Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Gauge symmetry (mathematics)

From Wikipedia, the free encyclopedia
Differential operator acting on vector bundles
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(October 2009) (Learn how and when to remove this message)

In mathematics, anyLagrangian system generally admits gauge symmetries, though it may happen that they are trivial. Intheoretical physics, the notion ofgauge symmetries depending on parameter functions is a cornerstone of contemporaryfield theory.

A gauge symmetry of aLagrangianL{\displaystyle L} is defined as a differential operator on somevector bundleE{\displaystyle E} taking its values in the linear space of (variational or exact) symmetries ofL{\displaystyle L}. Therefore, a gauge symmetry ofL{\displaystyle L}depends on sections ofE{\displaystyle E} and their partial derivatives.[1] For instance, this is the case of gauge symmetries inclassical field theory.[2]Yang–Mills gauge theory andgauge gravitation theory exemplify classical field theories with gauge symmetries.[3]

Gauge symmetries possess the following two peculiarities.

  1. Being Lagrangian symmetries, gauge symmetries of aLagrangian satisfyNoether's first theorem, but the corresponding conserved currentJμ{\displaystyle J^{\mu }} takes a particular superpotential formJμ=Wμ+dνUνμ{\displaystyle J^{\mu }=W^{\mu }+d_{\nu }U^{\nu \mu }} where the first termWμ{\displaystyle W^{\mu }} vanishes on solutions of theEuler–Lagrange equations and the second one is a boundary term, whereUνμ{\displaystyle U^{\nu \mu }} is called a superpotential.[4]
  2. In accordance withNoether's second theorem, there is one-to-one correspondence between the gauge symmetries of aLagrangian and theNoether identities which theEuler–Lagrange operator satisfies. Consequently, gauge symmetries characterize the degeneracy of aLagrangian system.[5]

Note that, inquantum field theory, a generating functional may fail to be invariant under gauge transformations, and gauge symmetries are replaced with theBRST symmetries, depending on ghosts and acting both on fields and ghosts.[6]

See also

[edit]

Notes

[edit]
  1. ^Giachetta (2008)
  2. ^Giachetta (2009)
  3. ^Daniel (1980), Eguchi (1980), Marathe (1992), Giachetta (2009)
  4. ^Gotay (1992), Fatibene (1994)
  5. ^Gomis (1995), Giachetta (2009)
  6. ^Gomis (1995)

References

[edit]
  • Daniel, M., Viallet, C., The geometric setting of gauge symmetries of the Yang–Mills type, Rev. Mod. Phys.52 (1980) 175.
  • Eguchi, T., Gilkey, P., Hanson, A., Gravitation, gauge theories and differential geometry, Phys. Rep.66 (1980) 213.
  • Gotay, M., Marsden, J., Stress-energy-momentum tensors and the Belinfante–Rosenfeld formula, Contemp. Math.132 (1992) 367.
  • Marathe, K., Martucci, G., The Mathematical Foundation of Gauge Theories (North Holland, 1992)ISBN 0-444-89708-9.
  • Fatibene, L., Ferraris, M., Francaviglia, M., Noether formalism for conserved quantities in classical gauge field theories, J. Math. Phys.35 (1994) 1644.
  • Gomis, J., Paris, J., Samuel, S., Antibracket, antifields and gauge theory quantization, Phys. Rep.295 (1995) 1;arXiv: hep-th/9412228.
  • Giachetta, G. (2008), Mangiarotti, L.,Sardanashvily, G., On the notion of gauge symmetries of generic Lagrangian field theory, J. Math. Phys.50 (2009) 012903;arXiv: 0807.3003.
  • Giachetta, G. (2009), Mangiarotti, L.,Sardanashvily, G., Advanced Classical Field Theory (World Scientific, 2009)ISBN 978-981-2838-95-7.
  • Montesinos, Merced; Gonzalez, Diego; Celada, Mariano; Diaz, Bogar (2017). "Reformulation of the symmetries of first-order general relativity".Classical and Quantum Gravity.34 (20): 205002.arXiv:1704.04248.Bibcode:2017CQGra..34t5002M.doi:10.1088/1361-6382/aa89f3.S2CID 119268222.
  • Montesinos, Merced; Gonzalez, Diego; Celada, Mariano (2018). "The gauge symmetries of first-order general relativity with matter fields".Classical and Quantum Gravity.35 (20): 205005.arXiv:1809.10729.Bibcode:2018CQGra..35t5005M.doi:10.1088/1361-6382/aae10d.S2CID 53531742.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Gauge_symmetry_(mathematics)&oldid=1155083214"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp