panina
(bonobos and chimpanzees)
Hominina
(humans)

At the species level, estimates from mitochondrial DNA genome analyses suggest thatHylobates pileatus diverged fromH. lar andH. agilis around 3.9 Mya, andH. lar andH. agilis separated around 3.3 Mya.[9] Whole genome analysis suggests divergence ofH. pileatus fromH. moloch 1.5–3.0 Mya.[8] The extinctBunopithecus sericus is a gibbon or gibbon-like ape, which until recently, was thought to be closely related to the hoolock gibbons.[2]

Taxonomy

[edit]
Main article:List of hominoids
Hominoid family tree
Northern white-cheeked gibbon,Nomascus leucogenys

The family is divided into fourgenera based on theirdiploidchromosome number:Hylobates (44),Hoolock (38),Nomascus (52), andSymphalangus (50).[2][12] Also, three extinct genera currently are recognised:Bunopithecus,Junzi, andYuanmoupithecus.[2][13][14][3][15]

Family Hylobatidae: gibbons[1][12][16]

Extinct genera

[edit]

Hybrids

[edit]

Many gibbons are hard to identify based on fur coloration, so are identified either by song or genetics.[20] These morphological ambiguities have led to hybrids in zoos. Zoos often receive gibbons of unknown origin, so they rely on morphological variation or labels that are impossible to verify to assign species and subspecies names, so separate species of gibbons commonly are misidentified and housed together. Interspecific hybrids, within a genus, are also suspected to occur in wild gibbons where their ranges overlap.[21] No records exist, however, of fertile hybrids between different gibbon genera, either in the wild or in captivity.[8]

Description

[edit]
Gibbon arm skeleton (left) compared to average human male arm bone structure (right): Scapula (red), humerus (orange), ulna (yellow), and radius (blue) are shown in both structures.

One unique[citation needed] aspect of a gibbon's anatomy is the wrist, which functions something like aball-and-socket joint, allowing for biaxial movement. This greatly reduces the amount of energy needed in the upper arm and torso, while also reducing stress on the shoulder joint. Gibbons also have long hands and feet, with a deep cleft between the first and second digits of their hands. Their fur is usually black, gray, or brownish, often with white markings on hands, feet and face. Some species, such as thesiamang, have an enlargedthroat sac, which inflates and serves as aresonating chamber when the animals call. This structure can become quite large in some species, sometimes equaling the size of the animal's head. Their voices are much more powerful than that of any human singer, although they are at best half a human's height.[22]

Gibbon skulls and teeth resemble those of the great apes, and their noses are similar to those of allcatarrhine primates. Thedental formula is2.1.2.32.1.2.3.[23] The siamang, which is the largest of the 18 species, is distinguished by having two fingers on each foot stuck together, hence the generic and species namesSymphalangus andsyndactylus.[24]

Behavior

[edit]
Agile gibbon,Hylobates agilis

Like all primates, gibbons are social animals. They are strongly territorial, and defend their boundaries with vigorous visual and vocal displays. The vocal element, which can often be heard for distances up to 1 km (0.62 mi), consists of a duet between a mated pair, with their young sometimes joining in. In most species, males and some females sing solos to attract mates, as well as advertise their territories.[25] The song can be used to identify not only which species of gibbon is singing, but also the area from which it comes.[26]

Gibbons often retain the same mate for life, although they do not always remain sexually monogamous. In addition toextra-pair copulations, pair-bonded gibbons occasionally "divorce".[27][28] About 10% of gibbon groups studied in the wild contained more than two adults.[29] In these cases, the limitation of food availability on group size may be relaxed, allowing more adults to congregate together without a significant increase in competition.[30]

Gibbons are among nature's bestbrachiators. Their ball-and-socket wrist joints allow them unmatched speed and accuracy when swinging through trees. Nonetheless, their mode of transportation can lead to hazards when a branch breaks or a hand slips, and researchers estimate that the majority of gibbons suffer bone fractures one or more times during their lifetimes.[31] They are the fastest of all tree-dwelling, nonflying mammals.[31] On the ground, gibbons tend to walk bipedally, and theirAchilles tendon morphology is more similar to that of humans than that of any other ape.[32]

Diet

[edit]

Gibbons' diets are about 60% fruit-based,[33] but they also consume twigs, leaves, insects, flowers, and occasionally birds' eggs. Levels offrugivory vary between populations and species of gibbons and are best predicted by local fruit availability.[34] The most folivorous gibbon species come from the genusNomascus,[35] whose higher reliance on leaves is thought to be because they live in high altitude seasonal habitats that lack year-round abundant fruits.[36]

Genetics

[edit]
Pileated gibbon (Hylobates pileatus)

Gibbons were the first apes to diverge from the common ancestor of humans and other great apes about 16.8 Mya. With agenome that has a 96% similarity to humans, the gibbon has a role as a bridge between Old World monkeys, such asmacaques, and the great apes. According to a study that mappedsynteny (genes occurring on the same chromosome) disruptions in the gibbon and human genome, humans and other great apes are part of the same superfamily (Hominoidea) with gibbons. Thekaryotype of gibbons, however, diverged in a much more rapid fashion from the commonhominoid ancestor than other apes.

The common ancestor of hominoids is shown to have a minimum of 24 majorchromosomal rearrangements from the presumed gibbon ancestor's karyotype. Reaching the common gibbon ancestor's karyotype from today's various living species of gibbons will require up to 28 additional rearrangements. Adding up, this implies that at least 52 major chromosomal rearrangements are needed to compare the common hominoid ancestor to today's gibbons. No common specific sequence element in the independent rearrangements was found, while 46% of the gibbon-human synteny breakpoints occur insegmental duplication regions. This is an indication that these major differences in humans and gibbons could have had a common source of plasticity or change. Researchers view this unusually high rate of chromosomal rearrangement that is specific in small apes such as gibbons could potentially be due to factors that increase the rate of chromosomal breakage or factors that allow derivative chromosomes to be fixed in a homozygous state while mostly lost in other mammals.[37]

GenusHoolock

The whole genome of the gibbons in Southeast Asia was first sequenced in 2014 by theGerman Primate Center, including Christian Roos, Markus Brameier, and Lutz Walter, along with other international researchers. One of the gibbons that had its genome sequenced is a white-cheeked gibbon (Nomascus leucogenys, NLE) named Asia. The team found that a jumping DNA element named LAVAtransposon (also called gibbon-specific retrotransposon) is unique to the gibbon genome apart from humans and the great apes. The LAVA transposon increases mutation rate, thus is supposed to have contributed to the rapid and greater change in gibbons in comparison to their close relatives, which is critical for evolutionary development. The very high rate of chromosomal disorder and rearrangements (such as duplications, deletions or inversions of large stretches of DNA) due to the moving of this large DNA segment is one of the key features that are unique to the gibbon genome.

A special feature of the LAVA transposon is that it positioned itself precisely between genes that are involved inchromosome segregation and distribution during cell division, which results in a premature termination state leading to an alteration intranscription. This incorporation of the jumping gene near genes involved in chromosome replication is thought to make the rearrangement in the genome even more likely, leading to a greater diversity within the gibbon genera.[38]

In addition, some characteristic genes in the gibbon genome had gone through a positive selection and are suggested to give rise to specific anatomical features for gibbons to adapt to their new environment. One of them isTBX5, which is a gene that is required for the development of the front extremities or forelimbs such as long arms. The other isCOL1A1, which is responsible for the development ofcollagen, a protein that is directly involved with the forming of connective tissues, bone, and cartilage.[38] This gene is thought to have a role in gibbons' stronger muscles.[39]

Siamang,Symphalangus syndactylus

Researchers have found a coincidence between major environmental changes in Southeast Asia about 5 Mya that caused a cyclical dynamic of expansions and contractions of their forest habitat, an instance ofradiation experienced by the gibbon genera. This may have led to the development of a suite of physical characteristics, distinct from their great ape relatives, to adapt to their habitat of dense, canopy forest.[38]

These crucial findings in genetics have contributed to the use of gibbons as a genetic model for chromosome breakage and fusion, which is a type of translocation mutation. The unusually high number of structural changes in the DNA and chromosomal rearrangements could lead to problematic consequences in some species.[40] Gibbons, however, not only seemed to be free from problems but let the change help them effectively adapt to their environment. Thus, gibbons are organisms on which genetics research could be focused to broaden the implications to human diseases related to chromosomal changes, such as cancer, includingchronic myeloid leukemia.[41][42]

Conservation status

[edit]

Most species are eitherendangered orcritically endangered (the sole exception beingH. leuconedys, which isvulnerable), primarily due to degradation or loss of their forest habitats.[43] On the island ofPhuket inThailand, a volunteer-based Gibbon Rehabilitation Center rescues gibbons that were kept in captivity, and are being released back into the wild.[44] TheKalaweit Project also has gibbon rehabilitation centers onBorneo andSumatra.[45]

TheIUCN Species Survival Commission Primate Specialist Group announced 2015 to be the Year of the Gibbon[46] and initiated events to be held around the world in zoos to promote awareness of the status of gibbons.[47]

In traditional Chinese culture

[edit]
Two gibbons in an oak tree by theSong dynasty painterYì Yuánjí
Further information:Monkeys in Chinese culture

SinologistRobert van Gulik concluded gibbons were widespread in central and southern China until at least theSong dynasty, and furthermore, based on an analysis ofreferences to primates in Chinese poetry and other literature and their portrayal in Chinese paintings, the Chinese wordyuán (猿) referred specifically to gibbons until they were extirpated throughout most of the country due tohabitat destruction (around the 14th century). In modern usage, however,yuán is a generic word for ape. Early Chinese writers viewed the "noble" gibbons, gracefully moving high in the treetops, as the "gentlemen" (jūnzǐ, 君子) of the forest, in contrast to the greedymacaques, attracted by human food. TheTaoists ascribed occult properties to gibbons, believing them to be able to live for several hundred years and to turn into humans.[48]

Gibbon figurines as old as from the fourth to third centuries BCE (theZhou dynasty) have been found in China. Later on, gibbons became a popular subject for Chinese painters, especially during the Song dynasty and earlyYuan dynasty, whenYì Yuánjí andMùqī Fǎcháng excelled in painting these apes. From Chinese cultural influence, theZen motif of the "gibbon grasping at the reflection of the moon in the water" became popular inJapanese art, as well, though gibbons have never occurred naturally in Japan.[49]

References

[edit]
  1. ^abGroves, C. P. (2005).Wilson, D. E.; Reeder, D. M. (eds.).Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Baltimore: Johns Hopkins University Press. pp. 178–181.ISBN 0-801-88221-4.OCLC 62265494.
  2. ^abcdMootnick, A.; Groves, C. P. (2005). "A new generic name for the hoolock gibbon (Hylobatidae)".International Journal of Primatology.26 (4):971–976.doi:10.1007/s10764-005-5332-4.S2CID 8394136.
  3. ^abcJi, Xueping; Harrison, Terry; Zhang, Yingqi; Wu, Yun; Zhang, Chunxia; Hu, Jinming; Wu, Dongdong; Hou, Yemao; Li, Song; Wang, Guofu; Wang, Zhenzhen (2022-10-01)."The earliest hylobatid from the Late Miocene of China".Journal of Human Evolution.171 103251.Bibcode:2022JHumE.17103251J.doi:10.1016/j.jhevol.2022.103251.ISSN 0047-2484.PMID 36113226.S2CID 252243877.
  4. ^"Appendices | CITES".cites.org. Retrieved2022-01-14.
  5. ^Schaul, Jordan Carlton (3 March 2014)."Gibbon Conservation Center Working to Save South Asia's Hoolock Gibbons & Other "Small Apes"".National Geographic. Archived fromthe original on 5 November 2014. Retrieved14 February 2016.
  6. ^"Gibbon".a-z animals. Retrieved26 March 2015.
  7. ^Lim, Teckwyn (2020)."An Aslian origin for the word gibbon".Lexis.15.
  8. ^abcdCarbone, Lucia; et al. (2014)."Gibbon genome and the fast karyotype evolution of small apes".Nature.513 (11 September 2014):195–201.Bibcode:2014Natur.513..195C.doi:10.1038/nature13679.PMC 4249732.PMID 25209798.
  9. ^abMatsudaira, K; Ishida, T (May 2010). "Phylogenetic relationships and divergence dates of the whole mitochondrial genome sequences among three gibbon genera".Mol. Phylogenet. Evol.55 (2):454–59.Bibcode:2010MolPE..55..454M.doi:10.1016/j.ympev.2010.01.032.PMID 20138221.
  10. ^Geissmann, Thomas (2003). "Taxonomy and evolution of gibbons".Evolutionary Anthropology: Issues, News, and Reviews.11:28–31.CiteSeerX 10.1.1.524.4224.doi:10.1002/evan.10047.S2CID 36655075.
  11. ^Shi, Cheng-Min; Yang, Ziheng (January 2018)."Coalescent-Based Analyses of Genomic Sequence Data Provide a Robust Resolution of Phylogenetic Relationships among Major Groups of Gibbons".Molecular Biology and Evolution.35 (1):159–179.doi:10.1093/molbev/msx277.PMC 5850733.PMID 29087487.
  12. ^abGeissmann, Thomas (December 1995)."Gibbon systematics and species identification"(PDF).International Zoo News.42:467–501. Retrieved2008-08-15.
  13. ^Weintraub, Karen (2018-06-21)."Extinct gibbon found in tomb of ancient Chinese emperor's grandmother".The New York Times. Retrieved2021-01-13.
  14. ^Bower, Bruce (8 September 2020)."A stray molar is the oldest known fossil from an ancient gibbon - Ancestors of these small-bodied apes were in India roughly 13 million years ago, a study suggests".Science News. Retrieved8 September 2020.
  15. ^Sonstige, Wilson, Don E. 1944- Hrsg. Cavallini, Paolo (2013).Handbook of the mammals of the world. Lynx Edicions.ISBN 978-84-96553-89-7.OCLC 1222638259.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  16. ^Geissmann, Thomas."Chapter 3: "Adopting a Systematic Framework".Gibbon Systematics and Species Identification. Retrieved2011-04-05 – via gibbons.de.
  17. ^Brown, Georgia (11 January 2017)."New species of gibbon discovered in China".The Guardian. RetrievedJanuary 13, 2021.
  18. ^abSonstige, Wilson, Don E. 1944- Hrsg. Cavallini, Paolo (2013).Handbook of the mammals of the world. Lynx Edicions.ISBN 978-84-96553-89-7.OCLC 1222638259.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  19. ^Wang, Sheng; Chen, Zehui; Luo, Ayun; You, Xinran; Kitchener, Andrew C.; Tu, Xiaolong; Thakur, Mukesh; Umapathy, Govindhaswamy; Hu, Songmei; Zhang, Tianen; Zhang, Yingqi; Liu, Siqiong; Ding, Yan; Liu, Feng; Dai, Qingyan (2025-11-07)."Genome sequences of extant and extinct gibbons reveal their phylogeny, demographic history, and conservation status".Cell.0 (0).doi:10.1016/j.cell.2025.10.016.ISSN 0092-8674.PMID 41205599.
  20. ^Tenaza, R. (1984). "Songs of hybrid gibbons (Hylobates lar ×H. muelleri)".American Journal of Primatology.8 (3):249–253.doi:10.1002/ajp.1350080307.PMID 31986810.S2CID 84957700.
  21. ^Sugawara, K. (1979). "Sociological study of a wild group of hybrid baboons betweenPapio anubis andP. hamadryas in the Awash Valley, Ethiopia".Primates.20 (1):21–56.doi:10.1007/BF02373827.S2CID 23061688.
  22. ^Lull, Richard Swann (1921). "Seventy Seven".Organic Evolution. New York: The Macmillan Company. pp. 641–677.
  23. ^Myers, P. 2000.Family Hylobatidae, Animal Diversity Web. Accessed April 05, 2011-04-05.
  24. ^Geissmann, T. (2011)."Typical Characteristics".Gibbon Research Lab. Retrieved17 August 2011.
  25. ^Clarke E, Reichard UH, Zuberbühler K (2006). Emery N (ed.)."The Syntax and Meaning of Wild Gibbon Songs".PLOS ONE.1 (1) e73.Bibcode:2006PLoSO...1...73C.doi:10.1371/journal.pone.0000073.PMC 1762393.PMID 17183705.
  26. ^Glover, Hilary.Recognizing gibbons from their regional accentsArchived 2021-02-27 at theWayback Machine, BioMed Central, EurekAlert.org, 6 February 2011.
  27. ^Reichard, U (1995). "Extra-pair copulations in a monogamous gibbon (Hylobates lar)".Ethology.100 (2):99–112.Bibcode:1995Ethol.100...99R.doi:10.1111/j.1439-0310.1995.tb00319.x.
  28. ^Briggs, Mike; Briggs, Peggy (2005).The Encyclopedia of World Wildlife. Parragon. p. 146.ISBN 978-1-4054-5680-7.
  29. ^Fuentes, Agustin (2000)."Hylobatid communities: Changing views on pair bonding and social organization in hominoids".American Journal of Physical Anthropology.113 (S31):33–60.doi:10.1002/1096-8644(2000)43:31+<33::AID-AJPA3>3.0.CO;2-D.ISSN 1096-8644.PMID 11123837.
  30. ^Malone, Nicholas; Fuentes, Agustin (2009), Whittaker, Danielle; Lappan, Susan (eds.),"The Ecology and Evolution of Hylobatid Communities: Causal and Contextual Factors Underlying Inter- and Intraspecific Variation",The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology, New York, NY: Springer, pp. 241–264,doi:10.1007/978-0-387-88604-6_12,ISBN 978-0-387-88604-6, retrieved2024-12-03
  31. ^abAttenborough, David.Life of Mammals, "Episode 8: Life in the Trees", BBC Warner, 2003.
  32. ^Aerts, P.; d'Août, K.; Thorpe, S.; Berillon, G.; Vereecke, E. (2018)."The gibbon's Achilles tendon revisited: consequences for the evolution of the great apes?".Proceedings of the Royal Society B.285 (1880) 20180859.doi:10.1098/rspb.2018.0859.PMC 6015853.PMID 29899076.
  33. ^Gibbon - Monkey Worlds Retrieved Feb-12-2015
  34. ^Elder, Alice A. (2009), Whittaker, Danielle; Lappan, Susan (eds.),"Hylobatid Diets Revisited: The Importance of Body Mass, Fruit Availability, and Interspecific Competition",The Gibbons: New Perspectives on Small Ape Socioecology and Population Biology, New York, NY: Springer, pp. 133–159,doi:10.1007/978-0-387-88604-6_8,ISBN 978-0-387-88604-6, retrieved2024-12-02
  35. ^Dao-Ying, Lan (1993-02-08)."Feeding and Vocal Behaviours of Black Gibbons (Hylobates concolor) in Yunnan: A Preliminary Study".Folia Primatologica.60 (1–2):94–105.doi:10.1159/000156679.ISSN 1421-9980.PMID 8335299.
  36. ^Bleisch, William V.; Chen, Nan (1991-10-01)."Ecology and behavior of wild black-crested gibbons (Hylobates concolor) in China with a reconsideration of evidence for polygyny".Primates.32 (4):539–548.doi:10.1007/BF02381946.ISSN 1610-7365.
  37. ^Carbone, L.; Vessere, G. M.; ten Hallers, B. F. H.; Zhu, B.; Osoegawa, K.; Mootnick, A.; Kofler, A.; Wienberg, J.; Rogers, J.; Humphray, S.; Scott, C.; Harris, R. A.; Milosavljevic, A.; de Jong, P. J. (2006)."A high-resolution map of synteny disruptions in gibbon and human genomes".PLOS Genetics.2 (12) e223.doi:10.1371/journal.pgen.0020223.PMC 1756914.PMID 17196042.
  38. ^abcCarbone, L.; Alan Harris, R.; Gnerre, S.; Veeramah, K. R.; Lorente-Galdos, B.; Huddleston, J.; Meyer, T. J.; Herrero, J.; Roos, C.; Aken, B.; Anaclerio, F.; Archidiacono, N.; Baker, C.; Barrell, D.; Batzer, M. A.; Beal, K.; Blancher, A.; Bohrson, C. L.; Brameier, M.; Gibbs, R. A. (2014)."Gibbon genome and the fast karyotype evolution of small apes".Nature.513 (7517):195–201.Bibcode:2014Natur.513..195C.doi:10.1038/nature13679.PMC 4249732.PMID 25209798.
  39. ^Michilsens, F.; Vereecke, E. E.; D'Août, K.; Aerts, P. (2009)."Functional anatomy of the gibbon forelimb: Adaptations to a brachiating lifestyle".Journal of Anatomy.215 (3):335–354.doi:10.1111/j.1469-7580.2009.01109.x.PMC 2750765.PMID 19519640.
  40. ^"Planet of the apes: Gibbons are last ape to have genome revealed".Reuters. 2014-09-10. Retrieved2023-05-09.
  41. ^Baylor College of Medicine. (2014, September 10). Gibbon genome sequence deepens understanding of primates rapid chromosomal rearrangements. ScienceDaily. Retrieved April 7, 2020 from www.sciencedaily.com/releases/2014/09/140910132518.htm
  42. ^Weise, A.; Kosyakova, N.; Voigt, M.; Aust, N.; Mrasek, K.; Löhmer, S.; Rubtsov, N.; Karamysheva, T. V.; Trifonov, V. A.; Hardekopf, D.; Jančušková, T.; Pekova, S.; Wilhelm, K.; Liehr, T.; Fan, X. (2015)."Comprehensive analyses of white-handed gibbon chromosomes enables access to 92 evolutionary conserved breakpoints compared to the human genome".Cytogenetic and Genome Research.145 (1):42–49.doi:10.1159/000381764.PMID 25926034.
  43. ^A-Z Animals: Gibbon Retrieved Feb-12-2015
  44. ^"The Gibbon Rehabilitation Project".
  45. ^"Projets".Kalaweit (in French). Retrieved2023-05-09.
  46. ^Mittermeier, Russell."Letter of Endorsement - Year of the Gibbon"(PDF).IUCN SSC PSG Section on Small Apes. IUCN SSC Primate Specialist Group. Archived fromthe original(PDF) on 4 March 2016. Retrieved30 July 2015.
  47. ^"Year of the Gibbon - Events".IUCN SSC PSG Section on Small Apes. Archived fromthe original on 29 August 2015. Retrieved30 July 2015.
  48. ^van Gulik, Robert. "The gibbon in China. An essay in Chinese animal lore." E. J. Brill, Leiden, Holland. (1967).Brief summary
  49. ^Geissmann, Thomas."Gibbon paintings in China, Japan, and Korea: Historical distribution, production rate and context"Archived 2008-12-17 at theWayback Machine,Gibbon Journal, No. 4, May 2008. (includes color reproductions of a large number of gibbon paintings by many artists)

External links

[edit]
Extantprimate families
Strepsirrhini
Lorisoidea
Lemuroidea
Chiromyiformes
Haplorhini
Simian
Platyrrhini
Catharrhini
Hominoidea
Extant species of familyHylobatidae(Gibbons)
Hylobates
Hoolock
Symphalangus
Nomascus
Extant
ape species
Study of apes
Legal and
social status
Related
Microchoerinae
"Anaptomorphinae"
"Omomyinae"
Tarkadectinae
Tarsiiformes
Tarsiidae
Simiiformes
    • see below↓
Teilhardina sp.
Afrotarsiidae?
Eosimiidae
Amphipithecidae
Parapithecoidea
Proteopithecidae
Parapithecidae
Aotidae
Pitheciidae
Atelidae
Cebidae
Callitrichidae
Catarrhini
    • see below↓
Eosimias sinensis
Oligopithecidae
Propliopithecidae
Pliopithecoidea
Pliopithecidae
Dionysopithecidae
Crouzeliidae
Victoriapithecidae
Colobinae
Cercopithecinae
Cercopithecini
Papionini
Hominoidea
    • see below↓
Aegyptopithecus zeuxis
Dendropithecidae
Hylobatidae
Ponginae
Dryopithecini
Gorillini
Hominini
Hominina
Gigantopithecus blacki
Hylobatidae
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gibbon&oldid=1323932947"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp