Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gauss composition law

From Wikipedia, the free encyclopedia

Inmathematics, innumber theory,Gauss composition law is a rule, invented byCarl Friedrich Gauss, for performing abinary operation onintegralbinary quadratic forms (IBQFs). Gauss presented this rule in hisDisquisitiones Arithmeticae,[1] a textbook onnumber theory published in 1801, in Articles 234 - 244. Gauss composition law is one of the deepest results in the theory of IBQFs and Gauss's formulation of the law and the proofs its properties as given by Gauss are generally considered highly complicated and very difficult.[2] Several later mathematicians have simplified the formulation of the composition law and have presented it in a format suitable for numerical computations. The concept has also found generalisations in several directions.

Integral binary quadratic forms

[edit]

An expression of the formQ(x,y)=αx2+βxy+γy2{\displaystyle Q(x,y)=\alpha x^{2}+\beta xy+\gamma y^{2}}, whereα,β,γ,x,y{\displaystyle \alpha ,\beta ,\gamma ,x,y} are allintegers, is called an integral binary quadratic form (IBQF). The formQ(x,y){\displaystyle Q(x,y)} is called a primitive IBQF ifα,β,γ{\displaystyle \alpha ,\beta ,\gamma } are relatively prime. The quantityΔ=β24αγ{\displaystyle \Delta =\beta ^{2}-4\alpha \gamma } is called the discriminant of the IBQFQ(x,y){\displaystyle Q(x,y)}. An integerΔ{\displaystyle \Delta } is the discriminant of some IBQF if and only ifΔ0,1(mod4){\displaystyle \Delta \equiv 0,1(\mathrm {mod} \,\,4)}.Δ{\displaystyle \Delta } is called afundamental discriminantif and only if one of the following statements holds

IfΔ<0{\displaystyle \Delta <0} andα>0{\displaystyle \alpha >0} thenQ(x,y){\displaystyle Q(x,y)} is said to be positive definite; ifΔ<0{\displaystyle \Delta <0} andα<0{\displaystyle \alpha <0} thenQ(x,y){\displaystyle Q(x,y)} is said to be negative definite; ifΔ>0{\displaystyle \Delta >0} thenQ(x,y){\displaystyle Q(x,y)} is said to be indefinite.

Equivalence of IBQFs

[edit]

Two IBQFsg(x,y){\displaystyle g(x,y)} andh(x,y){\displaystyle h(x,y)} are said to be equivalent (or, properly equivalent) if there exist integers α, β, γ, δ such that

αδβγ=1{\displaystyle \alpha \delta -\beta \gamma =1} andg(αx+βy,γx+δy)=h(x,y).{\displaystyle g(\alpha x+\beta y,\gamma x+\delta y)=h(x,y).}

The notationg(x,y)h(x,y){\displaystyle g(x,y)\sim h(x,y)} is used to denote the fact that the two forms are equivalent. The relation "{\displaystyle \sim }" is an equivalence relation in the set of all IBQFs. The equivalence class to which the IBQFg(x,y){\displaystyle g(x,y)} belongs is denoted by[g(x,y)]{\displaystyle [g(x,y)]}.

Two IBQFsg(x,y){\displaystyle g(x,y)} andh(x,y){\displaystyle h(x,y)} are said to be improperly equivalent if

αδβγ=1{\displaystyle \alpha \delta -\beta \gamma =-1} andg(αx+βy,γx+δy)=h(x,y).{\displaystyle g(\alpha x+\beta y,\gamma x+\delta y)=h(x,y).}

The relation in the set of IBQFs of being improperly equivalent is also an equivalence relation.

It can be easily seen that equivalent IBQFs (properly or improperly) have the same discriminant.

Gauss's formulation of the composition law

[edit]

Historical context

[edit]

The following identity, calledBrahmagupta identity, was known to the Indian mathematicianBrahmagupta (598–668) who used it to calculate successively better fractional approximations to square roots of positive integers:

(x2+Dy2)(u2+Dv2)=(xu+Dyv)2+D(xvyu)2{\displaystyle (x^{2}+Dy^{2})(u^{2}+Dv^{2})=(xu+Dyv)^{2}+D(xv-yu)^{2}}

Writingf(x,y)=x2+Dy2{\displaystyle f(x,y)=x^{2}+Dy^{2}} this identity can be put in the form

f(x,y)f(u,v)=f(X,Y){\displaystyle f(x,y)f(u,v)=f(X,Y)} whereX=xu+Dyv,Y=xvyu{\displaystyle X=xu+Dyv,Y=xv-yu}.

Gauss's composition law of IBQFs generalises this identity to an identity of the formg(x,y)h(u,v)=F(X,Y){\displaystyle g(x,y)h(u,v)=F(X,Y)} whereg(x,y),h(x,y),F(X,Y){\displaystyle g(x,y),h(x,y),F(X,Y)} are all IBQFs andX,Y{\displaystyle X,Y} are linear combinations of the productsxu,xv,yu,yv{\displaystyle xu,xv,yu,yv}.

The composition law of IBQFs

[edit]

Consider the following IBQFs:

g(x,y)=ax2+bxy+cy2{\displaystyle g(x,y)=ax^{2}+bxy+cy^{2}}
h(x,y)=dx2+exy+fy2{\displaystyle h(x,y)=dx^{2}+exy+fy^{2}}
F(x,y)=Ax2+Bxy+Cy2{\displaystyle F(x,y)=Ax^{2}+Bxy+Cy^{2}}

If it is possible to find integersp,q,r,s{\displaystyle p,q,r,s} andp,q,r,s{\displaystyle p^{\prime },q^{\prime },r^{\prime },s^{\prime }} such that the following six numbers

pqqp,prrp,pssp,qrrq,qssq,rssr{\displaystyle pq^{\prime }-qp^{\prime },pr^{\prime }-rp^{\prime },ps^{\prime }-sp^{\prime },qr^{\prime }-rq^{\prime },qs^{\prime }-sq^{\prime },rs^{\prime }-sr^{\prime }}

have no common divisors other than ±1, and such that if we let

X=pxu+qxv+ryu+syv{\displaystyle X=pxu+qxv+ryu+syv}
Y=pxu+qxv+ryu+syv{\displaystyle Y=p^{\prime }xu+q^{\prime }xv+r^{\prime }yu+s^{\prime }yv}

the following relation is identically satisfied

g(x,y)h(u,v)=F(X,Y){\displaystyle g(x,y)h(u,v)=F(X,Y)},

then the formF(x,y){\displaystyle F(x,y)} is said to be a composite of the formsg(x,y){\displaystyle g(x,y)} andh(x,y){\displaystyle h(x,y)}. It may be noted that the composite of two IBQFs, if it exists, is not unique.

Example

[edit]

Consider the following binary quadratic forms:

g(x,y)=2x2+3xy10y2{\displaystyle g(x,y)=2x^{2}+3xy-10y^{2}}
h(x,y)=5x2+3xy4y2{\displaystyle h(x,y)=5x^{2}+3xy-4y^{2}}
F(x,y)=10x2+3xy2y2{\displaystyle F(x,y)=10x^{2}+3xy-2y^{2}}

Let

[p,q,r,s]=[1,0,0,2],[p,q,r,s]=[0,2,5,3]{\displaystyle [p,q,r,s]=[1,0,0,2],\quad [p^{\prime },q^{\prime },r^{\prime },s^{\prime }]=[0,2,5,3]}

We have

pqqp=2,prrp=5,pssp=3,qrrq=0,qssq=4,rssr=10{\displaystyle pq^{\prime }-qp^{\prime }=2,pr^{\prime }-rp^{\prime }=5,ps^{\prime }-sp^{\prime }=3,qr^{\prime }-rq^{\prime }=0,qs^{\prime }-sq^{\prime }=4,rs^{\prime }-sr^{\prime }=10}.

These six numbers have no common divisors other than ±1.Let

X=pxu+qxv+ryu+syv=xu+2yv{\displaystyle X=pxu+qxv+ryu+syv=xu+2yv},
Y=pxu+qxv+ryu+syv=2xv+5yu+3yv{\displaystyle Y=p^{\prime }xu+q^{\prime }xv+r^{\prime }yu+s^{\prime }yv=2xv+5yu+3yv}.

Then it can be verified that

g(x,y)h(u,v)=F(X,Y){\displaystyle g(x,y)h(u,v)=F(X,Y)}.

HenceF(x,y){\displaystyle F(x,y)} is a composite ofg(x,y){\displaystyle g(x,y)} andh(x,y){\displaystyle h(x,y)}.

An algorithm to find the composite of two IBQFs

[edit]

The following algorithm can be used to compute the composite of two IBQFs.[3]

Algorithm

[edit]

Given the following IBQFs having the same discriminantΔ{\displaystyle \Delta }:

f1(x,y)=a1x2+b1xy+c1y2{\displaystyle f_{1}(x,y)=a_{1}x^{2}+b_{1}xy+c_{1}y^{2}}
f2(x,y)=a2x2+b2xy+c2y2{\displaystyle f_{2}(x,y)=a_{2}x^{2}+b_{2}xy+c_{2}y^{2}}
Δ=b124a1c1=b224a2c2{\displaystyle \Delta =b_{1}^{2}-4a_{1}c_{1}=b_{2}^{2}-4a_{2}c_{2}}
  1. Computeβ=b1+b22{\displaystyle \beta ={\frac {b_{1}+b_{2}}{2}}}
  2. Computen=gcd(a1,a2,β){\displaystyle n=\gcd(a_{1},a_{2},\beta )}
  3. Computet,u,v{\displaystyle t,u,v} such thata1t+a2u+βv=n{\displaystyle a_{1}t+a_{2}u+\beta v=n}
  4. ComputeA=a1a2n2{\displaystyle A={\frac {a_{1}a_{2}}{n^{2}}}}
  5. ComputeB=a1b2t+a2b1u+v(b1b2+Δ)/2n{\displaystyle B={\frac {a_{1}b_{2}t+a_{2}b_{1}u+v(b_{1}b_{2}+\Delta )/2}{n}}}
  6. ComputeC=B2Δ4A{\displaystyle C={\frac {B^{2}-\Delta }{4A}}}
  7. ComputeF(x,y)=Ax2+Bxy+Cy2{\displaystyle F(x,y)=Ax^{2}+Bxy+Cy^{2}}
  8. Compute
X=nx1x2+(b2B)n2a2x1y2+(b1B)n2a1y1x2+[b1b2+ΔB(b1+b2)]n4a1a2y1y2{\displaystyle X=nx_{1}x_{2}+{\frac {(b_{2}-B)n}{2a_{2}}}x_{1}y_{2}+{\frac {(b_{1}-B)n}{2a_{1}}}y_{1}x_{2}+{\frac {[b_{1}b_{2}+\Delta -B(b_{1}+b_{2})]n}{4a_{1}a_{2}}}y_{1}y_{2}}
Y=a1nx1y2+a2ny1x2+b1+b22ny1y2{\displaystyle Y={\frac {a_{1}}{n}}x_{1}y_{2}+{\frac {a_{2}}{n}}y_{1}x_{2}+{\frac {b_{1}+b_{2}}{2n}}y_{1}y_{2}}

ThenF(X,Y)=f1(x1,y1)f2(x2,y2){\displaystyle F(X,Y)=f_{1}(x_{1},y_{1})f_{2}(x_{2},y_{2})} so thatF(x,y){\displaystyle F(x,y)} is a composite off1(x,y){\displaystyle f_{1}(x,y)} andf2(x,y){\displaystyle f_{2}(x,y)}.

Properties of the composition law

[edit]

Existence of the composite

[edit]

The composite of two IBQFs exists if and only if they have the same discriminant.

Equivalent forms and the composition law

[edit]

Letg(x,y),h(x,y),g(x,y),h(x,y){\displaystyle g(x,y),h(x,y),g^{\prime }(x,y),h^{\prime }(x,y)} be IBQFs and let there be the following equivalences:

g(x,y)g(x,y){\displaystyle g(x,y)\sim g^{\prime }(x,y)}
h(x,y)h(x,y){\displaystyle h(x,y)\sim h^{\prime }(x,y)}

IfF(x,y){\displaystyle F(x,y)} is a composite ofg(x,y){\displaystyle g(x,y)} andh(x,y){\displaystyle h(x,y)}, andF(x,y){\displaystyle F^{\prime }(x,y)} is a composite ofg(x,y){\displaystyle g^{\prime }(x,y)} andh(x,y){\displaystyle h^{\prime }(x,y)}, then

F(x,y)F(x,y).{\displaystyle F(x,y)\sim F^{\prime }(x,y).}

A binary operation

[edit]

LetD{\displaystyle D} be a fixed integer and consider setSD{\displaystyle S_{D}} of all possible primitive IBQFs of discriminantD{\displaystyle D}. LetGD{\displaystyle G_{D}} be the set of equivalence classes in this set under the equivalence relation "{\displaystyle \sim }". Let[g(x,y)]{\displaystyle [g(x,y)]} and[h(x,y)]{\displaystyle [h(x,y)]} be two elements ofGD{\displaystyle G_{D}}. LetF(x,y){\displaystyle F(x,y)} be a composite of the IBQFsg(x,y){\displaystyle g(x,y)} andh(x,y){\displaystyle h(x,y)} inSD{\displaystyle S_{D}}. Then the following equation

[g(x,y)][h(x,y)]=[F(x,y)]{\displaystyle [g(x,y)]\circ [h(x,y)]=[F(x,y)]}

defines a well-defined binary operation "{\displaystyle \circ }" inGD{\displaystyle G_{D}}.

The group GD

[edit]

Modern approach to the composition law

[edit]

The following sketch of the modern approach to the composition law of IBQFs is based on a monograph by Duncan A. Buell.[4] The book may be consulted for further details and for proofs of all the statements made hereunder.

Quadratic algebraic numbers and integers

[edit]

LetZ{\displaystyle \mathbb {Z} } be the set of integers. Hereafter, in this section, elements ofZ{\displaystyle \mathbb {Z} } will be referred asrational integers to distinguish them fromalgebraic integers to be defined below.

A complex numberα{\displaystyle \alpha } is called aquadraticalgebraic number if it satisfies an equation of the form

ax2+bx+c=0{\displaystyle ax^{2}+bx+c=0} wherea,b,cZ{\displaystyle a,b,c\in \mathbb {Z} }.

α{\displaystyle \alpha } is called aquadratic algebraic integer if it satisfies an equation of the form

x2+bx+c=0{\displaystyle x^{2}+bx+c=0} whereb,cZ{\displaystyle b,c\in \mathbb {Z} }

The quadratic algebraic numbers are numbers of the form

α=b+ed2a{\displaystyle \alpha ={\frac {-b+e{\sqrt {d}}}{2a}}} wherea,b,d,eZ{\displaystyle a,b,d,e\in \mathbb {Z} } andd{\displaystyle d} has no square factors other than1{\displaystyle 1}.

The integerd{\displaystyle d} is called theradicand of the algebraic integerα{\displaystyle \alpha }. Thenorm of the quadratic algebraic numberα{\displaystyle \alpha } is defined as

N(α)=(b2+e2d)/4a2{\displaystyle N(\alpha )=(b^{2}+e^{2}d)/4a^{2}}.

LetQ{\displaystyle \mathbb {Q} } be the field of rational numbers. The smallest field containingQ{\displaystyle \mathbb {Q} } and a quadratic algebraic numberα{\displaystyle \alpha } is thequadratic field containingα{\displaystyle \alpha } and is denoted byQ(α){\displaystyle \mathbb {Q} (\alpha )}. This field can be shown to be

Q(α)=Q(d)={t+ud|t,uQ}{\displaystyle \mathbb {Q} (\alpha )=\mathbb {Q} ({\sqrt {d}})=\{t+u{\sqrt {d}}\,|\,t,u\in \mathbb {Q} \}}

ThediscriminantΔ{\displaystyle \Delta } of the fieldQ(d){\displaystyle \mathbb {Q} ({\sqrt {d}})} is defined by

Δ={4d if d2 or 3(mod4)d if d1(mod4){\displaystyle \Delta ={\begin{cases}4d&{\text{ if }}d\equiv 2{\text{ or }}3\,\,(\mathrm {mod} \,\,4)\\[1mm]d&{\text{ if }}d\equiv 1\,\,(\mathrm {mod} \,\,4)\end{cases}}}

Letd1{\displaystyle d\neq 1} be a rational integer without square factors (except 1). The set of quadratic algebraic integers of radicandd{\displaystyle d} is denoted byO(d){\displaystyle O({\sqrt {d}})}. This set is given by

O(d)={{a+bd|a,bZ} if d2 or 3(mod4){(a+bd)/2|a,bZ,abmod2)} if d1(mod4)}{\displaystyle O({\sqrt {d}})={\begin{cases}\{a+b{\sqrt {d}}\,|\,a,b\in \mathbb {Z} \}&{\text{ if }}d\equiv 2{\text{ or }}3\,\,(\mathrm {mod} \,\,4)\\[1mm]\{(a+b{\sqrt {d}})/2\,|\,a,b\in \mathbb {Z} ,a\equiv b\,\,\mathrm {mod} \,\,2)\}&{\text{ if }}d\equiv 1\,\,(\mathrm {mod} \,\,4)\}\end{cases}}}

O(d){\displaystyle O({\sqrt {d}})} is a ring under ordinary addition and multiplication. If we let

δ={d if δ is even(1d)/2 if δ is odd{\displaystyle \delta ={\begin{cases}-{\sqrt {d}}&{\text{ if }}\delta {\text{ is even}}\\[1mm](1-{\sqrt {d}})/2&{\text{ if }}\delta {\text{ is odd}}\end{cases}}}

then

O(d)={a+bδ|a,bZ}{\displaystyle O({\sqrt {d}})=\{a+b\delta \,|\,a,b\in \mathbb {Z} \}}.

Ideals in quadratic fields

[edit]

Leta{\displaystyle \mathbf {a} } be anideal in the ring of integersO(d){\displaystyle O({\sqrt {d}})}; that is, leta{\displaystyle \mathbf {a} } be a nonempty subset ofO(d){\displaystyle O({\sqrt {d}})} such that for anyα,βa{\displaystyle \alpha ,\beta \in \mathbf {a} } and anyλ,μO(d){\displaystyle \lambda ,\mu \in O({\sqrt {d}})},λα+μβa{\displaystyle \lambda \alpha +\mu \beta \in \mathbf {a} }. (An ideala{\displaystyle \mathbf {a} } as defined here is sometimes referred to as anintegral ideal to distinguish fromfractional ideal to be defined below.) Ifa{\displaystyle \mathbf {a} } is an ideal inO(d){\displaystyle O({\sqrt {d}})} then one can findα1,α2O(d){\displaystyle \alpha _{1},\alpha _{2}\in O({\sqrt {d}})} such any element ina{\displaystyle \mathbf {a} } can be uniquely represented in the formα1x+α2y{\displaystyle \alpha _{1}x+\alpha _{2}y} withx,yZ{\displaystyle x,y\in \mathbb {Z} }. Such a pair of elements inO(d){\displaystyle O({\sqrt {d}})} is called abasis of the ideala{\displaystyle \mathbf {a} }. This is indicated by writinga=α1,α2{\displaystyle \mathbf {a} =\langle \alpha _{1},\alpha _{2}\rangle }. Thenorm ofa=α1,α2{\displaystyle \mathbf {a} =\langle \alpha _{1},\alpha _{2}\rangle } is defined as

N(a)=|α1α2¯α1¯α2|/Δ{\displaystyle N(\mathbf {a} )=|\alpha _{1}{\overline {\alpha _{2}}}-{\overline {\alpha _{1}}}\alpha _{2}|/{\sqrt {\Delta }}}.

The norm is independent of the choice of the basis.

Some special ideals

[edit]
  1. For anyα,βI{\displaystyle \alpha ,\beta \in I} and for anyλ,μO(d){\displaystyle \lambda ,\mu \in O({\sqrt {d}})},λα+μβI{\displaystyle \lambda \alpha +\mu \beta \in I}.
  2. There exists a fixed algebraic integerν{\displaystyle \nu } such that for everyαI{\displaystyle \alpha \in I},ναO(d){\displaystyle \nu \alpha \in O({\sqrt {d}})}.

There is this important result: "Given any ideal (integral or fractional)a{\displaystyle \mathbf {a} }, there exists an integral idealb{\displaystyle \mathbf {b} } such that the product idealab{\displaystyle \mathbf {ab} } is a principal ideal."

An equivalence relation in the set of ideals

[edit]

Two (integral or fractional) idealsa{\displaystyle \mathbf {a} } andb{\displaystyle \mathbf {b} } are said to beequivalent, denotedab{\displaystyle \mathbf {a} \sim \mathbf {b} }, if there is a principal ideal(α){\displaystyle (\alpha )} such thata=(α)b{\displaystyle \mathbf {a} =(\alpha )\mathbf {b} }. These ideals arenarrowly equivalent if the norm ofα{\displaystyle \alpha } is positive. The relation, in the set of ideals, of being equivalent or narrowly equivalent as defined here is indeed an equivalence relation.

The equivalence classes (respectively, narrow equivalence classes) of fractional ideals of a ring of quadratic algebraic integersO(d){\displaystyle O({\sqrt {d}})} form an abelian group under multiplication of ideals. The identity of the group is the class of all principal ideals (respectively, the class of all principal ideals(α){\displaystyle (\alpha )} withN(α)>0{\displaystyle N(\alpha )>0}). The groups of classes of ideals and of narrow classes of ideals are called theclass group and thenarrow class group of theQ(d){\displaystyle \mathbb {Q} ({\sqrt {d}})}.

Binary quadratic forms and classes of ideals

[edit]

The main result that connects the IBQFs and classes of ideals can now be stated as follows:

"The group of classes of binary quadratic forms of discriminantΔ{\displaystyle \Delta } is isomorphic to the narrow class group of the quadratic number fieldQ(Δ){\displaystyle \mathbb {Q} ({\sqrt {\Delta }})}."

Bhargava's approach to the composition law

[edit]
Bhargava cube with the integersa,b,c,d,e,f,g,h at the corners

Manjul Bhargava, a Canadian-American Fields Medal winning mathematician introduced a configuration, called aBhargava cube, of eight integersa,b,c,d,e,f{\displaystyle a,b,c,d,e,f} (see figure) to study the composition laws of binary quadratic forms and other such forms. Defining matrices associated with the opposite faces of this cube as given below

M1=[abcd],N1=[efgh],M2=[aceg],N2=[bdfh],M3=[aebf],N3=[cgdh]{\displaystyle M_{1}={\begin{bmatrix}a&b\\c&d\end{bmatrix}},N_{1}={\begin{bmatrix}e&f\\g&h\end{bmatrix}},M_{2}={\begin{bmatrix}a&c\\e&g\end{bmatrix}},N_{2}={\begin{bmatrix}b&d\\f&h\end{bmatrix}},M_{3}={\begin{bmatrix}a&e\\b&f\end{bmatrix}},N_{3}={\begin{bmatrix}c&g\\d&h\end{bmatrix}}},

Bhargava constructed three IBQFs as follows:

Q1=det(M1x+N1y),Q2=det(M2x+N2y)Q3=det(M3x+N3y){\displaystyle Q_{1}=-\det(M_{1}x+N_{1}y),\,\,Q_{2}=-\det(M_{2}x+N_{2}y)\,\,Q_{3}=-\det(M_{3}x+N_{3}y)}

Bhargava established the following result connecting a Bhargava cube with the Gauss composition law:[5]

"If a cube A gives rise to three primitive binary quadratic formsQ1,Q2,Q3, thenQ1,Q2,Q3 have the same discriminant, and the product of these three forms is the identity in the group defined by Gauss composition. Conversely, ifQ1,Q2,Q3 are any three primitive binary quadratic forms of the same discriminant whose product is the identity under Gauss composition, then there exists a cube A yieldingQ1,Q2,Q3."

References

[edit]
  1. ^Carl Friedrich Gauss (English translation by Arthur A. Clarke) (1965).Disquisitiones Arithmeticae. Yale University Press.ISBN 978-0300094732.
  2. ^D. Shanks (1989).Number theory and applications, volume 265 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Dordrecht: Kluwer Acad. Publ. pp. 163–178,179–204.
  3. ^Duncan A. Buell (1989).Binary Quadratic Forms: Classical Theory and Modern Computations. New York: Springer-Verlag. pp. 62–63.ISBN 978-1-4612-8870-1.
  4. ^Duncan A. Buell (1989).Binary Quadratic Forms: Classical Theory and Modern Computations. New York: Springer-Verlag.ISBN 978-1-4612-8870-1.
  5. ^Manjul Bhargava (2006).Higher composition laws and applications, in Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006. European Mathematical Society.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gauss_composition_law&oldid=1315972755"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp