Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gaussianq-distribution

From Wikipedia, the free encyclopedia
Family of probability distributions
This article is about the distribution introduced by Diaz and Teruel. For the Tsallis q-Gaussian, seeq-Gaussian.

Inmathematical physics andprobability andstatistics, theGaussianq-distribution is a family ofprobability distributions that includes, aslimiting cases, theuniform distribution and thenormal (Gaussian) distribution. It was introduced by Diaz and Teruel.[clarification needed] It is aq-analog of the Gaussian ornormal distribution.

The distribution is symmetric about zero and is bounded, except for the limiting case of the normal distribution. The limiting uniform distribution is on the range -1 to +1.

Definition

[edit]
The Gaussian q-density.

Letq be areal number in the interval [0, 1). Theprobability density function of the Gaussianq-distribution is given by

sq(x)={0if x<ν1c(q)Eq2q2x2[2]qif νxν0if x>ν.{\displaystyle s_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu \\{\frac {1}{c(q)}}E_{q^{2}}^{\frac {-q^{2}x^{2}}{[2]_{q}}}&{\text{if }}-\nu \leq x\leq \nu \\0&{\mbox{if }}x>\nu .\end{cases}}}

where

ν=ν(q)=11q,{\displaystyle \nu =\nu (q)={\frac {1}{\sqrt {1-q}}},}
c(q)=2(1q)1/2m=0(1)mqm(m+1)(1q2m+1)(1q2)q2m.{\displaystyle c(q)=2(1-q)^{1/2}\sum _{m=0}^{\infty }{\frac {(-1)^{m}q^{m(m+1)}}{(1-q^{2m+1})(1-q^{2})_{q^{2}}^{m}}}.}

Theq-analogue [t]q of the real numbert{\displaystyle t} is given by

[t]q=qt1q1.{\displaystyle [t]_{q}={\frac {q^{t}-1}{q-1}}.}

Theq-analogue of theexponential function is theq-exponential,Ex
q
, which is given by

Eqx=j=0qj(j1)/2xj[j]!{\displaystyle E_{q}^{x}=\sum _{j=0}^{\infty }q^{j(j-1)/2}{\frac {x^{j}}{[j]!}}}

where theq-analogue of thefactorial is theq-factorial, [n]q!, which is in turn given by

[n]q!=[n]q[n1]q[2]q{\displaystyle [n]_{q}!=[n]_{q}[n-1]_{q}\cdots [2]_{q}\,}

for an integern > 2 and [1]q! = [0]q! = 1.

The Cumulative Gaussian q-distribution.

Thecumulative distribution function of the Gaussianq-distribution is given by

Gq(x)={0if x<ν1c(q)νxEq2q2t2/[2]dqtif νxν1if x>ν{\displaystyle G_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu \\[12pt]\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{x}E_{q^{2}}^{-q^{2}t^{2}/[2]}\,d_{q}t&{\text{if }}-\nu \leq x\leq \nu \\[12pt]1&{\text{if }}x>\nu \end{cases}}}

where theintegration symbol denotes theJackson integral.

The functionGq is given explicitly by

Gq(x)={0if x<ν,12+1qc(q)n=0qn(n+1)(q1)n(1q2n+1)(1q2)q2nx2n+1if νxν1if x>ν{\displaystyle G_{q}(x)={\begin{cases}0&{\text{if }}x<-\nu ,\\\displaystyle {\frac {1}{2}}+{\frac {1-q}{c(q)}}\sum _{n=0}^{\infty }{\frac {q^{n(n+1)}(q-1)^{n}}{(1-q^{2n+1})(1-q^{2})_{q^{2}}^{n}}}x^{2n+1}&{\text{if }}-\nu \leq x\leq \nu \\1&{\text{if}}\ x>\nu \end{cases}}}

where

(a+b)qn=i=0n1(a+qib).{\displaystyle (a+b)_{q}^{n}=\prod _{i=0}^{n-1}(a+q^{i}b).}

Moments

[edit]

Themoments of the Gaussianq-distribution are given by

1c(q)ννEq2q2x2/[2]x2ndqx=[2n1]!!,{\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{\nu }E_{q^{2}}^{-q^{2}x^{2}/[2]}\,x^{2n}\,d_{q}x=[2n-1]!!,}
1c(q)ννEq2q2x2/[2]x2n+1dqx=0,{\displaystyle {\frac {1}{c(q)}}\int _{-\nu }^{\nu }E_{q^{2}}^{-q^{2}x^{2}/[2]}\,x^{2n+1}\,d_{q}x=0,}

where the symbol [2n − 1]!! is theq-analogue of thedouble factorial given by

[2n1][2n3][1]=[2n1]!!.{\displaystyle [2n-1][2n-3]\cdots [1]=[2n-1]!!.\,}

See also

[edit]

References

[edit]


Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gaussian_q-distribution&oldid=1148947561"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp