Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Transistor count

From Wikipedia, the free encyclopedia
(Redirected fromGate count)
Number of transistors in a device

Semiconductor
device
fabrication
MOSFET scaling
(process nodes)
Future

Thetransistor count is the number oftransistors in an electronic device (typically on a single substrate or silicondie). It is the most common measure ofintegrated circuit complexity (although the majority of transistors in modernmicroprocessors are contained incache memories, which consist mostly of the samememory cell circuits replicated many times). The rate at whichMOS transistor counts have increased generally followsMoore's law, which observes that transistor count doubles approximately every two years. However, being directly proportional to the area of a die, transistor count does not represent how advanced the corresponding manufacturing technology is. A better indication of this is transistor density which is the ratio of a semiconductor's transistor count to its die area.

Records

[edit]

As of 2023[update], the highest transistor count in flash memory isMicron's 2 terabyte (3D-stacked) 16-die, 232-layerV-NAND flashmemory chip, with 5.3 trillionfloating-gate MOSFETs (3 bits per transistor).

The highest transistor count in a single chip processor as of 2020[update] is that of thedeep learning processorWafer Scale Engine 2 byCerebras. It has 2.6 trillion MOSFETs in 84 exposed fields (dies) on a wafer, manufactured using TSMC's7 nm FinFET process.[1][2][3][4][5]

As of 2024[update], theGPU with the highest transistor count isNvidia'sBlackwell-based B100 accelerator, built onTSMC's custom 4NP process node and totaling 208 billion MOSFETs.

The highest transistor count in a consumer microprocessor as of March 2025[update] is 184 billion transistors, inApple'sARM-based dual-dieM3 Ultra SoC, which is fabricated usingTSMC's3 nmsemiconductor manufacturing process.[6]

YearComponentNameNumber of MOSFETs
(in trillions)
Remarks
2022Flash memoryMicron'sV-NAND module5.3stacked package of sixteen 232-layer3D NAND dies
2020any processorWafer Scale Engine 22.6wafer-scale design of 84 exposed fields (dies)
2024GPUNvidia B1000.208Uses two reticle limit dies, with 104 billion transistors each, joined together and acting as a single large monolithic piece of silicon
2025Microprocessor
(consumer)
Apple M3 Ultra0.184SoC using two dies joined together with a high-speed bridge
2020DLPColossus Mk2 GC2000.059An IPU[clarification needed] in contrast toCPU andGPU

In terms of computer systems that consist of numerous integrated circuits, thesupercomputer with the highest transistor count as of 2016[update] was the Chinese-designedSunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "theDRAM includes about 12quadrillion transistors, and that's about 97 percent of all the transistors."[7] To compare, thesmallest computer, as of 2018[update] dwarfed by a grain of rice, had on the order of 100,000 transistors. Early experimental solid-state computers had as few as 130 transistors but used large amounts ofdiode logic. The firstcarbon nanotube computer had 178 transistors and was a1-bitone-instruction set computer, while a later one is16-bit (itsinstruction set is 32-bitRISC-V though).

Ionic transistor chips ("water-based"analog limited processor), have up to hundreds of such transistors.[8]

Estimates of the total numbers of transistors manufactured:

  • Up to 2014:2.9×1021
  • Up to 2018:1.3×1022[9][10]

Transistor count

[edit]
Plot ofMOS transistor counts formicroprocessors against dates of in­tro­duction. The curve shows counts doubling every two years, perMoore's law.

Microprocessors

[edit]
See also:Microprocessor chronology andMicrocontroller
This subsectionneeds additional citations forverification. Relevant discussion may be found on thetalk page. Please helpimprove this article byadding citations to reliable sources in this subsection. Unsourced material may be challenged and removed.
Find sources: "Transistor count" – news ·newspapers ·books ·scholar ·JSTOR
(December 2019) (Learn how and when to remove this message)

Amicroprocessor incorporates the functions of a computer'scentral processing unit on a singleintegrated circuit. It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

The development ofMOS integrated circuit technology in the 1960s led to the development of the first microprocessors.[11] The 20-bitMP944, developed byGarrett AiResearch for theU.S. Navy'sF-14 Tomcat fighter in 1970, is considered by its designerRay Holt to be the first microprocessor.[12] It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The4-bitIntel 4004, released in 1971, was the first single-chip microprocessor.

Modern microprocessors typically include on-chipcache memories. The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor (that is, excluding the cache). For example, the lastDEC Alpha chip uses 90% of its transistors for cache.[13]

ProcessorTransistor countYearDesignerProcess
(nm)
Area (mm2)Transistor
density
(tr./mm2)
MP944 (20-bit, 6-chip, 28 chips total)74,442 (5,360 excl. ROM & RAM)[14][15]1970[12][a]Garrett AiResearch???
Intel 4004 (4-bit, 16-pin)2,2501971Intel10,000 nm12 mm2188
TMX 1795 (8-bit, 24-pin)3,078[16]1971Texas Instruments?30.64 mm2100.5
Intel 8008 (8-bit, 18-pin)3,5001972Intel10,000 nm14 mm2250
NEC μCOM-4 (4-bit, 42-pin)2,500[17][18]1973NEC7,500 nm[19]??
Toshiba TLCS-12 (12-bit)11,000+[20]1973Toshiba6,000 nm32.45 mm2340+
Intel 4040 (4-bit, 16-pin)3,0001974Intel10,000 nm12 mm2250
Motorola 6800 (8-bit, 40-pin)4,1001974Motorola6,000 nm16 mm2256
Intel 8080 (8-bit, 40-pin)6,0001974Intel6,000 nm20 mm2300
TMS 1000 (4-bit, 28-pin)8,000[b]1974[21]Texas Instruments8,000 nm11 mm2730
MOS Technology 6502 (8-bit, 40-pin)4,528[c][22]1975MOS Technology8,000 nm21 mm2216
Intersil IM6100 (12-bit, 40-pin;clone ofPDP-8)4,0001975Intersil???
CDP 1801 (8-bit, 2-chip, 40-pin)5,0001975RCA???
RCA 1802 (8-bit, 40-pin)5,0001976RCA5,000 nm27 mm2185
Zilog Z80 (8-bit, 4-bitALU, 40-pin)8,500[d]1976Zilog4,000 nm18 mm2470
Intel 8085 (8-bit, 40-pin)6,5001976Intel3,000 nm20 mm2325
TMS9900 (16-bit)8,0001976Texas Instruments???
Bellmac-8 (8-bit)7,0001977Bell Labs5,000 nm??
Motorola 6809 (8-bitwith some 16-bit features, 40-pin)9,0001978Motorola5,000 nm21 mm2430
Intel 8086 (16-bit, 40-pin)29,000[23]1978Intel3,000 nm33 mm2880
Zilog Z8000 (16-bit)17,500[24]1979Zilog???
Intel 8088 (16-bit, 8-bit data bus)29,0001979Intel3,000 nm33 mm2880
Motorola 68000 (16/32-bit,32-bit registers, 16-bitALU)68,000[25]1979Motorola3,500 nm44 mm21,550
Intel 8051 (8-bit, 40-pin)50,0001980Intel???
WDC 65C0211,500[26]1981WDC3,000 nm6 mm21,920
ROMP (32-bit)45,0001981IBM2,000 nm58.52 mm2770
Intel 80186 (16-bit, 68-pin)55,0001982Intel3,000 nm60 mm2920
Intel 80286 (16-bit, 68-pin)134,0001982Intel1,500 nm49 mm22,730
WDC 65C816 (8/16-bit)22,000[27]1983WDC3,000 nm[28]9 mm22,400
NEC V2063,0001984NEC???
Motorola 68020 (32-bit; 114 pins used)190,000[29]1984Motorola2,000 nm85 mm22,200
Intel 80386 (32-bit, 132-pin; no cache)275,0001985Intel1,500 nm104 mm22,640
ARM 1 (32-bit; no cache)25,000[29]1985Acorn3,000 nm50 mm2500
Novix NC4016 (16-bit)16,000[30]1985[31]Harris Corporation3,000 nm[32]??
SPARC MB86900 (32-bit; no cache)110,000[33]1986Fujitsu1,200 nm??
NEC V60[34] (32-bit; no cache)375,0001986NEC1,500 nm??
ARM 2 (32-bit, 84-pin; no cache)27,000[35][29]1986Acorn2,000 nm30.25 mm2890
Z80000 (32-bit; very small cache)91,0001986Zilog???
NEC V70[34] (32-bit; no cache)385,0001987NEC1,500 nm??
Hitachi Gmicro/200[36]730,0001987Hitachi1,000 nm??
Motorola 68030 (32-bit, very small caches)273,0001987Motorola800 nm102 mm22,680
TI Explorer's 32-bitLispmachine chip553,000[37]1987Texas Instruments2,000 nm[38]??
DEC WRL MultiTitan180,000[39]1988DEC WRL1,500 nm61 mm22,950
Intel i960 (32-bit,33-bit memory subsystem, no cache)250,000[40]1988Intel1,500 nm[41]??
Intel i960CA (32-bit, cache)600,000[41]1989Intel800 nm143 mm24,200
Intel i860 (32/64-bit, 128-bitSIMD, cache,VLIW)1,000,000[42]1989Intel???
Intel 80486 (32-bit, 8 KB cache)1,180,2351989Intel1,000 nm173 mm26,822
ARM 3 (32-bit, 4 KB cache)310,0001989Acorn1,500 nm87 mm23,600
POWER1 (9-chip module, 72 kB of cache)6,900,000[43]1990IBM1,000 nm1,283.61 mm25,375
Motorola 68040 (32-bit, 8 KB caches)1,200,0001990Motorola650 nm152 mm27,900
R4000 (64-bit, 16 KB of caches)1,350,0001991MIPS1,000 nm213 mm26,340
ARM 6 (32-bit, no cache for this 60 variant)35,0001991ARM800 nm??
Hitachi SH-1 (32-bit, no cache)600,000[44]1992[45]Hitachi800 nm100 mm26,000
Intel i960CF (32-bit, cache)900,000[41]1992Intel?125 mm27,200
Alpha 21064 (64-bit, 290-pin; 16 KB of caches)1,680,0001992DEC750 nm233.52 mm27,190
Hitachi HARP-1 (32-bit, cache)2,800,000[46]1993Hitachi500 nm267 mm210,500
Pentium (32-bit, 16 KB of caches)3,100,0001993Intel800 nm294 mm210,500
POWER2 (8-chip module, 288 kB of cache)23,037,000[47]1993IBM720 nm1,217.39 mm218,923
ARM700 (32-bit; 8 KB cache)578,977[48]1994ARM700 nm68.51 mm28,451
MuP21 (21-bit,[49] 40-pin; includesvideo)7,000[50]1994Offete Enterprises1,200 nm??
Motorola 68060 (32-bit, 16 KB of caches)2,500,0001994Motorola600 nm218 mm211,500
PowerPC 601 (32-bit, 32 KB of caches)2,800,000[51]1994Apple, IBM, Motorola600 nm121 mm223,000
PowerPC 603 (32-bit, 16 KB of caches)1,600,000[52]1994Apple, IBM, Motorola500 nm84.76 mm218,900
PowerPC 603e (32-bit, 32 KB of caches)2,600,000[53]1995Apple, IBM, Motorola500 nm98 mm226,500
Alpha 21164 EV5 (64-bit, 112 kB cache)9,300,000[54]1995DEC500 nm298.65 mm231,140
SA-110 (32-bit, 32 KB of caches)2,500,000[29]1995Acorn, DEC,Apple350 nm50 mm250,000
Pentium Pro (32-bit, 16 KB of caches;[55] L2 cache on-package, but on separate die)5,500,000[56]1995Intel500 nm307 mm218,000
PA-8000 64-bit, no cache3,800,000[57]1995HP500 nm337.69 mm211,300
Alpha 21164A EV56 (64-bit, 112 kB cache)9,660,000[58]1996DEC350 nm208.8 mm246,260
AMD K5 (32-bit, caches)4,300,0001996AMD500 nm251 mm217,000
Pentium II Klamath (32-bit, 64-bitSIMD, caches)7,500,0001997Intel350 nm195 mm239,000
AMD K6 (32-bit, caches)8,800,0001997AMD350 nm162 mm254,000
F21 (21-bit; includes e.g.video)15,0001997[50]Offete Enterprises???
AVR (8-bit, 40-pin; w/memory)140,000 (48,000
excl. memory[59])
1997Nordic VLSI/Atmel???
Pentium II Deschutes (32-bit, large cache)7,500,0001998Intel250 nm113 mm266,000
Alpha 21264 EV6 (64-bit)15,200,000[60]1998DEC350 nm313.96 mm248,400
Alpha 21164PC PCA57 (64-bit, 48 kB cache)5,700,0001998Samsung280 nm100.5 mm256,700
Hitachi SH-4 (32-bit, caches)[61]3,200,000[62]1998Hitachi250 nm57.76 mm255,400
ARM 9TDMI (32-bit, no cache)111,000[29]1999Acorn350 nm4.8 mm223,100
Pentium III Katmai (32-bit, 128-bit SIMD, caches)9,500,0001999Intel250 nm128 mm274,000
Emotion Engine (64-bit, 128-bitSIMD, cache)10,500,000[63]
– 13,500,000[64]
1999Sony,Toshiba250 nm239.7 mm2[63]43,800 – 56,300
Pentium II Mobile Dixon (32-bit, caches)27,400,0001999Intel180 nm180 mm2152,000
AMD K6-III (32-bit, caches)21,300,0001999AMD250 nm118 mm2181,000
AMD K7 (32-bit, caches)22,000,0001999AMD250 nm184 mm2120,000
Gekko (32-bit, large cache)21,000,000[65]2000IBM,Nintendo180 nm43 mm2490,000 (check)
Pentium III Coppermine (32-bit, large cache)21,000,0002000Intel180 nm80 mm2263,000
Pentium 4 Willamette (32-bit, large cache)42,000,0002000Intel180 nm217 mm2194,000
SPARC64 V (64-bit, large cache)191,000,000[66]2001Fujitsu130 nm[67]290 mm2659,000
Pentium III Tualatin (32-bit, large cache)45,000,0002001Intel130 nm81 mm2556,000
Pentium 4 Northwood (32-bit, large cache)55,000,0002002Intel130 nm145 mm2379,000
Itanium 2 McKinley (64-bit, large cache)220,000,0002002Intel180 nm421 mm2523,000
Alpha 21364 (64-bit, 946-pin, SIMD, very large caches)152,000,000[13]2003DEC180 nm397 mm2383,000
AMD K7Barton (32-bit, large cache)54,300,0002003AMD130 nm101 mm2538,000
AMD K8 (64-bit, large cache)105,900,0002003AMD130 nm193 mm2548,700
Pentium M Banias (32-bit)77,000,000[68]2003Intel130 nm83 mm2928,000
Itanium 2 Madison 6M (64-bit)410,000,0002003Intel130 nm374 mm21,096,000
PlayStation 2 single chip (CPU + GPU)53,500,000[69]2003[70]Sony, Toshiba90 nm[71]
130 nm[72][73]
86 mm2622,100
Pentium 4 Prescott (32-bit, large cache)112,000,0002004Intel90 nm110 mm21,018,000
Pentium M Dothan (32-bit)144,000,000[74]2004Intel90 nm87 mm21,655,000
SPARC64 V+ (64-bit, large cache)400,000,000[75]2004Fujitsu90 nm294 mm21,360,000
Itanium 2 (64-bit;9 MB cache)592,000,0002004Intel130 nm432 mm21,370,000
Pentium 4 Prescott-2M (32-bit, large cache)169,000,0002005Intel90 nm143 mm21,182,000
Pentium D Smithfield (64-bit, large cache)228,000,0002005Intel90 nm206 mm21,107,000
Xenon (64-bit, 128-bit SIMD, large cache)165,000,0002005IBM90 nm??
Cell (32-bit, cache)250,000,000[76]2005Sony, IBM, Toshiba90 nm221 mm21,131,000
Pentium 4 Cedar Mill (32-bit, large cache)184,000,0002006Intel65 nm90 mm22,044,000
Pentium D Presler (64-bit, large cache)362,000,000[77]2006Intel65 nm162 mm22,235,000
Core 2 Duo Conroe (dual-core 64-bit, large caches)291,000,0002006Intel65 nm143 mm22,035,000
Dual-coreItanium 2 (64-bit,SIMD, large caches)1,700,000,000[78]2006Intel90 nm596 mm22,852,000
AMD K10 quad-core 2M L3 (64-bit, large caches)463,000,000[79]2007AMD65 nm283 mm21,636,000
ARM Cortex-A9 (32-bit, (optional)SIMD, caches)26,000,000[80]2007ARM45 nm31 mm2839,000
Core 2 Duo Wolfdale (dual-core 64-bit,SIMD, caches)411,000,0002007Intel45 nm107 mm23,841,000
POWER6 (64-bit, large caches)789,000,0002007IBM65 nm341 mm22,314,000
Core 2 Duo Allendale (dual-core 64-bit,SIMD, large caches)169,000,0002007Intel65 nm111 mm21,523,000
Uniphier250,000,000[81]2007Matsushita45 nm??
SPARC64 VI (64-bit,SIMD, large caches)540,000,0002007[82]Fujitsu90 nm421 mm21,283,000
Core 2 Duo Wolfdale 3M (dual-core 64-bit,SIMD, large caches)230,000,0002008Intel45 nm83 mm22,771,000
Core i7 (quad-core 64-bit,SIMD, large caches)731,000,0002008Intel45 nm263 mm22,779,000
AMD K10 quad-core 6M L3 (64-bit,SIMD, large caches)758,000,000[79]2008AMD45 nm258 mm22,938,000
Atom (32-bit, large cache)47,000,0002008Intel45 nm24 mm21,958,000
SPARC64 VII (64-bit,SIMD, large caches)600,000,0002008[83]Fujitsu65 nm445 mm21,348,000
Six-coreXeon 7400 (64-bit,SIMD, large caches)1,900,000,0002008Intel45 nm503 mm23,777,000
Six-coreOpteron 2400 (64-bit,SIMD, large caches)904,000,0002009AMD45 nm346 mm22,613,000
SPARC64 VIIIfx (64-bit,SIMD, large caches)760,000,000[84]2009Fujitsu45 nm513 mm21,481,000
Atom (Pineview) 64-bit, 1-core, 512 kB L2 cache123,000,000[85]2010Intel45 nm66 mm21,864,000
Atom (Pineview) 64-bit, 2-core, 1 MB L2 cache176,000,000[86]2010Intel45 nm87 mm22,023,000
SPARC T3 (16-core 64-bit,SIMD, large caches)1,000,000,000[87]2010Sun/Oracle40 nm377 mm22,653,000
Six-coreCore i7 (Gulftown)1,170,000,0002010Intel32 nm240 mm24,875,000
POWER7 32M L3 (8-core 64-bit,SIMD, large caches)1,200,000,0002010IBM45 nm567 mm22,116,000
Quad-corez196[88] (64-bit, very large caches)1,400,000,0002010IBM45 nm512 mm22,734,000
Quad-core ItaniumTukwila (64-bit,SIMD, large caches)2,000,000,000[89]2010Intel65 nm699 mm22,861,000
XeonNehalem-EX (8-core 64-bit,SIMD, large caches)2,300,000,000[90]2010Intel45 nm684 mm23,363,000
SPARC64 IXfx (64-bit,SIMD, large caches)1,870,000,000[91]2011Fujitsu40 nm484 mm23,864,000
Quad-core +GPUCore i7 (64-bit,SIMD, large caches)1,160,000,0002011Intel32 nm216 mm25,370,000
Six-coreCore i7/8-core Xeon E5
(Sandy Bridge-E/EP) (64-bit,SIMD, large caches)
2,270,000,000[92]2011Intel32 nm434 mm25,230,000
XeonWestmere-EX (10-core 64-bit,SIMD, large caches)2,600,000,0002011Intel32 nm512 mm25,078,000
Atom "Medfield" (64-bit)432,000,000[93]2012Intel32 nm64 mm26,750,000
SPARC64 X (64-bit,SIMD, caches)2,990,000,000[94]2012Fujitsu28 nm600 mm24,983,000
AMD Bulldozer (8-core 64-bit,SIMD, caches)1,200,000,000[95]2012AMD32 nm315 mm23,810,000
Quad-core + GPUAMD Trinity (64-bit,SIMD, caches)1,303,000,0002012AMD32 nm246 mm25,297,000
Quad-core + GPUCore i7 Ivy Bridge (64-bit,SIMD, caches)1,400,000,0002012Intel22 nm160 mm28,750,000
POWER7+ (8-core 64-bit,SIMD, 80 MB L3 cache)2,100,000,0002012IBM32 nm567 mm23,704,000
Six-corezEC12 (64-bit,SIMD, large caches)2,750,000,0002012IBM32 nm597 mm24,606,000
ItaniumPoulson (8-core 64-bit,SIMD, caches)3,100,000,0002012Intel32 nm544 mm25,699,000
Xeon Phi (61-core 32-bit, 512-bitSIMD, caches)5,000,000,000[96]2012Intel22 nm720 mm26,944,000
Apple A7 (dual-core 64/32-bitARM64, "mobileSoC",SIMD, caches)1,000,000,0002013Apple28 nm102 mm29,804,000
Six-coreCore i7 Ivy Bridge E (64-bit,SIMD, caches)1,860,000,0002013Intel22 nm256 mm27,266,000
POWER8 (12-core 64-bit,SIMD, caches)4,200,000,0002013IBM22 nm650 mm26,462,000
Xbox One main SoC (64-bit,SIMD, caches)5,000,000,0002013Microsoft, AMD28 nm363 mm213,770,000
Quad-core + GPUCore i7 Haswell (64-bit,SIMD, caches)1,400,000,000[97]2014Intel22 nm177 mm27,910,000
Apple A8 (dual-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)2,000,000,0002014Apple20 nm89 mm222,470,000
Core i7 Haswell-E (8-core 64-bit,SIMD, caches)2,600,000,000[98]2014Intel22 nm355 mm27,324,000
Apple A8X (tri-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)3,000,000,000[99]2014Apple20 nm128 mm223,440,000
Xeon Ivy Bridge-EX (15-core 64-bit,SIMD, caches)4,310,000,000[100]2014Intel22 nm541 mm27,967,000
Xeon Haswell-E5 (18-core 64-bit,SIMD, caches)5,560,000,000[101]2014Intel22 nm661 mm28,411,000
Quad-core + GPU GT2Core i7 Skylake K (64-bit,SIMD, caches)1,750,000,0002015Intel14 nm122 mm214,340,000
Dual-core + GPU IrisCore i7 Broadwell-U (64-bit,SIMD, caches)1,900,000,000[102]2015Intel14 nm133 mm214,290,000
Apple A9 (dual-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)2,000,000,000+2015Apple14 nm
(Samsung)
96 mm2
(Samsung)
20,800,000+
16 nm
(TSMC)
104.5 mm2
(TSMC)
19,100,000+
Apple A9X (dual core 64/32-bit ARM64 "mobile SoC",SIMD, caches)3,000,000,000+2015Apple16 nm143.9 mm220,800,000+
IBM z13 (64-bit, caches)3,990,000,0002015IBM22 nm678 mm25,885,000
IBM z13 Storage Controller7,100,000,0002015IBM22 nm678 mm210,472,000
SPARC M7 (32-core 64-bit,SIMD, caches)10,000,000,000[103]2015Oracle20 nm??
Core i7 Broadwell-E (10-core 64-bit,SIMD, caches)3,200,000,000[104]2016Intel14 nm246 mm2[105]13,010,000
Apple A10 Fusion (quad-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)3,300,000,0002016Apple16 nm125 mm226,400,000
HiSilicon Kirin 960 (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)4,000,000,000[106]2016Huawei16 nm110.00 mm236,360,000
Xeon Broadwell-E5 (22-core 64-bit,SIMD, caches)7,200,000,000[107]2016Intel14 nm456 mm215,790,000
Xeon Phi (72-core 64-bit, 512-bitSIMD, caches)8,000,000,0002016Intel14 nm683 mm211,710,000
Zip CPU (32-bit, forFPGAs)1,286 6-LUTs[108]2016Gisselquist Technology???
Qualcomm Snapdragon 835 (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)3,000,000,000[109][110]2016Qualcomm10 nm72.3 mm241,490,000
Apple A11 Bionic (hexa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)4,300,000,0002017Apple10 nm89.23 mm248,190,000
AMDZen CCX (core complex unit: 4 cores, 8 MB L3 cache)1,400,000,000[111]2017AMD14 nm
(GF 14LPP)
44 mm231,800,000
AMD Zeppelin SoCRyzen (64-bit,SIMD, caches)4,800,000,000[112]2017AMD14 nm192 mm225,000,000
AMD Ryzen 5 1600Ryzen (64-bit,SIMD, caches)4,800,000,000[113]2017AMD14 nm213 mm222,530,000
IBM z14 (64-bit,SIMD, caches)6,100,000,0002017IBM14 nm696 mm28,764,000
IBM z14 Storage Controller (64-bit)9,700,000,0002017IBM14 nm696 mm213,940,000
HiSilicon Kirin 970 (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)5,500,000,000[114]2017Huawei10 nm96.72 mm256,900,000
Xbox One X (Project Scorpio) main SoC (64-bit,SIMD, caches)7,000,000,000[115]2017Microsoft, AMD16 nm360 mm2[115]19,440,000
Xeon Platinum 8180 (28-core 64-bit,SIMD, caches)8,000,000,000[116]2017Intel14 nm??
Xeon (unspecified)7,100,000,000[117]2017Intel14 nm672 mm210,570,000
POWER9 (64-bit,SIMD, caches)8,000,000,0002017IBM14 nm695 mm211,500,000
Freedom U500 Base Platform Chip (E51, 4×U54)RISC-V (64-bit, caches)250,000,000[118]2017SiFive28 nm~30 mm28,330,000
SPARC64 XII (12-core 64-bit,SIMD, caches)5,450,000,000[119]2017Fujitsu20 nm795 mm26,850,000
Apple A10X Fusion (hexa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)4,300,000,000[120]2017Apple10 nm96.40 mm244,600,000
Centriq 2400 (64/32-bit,SIMD, caches)18,000,000,000[121]2017Qualcomm10 nm398 mm245,200,000
AMDEpyc (32-core 64-bit,SIMD, caches)19,200,000,0002017AMD14 nm768 mm225,000,000
Qualcomm Snapdragon 845 (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)5,300,000,000[122]2017Qualcomm10 nm94 mm256,400,000
Qualcomm Snapdragon 850 (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)5,300,000,000[123]2017Qualcomm10 nm94 mm256,400,000
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC",SIMD, caches)5,500,000,000[124]2018Huawei12 nm??
Apple A12 Bionic (hexa-core ARM64 "mobile SoC",SIMD, caches)6,900,000,000
[125][126]
2018Apple7 nm83.27 mm282,900,000
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC",SIMD, caches)6,900,000,000[127]2018Huawei7 nm74.13 mm293,100,000
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC",SIMD, caches)8,500,000,000[128]2018Qualcomm7 nm112 mm275,900,000
Apple A12X Bionic (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)10,000,000,000[129]2018Apple7 nm122 mm282,000,000
Fujitsu A64FX (64/32-bit,SIMD, caches)8,786,000,000[130]2018[131]Fujitsu7 nm??
Tegra Xavier SoC (64/32-bit)9,000,000,000[132]2018Nvidia12 nm350 mm225,700,000
Qualcomm Snapdragon 855 (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)6,700,000,000[133]2018Qualcomm7 nm73 mm291,800,000
AMDZen 2 core (0.5 MB L2 + 4 MB L3 cache)475,000,000[134]2019AMD7 nm7.83 mm260,664,000
AMDZen 2 CCX (core complex: 4 cores, 16 MB L3 cache)1,900,000,000[134]2019AMD7 nm31.32 mm260,664,000
AMDZen 2 CCD (core complex die: 8 cores, 32 MB L3 cache)3,800,000,000[134]2019AMD7 nm74 mm251,350,000
AMDZen 2 client I/O die2,090,000,000[134]2019AMD12 nm125 mm216,720,000
AMDZen 2 server I/O die8,340,000,000[134]2019AMD12 nm416 mm220,050,000
AMDZen 2 Renoir die9,800,000,000[134]2019AMD7 nm156 mm262,820,000
AMDRyzen 7 3700X (64-bit,SIMD, caches, I/O die)5,990,000,000[135][e]2019AMD7 & 12 nm
(TSMC)
199 
(74+125) mm2
30,100,000
HiSilicon Kirin 990 4G8,000,000,000[136]2019Huawei7 nm90.00 mm289,000,000
Apple A13 (hexa-core 64-bit ARM64 "mobile SoC",SIMD, caches)8,500,000,000
[137][138]
2019Apple7 nm98.48 mm286,300,000
IBM z15 CP chip (12 cores, 256 MB L3 cache)9,200,000,000[139]2019IBM14 nm696 mm213,220,000
IBM z15 SC chip (960 MB L4 cache)12,200,000,0002019IBM14 nm696 mm217,530,000
AMDRyzen 9 3900X (64-bit,SIMD, caches, I/O die)9,890,000,000
[140][141]
2019AMD7 & 12 nm
(TSMC)
273 mm236,230,000
HiSilicon Kirin 990 5G10,300,000,000[142]2019Huawei7 nm113.31 mm290,900,000
AWS Graviton2 (64-bit, 64-core ARM-based,SIMD, caches)[143][144]30,000,000,0002019Amazon7 nm??
AMDEpyc Rome (64-bit,SIMD, caches)39,540,000,000
[140][141]
2019AMD7 & 12 nm
(TSMC)
1,008 mm239,226,000
Qualcomm Snapdragon 865 (octa-core 64/32-bit ARM64 "mobile SoC",SIMD, caches)10,300,000,000[145]2019Qualcomm7 nm83.54 mm2[146]123,300,000
TI Jacinto TDA4VM (ARM A72, DSP, SRAM)3,500,000,000[147]2020Texas Instruments16 nm??
Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC",SIMD, caches)11,800,000,000[148]2020Apple5 nm88 mm2134,100,000
Apple M1 (octa-core 64-bit ARM64 SoC,SIMD, caches)16,000,000,000[149]2020Apple5 nm119 mm2134,500,000
HiSilicon Kirin 900015,300,000,000
[150][151]
2020Huawei5 nm114 mm2134,200,000
AMDZen 3 CCX (core complex unit: 8 cores, 32 MB L3 cache)4,080,000,000[152]2020AMD7 nm68 mm260,000,000
AMDZen 3 CCD (core complex die)4,150,000,000[152]2020AMD7 nm81 mm251,230,000
Core 11th genRocket Lake (8-core 64-bit,SIMD, large caches)6,000,000,000+[153]2021Intel14 nm +++14 nm276 mm2[154]37,500,000 or 21,800,000+[155]
AMD Ryzen 7 5800H (64-bit,SIMD, caches, I/O and GPU)10,700,000,000[156]2021AMD7 nm180 mm259,440,000
AMD Epyc 7763 (Milan) (64-core, 64-bit)?2021AMD7 & 12 nm
(TSMC)
1,064 mm2
(8×81+416)[157]
?
Apple A1515,000,000,000
[158][159]
2021Apple5 nm107.68 mm2139,300,000
Apple M1 Pro (10-core, 64-bit)33,700,000,000[160]2021Apple5 nm245 mm2[161]137,600,000
Apple M1 Max (10-core, 64-bit)57,000,000,000
[162][160]
2021Apple5 nm420.2 mm2[163]135,600,000
Power10 dual-chip module (30 SMT8 cores or 60 SMT4 cores)36,000,000,000[164]2021IBM7 nm1,204 mm229,900,000
Dimensity 9000 (ARM64 SoC)15,300,000,000
[165][166]
2021Mediatek4 nm
(TSMC N4)
??
Apple A16 (ARM64 SoC)16,000,000,000
[167][168][169]
2022Apple4 nm??
Apple M1 Ultra (dual-chip module, 2×10 cores)114,000,000,000
[170][171]
2022Apple5 nm840.5 mm2[163]135,600,000
AMD Epyc 7773X (Milan-X) (multi-chip module, 64 cores, 768 MB L3 cache)26,000,000,000 + Milan[172]2022AMD7 & 12 nm
(TSMC)
1,352 mm2
(Milan + 8×36)[172]
?
IBM Telum dual-chip module (2×8 cores, 2×256 MB cache)45,000,000,000
[173][174]
2022IBM7 nm (Samsung)1,060 mm242,450,000
Apple M2 (deca-core 64-bit ARM64 SoC,SIMD, caches)20,000,000,000[175]2022Apple5 nm??
Dimensity 9200 (ARM64 SoC)17,000,000,000
[176][177][178]
2022Mediatek4 nm
(TSMC N4P)
??
Qualcomm Snapdragon 8 Gen 2 (octa-core ARM64 "mobile SoC",SIMD, caches)16,000,000,0002022Qualcomm4 nm268 mm259,701,492
AMDEPYC Genoa (4th gen/9004 series) 13-chip module (up to 96 cores and 384 MB (L3) + 96 MB (L2) cache)[179]90,000,000,000
[180][181]
2022AMD5 nm (CCD)
6 nm (IOD)
1,263.34 mm2
12×72.225 (CCD)
396.64 (IOD)
[182][183]
71,240,000
HiSilicon Kirin 9000s9,510,000,000[184]2023Huawei7 nm107 mm2107,690,000
Apple M4 (deca-core 64-bit ARM64 SoC,SIMD, caches)28,000,000,000[185]2024Apple3 nm??
Apple M3 (octa-core 64-bit ARM64 SoC,SIMD, caches)25,000,000,000[186]2023Apple3 nm??
Apple M3 Pro (dodeca-core 64-bit ARM64 SoC,SIMD, caches)37,000,000,000[186]2023Apple3 nm??
Apple M3 Max (16-core 64-bit ARM64 SoC,SIMD, caches)92,000,000,000[186]2023Apple3 nm??
Apple A1719,000,000,000
[187]
2023Apple3 nm103.8 mm2183,044,315
Sapphire Rapids quad-chip module (up to 60 cores and 112.5 MB of cache)[188]44,000,000,000–
48,000,000,000[189]
2023Intel10 nm ESF (Intel 7)1,600 mm227,500,000–
30,000,000
Apple M2 Pro (12-core 64-bit ARM64 SoC,SIMD, caches)40,000,000,000[190]2023Apple5 nm??
Apple M2 Max (12-core 64-bit ARM64 SoC,SIMD, caches)67,000,000,000[190]2023Apple5 nm??
Apple M2 Ultra (two M2 Max dies)134,000,000,000[191]2023Apple5 nm??
AMDEpyc Bergamo (4th gen/97X4 series) 9-chip module (up to 128 cores and 256 MB (L3) + 128 MB (L2) cache)82,000,000,000[192]2023AMD5 nm (CCD)
6 nm (IOD)
??
AMD Instinct MI300A (multi-chip module, 24 cores, 128 GB GPU memory + 256 MB (LLC/L3) cache)146,000,000,000[193][194]2023AMD5 nm (CCD, GCD)
6 nm (IOD)
1,017 mm2144,000,000
ProcessorTransistor countYearDesignerProcess
(nm)
Area (mm2)Transistor
density
(tr./mm2)

GPUs

[edit]

Agraphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.

The designer refers to thetechnology company that designs the logic of theintegrated circuit chip (such asNvidia andAMD). The manufacturer ("Fab.") refers to thesemiconductor company that fabricates the chip using itssemiconductor manufacturing process at afoundry (such asTSMC andSamsung Semiconductor). The transistor count in a chip is dependent on a manufacturer's fabrication process, with smallersemiconductor nodes typically enabling higher transistor density and thus higher transistor counts.

Therandom-access memory (RAM) that comes with GPUs (such asVRAM,SGRAM orHBM) greatly increases the total transistor count, with thememory typically accounting for the majority of transistors in agraphics card. For example,Nvidia'sTesla P100 has 15 billionFinFETs (16 nm) in the GPU in addition to 16 GB ofHBM2 memory, totaling about 150 billionMOSFETs on the graphics card.[195] The following table does not include the memory. For memory transistor counts, see theMemory section below.

ProcessorTransistor countYearDesigner(s)Fab(s)ProcessAreaTransistor
density
(tr./mm2)
Ref
μPD7220 GDC40,0001982NECNEC5,000 nm??[196]
ARTC HD6348460,0001984HitachiHitachi???[197]
CBM Agnus21,0001985CommodoreCSG5,000 nm??[198][199]
YM7101 VDP100,0001988Yamaha,SegaYamaha???[200]
Tom & Jerry750,0001993FlareIBM???[200]
VDP11,000,0001994SegaHitachi500 nm??[201]
Sony GPU1,000,0001994ToshibaLSI500 nm??[202][203][204]
NV11,000,0001995Nvidia, SegaSGS500 nm90 mm211,000
Reality Coprocessor2,600,0001996SGINEC350 nm81 mm232,100[205]
PowerVR1,200,0001996VideoLogicNEC350 nm??[206]
Voodoo Graphics1,000,00019963dfxTSMC500 nm??[207][208]
Voodoo Rush1,000,00019973dfxTSMC500 nm??[207][208]
NV33,500,0001997NvidiaSGS, TSMC350 nm90 mm238,900[209][210]
i7403,500,0001998Intel,Real3DReal3D350 nm??[207][208]
Voodoo 24,000,00019983dfxTSMC350 nm??
Voodoo Rush4,000,00019983dfxTSMC350 nm??
NV47,000,0001998NvidiaTSMC350 nm90 mm278,000[207][210]
PowerVR2 CLX210,000,0001998VideoLogicNEC250 nm116 mm286,200[211][212][213][214]
PowerVR2 PMX16,000,0001999VideoLogicNEC250 nm??[215]
Rage 1288,000,0001999ATITSMC,UMC250 nm70 mm2114,000[208]
Voodoo 38,100,00019993dfxTSMC250 nm??[216]
Graphics Synthesizer43,000,0001999Sony, ToshibaSony,Toshiba180 nm279 mm2154,000[65][217][64][63]
NV515,000,0001999NvidiaTSMC250 nm90 mm2167,000[208]
NV1017,000,0001999NvidiaTSMC220 nm111 mm2153,000[218][210]
NV1120,000,0002000NvidiaTSMC180 nm65 mm2308,000[208]
NV1525,000,0002000NvidiaTSMC180 nm81 mm2309,000[208]
Voodoo 414,000,00020003dfxTSMC220 nm??[207][208]
Voodoo 528,000,00020003dfxTSMC220 nm??[207][208]
R10030,000,0002000ATITSMC180 nm97 mm2309,000[208]
Flipper51,000,0002000ArtXNEC180 nm106 mm2481,000[65][219]
PowerVR3 KYRO14,000,0002001ImaginationST250 nm??[207][208]
PowerVR3 KYRO II15,000,0002001ImaginationST180 nm
NV2A60,000,0002001NvidiaTSMC150 nm??[207][220]
NV2057,000,0002001NvidiaTSMC150 nm128 mm2445,000[208]
NV2563,000,0002002NvidiaTSMC150 nm142 mm2444,000
NV2836,000,0002002NvidiaTSMC150 nm101 mm2356,000
NV17/1829,000,0002002NvidiaTSMC150 nm65 mm2446,000
R20060,000,0002001ATITSMC150 nm68 mm2882,000
R300107,000,0002002ATITSMC150 nm218 mm2490,800
R360117,000,0002003ATITSMC150 nm218 mm2536,700
NV3445,000,0002003NvidiaTSMC150 nm124 mm2363,000
NV34b45,000,0002004NvidiaTSMC140 nm91 mm2495,000
NV30125,000,0002003NvidiaTSMC130 nm199 mm2628,000
NV3180,000,0002003NvidiaTSMC130 nm121 mm2661,000
NV35/38135,000,0002003NvidiaTSMC130 nm207 mm2652,000
NV3682,000,0002003NvidiaIBM130 nm133 mm2617,000
R480160,000,0002004ATITSMC130 nm297 mm2538,700
NV40222,000,0002004NvidiaIBM130 nm305 mm2727,900
NV4475,000,0002004NvidiaIBM130 nm110 mm2681,800
NV41222,000,0002005NvidiaTSMC110 nm225 mm2986,700[208]
NV42198,000,0002005NvidiaTSMC110 nm222 mm2891,900
NV43146,000,0002005NvidiaTSMC110 nm154 mm2948,100
G70303,000,0002005NvidiaTSMC,Chartered110 nm333 mm2909,900
Xenos232,000,0002005ATITSMC90 nm182 mm21,275,000[221][222]
RSX Reality Synthesizer300,000,0002005Nvidia, SonySony90 nm186 mm21,613,000[223][224]
R520321,000,0002005ATITSMC90 nm288 mm21,115,000[208]
RV530157,000,0002005ATITSMC90 nm150 mm21,047,000
RV515107,000,0002005ATITSMC90 nm100 mm21,070,000
R580384,000,0002006ATITSMC90 nm352 mm21,091,000
G71278,000,0002006NvidiaTSMC90 nm196 mm21,418,000
G72112,000,0002006NvidiaTSMC90 nm81 mm21,383,000
G73177,000,0002006NvidiaTSMC90 nm125 mm21,416,000
G80681,000,0002006NvidiaTSMC90 nm480 mm21,419,000
G86 Tesla210,000,0002007NvidiaTSMC80 nm127 mm21,654,000
G84 Tesla289,000,0002007NvidiaTSMC80 nm169 mm21,710,000
RV560330,000,0002006ATITSMC80 nm230 mm21,435,000
R600700,000,0002007ATITSMC80 nm420 mm21,667,000
RV610180,000,0002007ATITSMC65 nm85 mm22,118,000[208]
RV630390,000,0002007ATITSMC65 nm153 mm22,549,000
G92754,000,0002007NvidiaTSMC, UMC65 nm324 mm22,327,000
G94 Tesla505,000,0002008NvidiaTSMC65 nm240 mm22,104,000
G96 Tesla314,000,0002008NvidiaTSMC65 nm144 mm22,181,000
G98 Tesla210,000,0002008NvidiaTSMC65 nm86 mm22,442,000
GT200[225]1,400,000,0002008NvidiaTSMC65 nm576 mm22,431,000
RV620181,000,0002008ATITSMC55 nm67 mm22,701,000[208]
RV635378,000,0002008ATITSMC55 nm135 mm22,800,000
RV710242,000,0002008ATITSMC55 nm73 mm23,315,000
RV730514,000,0002008ATITSMC55 nm146 mm23,521,000
RV670666,000,0002008ATITSMC55 nm192 mm23,469,000
RV770956,000,0002008ATITSMC55 nm256 mm23,734,000
RV790959,000,0002008ATITSMC55 nm282 mm23,401,000[226][208]
G92b Tesla754,000,0002008NvidiaTSMC, UMC55 nm260 mm22,900,000[208]
G94b Tesla505,000,0002008NvidiaTSMC, UMC55 nm196 mm22,577,000
G96b Tesla314,000,0002008NvidiaTSMC, UMC55 nm121 mm22,595,000
GT200b Tesla1,400,000,0002008NvidiaTSMC, UMC55 nm470 mm22,979,000
GT218 Tesla260,000,0002009NvidiaTSMC40 nm57 mm24,561,000[208]
GT216 Tesla486,000,0002009NvidiaTSMC40 nm100 mm24,860,000
GT215 Tesla727,000,0002009NvidiaTSMC40 nm144 mm25,049,000
RV740826,000,0002009ATITSMC40 nm137 mm26,029,000
Cypress RV8702,154,000,0002009ATITSMC40 nm334 mm26,449,000
Juniper RV8401,040,000,0002009ATITSMC40 nm166 mm26,265,000
Redwood RV830627,000,0002010AMD (ATI)TSMC40 nm104 mm26,029,000[208]
Cedar RV810292,000,0002010AMDTSMC40 nm59 mm24,949,000
Cayman RV9702,640,000,0002010AMDTSMC40 nm389 mm26,789,000
Barts RV9401,700,000,0002010AMDTSMC40 nm255 mm26,667,000
Turks RV930716,000,0002011AMDTSMC40 nm118 mm26,068,000
Caicos RV910370,000,0002011AMDTSMC40 nm67 mm25,522,000
GF100 Fermi3,200,000,0002010NvidiaTSMC40 nm526 mm26,084,000[227]
GF110 Fermi3,000,000,0002010NvidiaTSMC40 nm520 mm25,769,000[227]
GF104 Fermi1,950,000,0002011NvidiaTSMC40 nm332 mm25,873,000[208]
GF106 Fermi1,170,000,0002010NvidiaTSMC40 nm238 mm24,916,000[208]
GF108 Fermi585,000,0002011NvidiaTSMC40 nm116 mm25,043,000[208]
GF119 Fermi292,000,0002011NvidiaTSMC40 nm79 mm23,696,000[208]
Tahiti GCN14,312,711,8732011AMDTSMC28 nm365 mm211,820,000[228]
Cape Verde GCN11,500,000,0002012AMDTSMC28 nm123 mm212,200,000[208]
Pitcairn GCN12,800,000,0002012AMDTSMC28 nm212 mm213,210,000[208]
GK110 Kepler7,080,000,0002012NvidiaTSMC28 nm561 mm212,620,000[229][230]
GK104 Kepler3,540,000,0002012NvidiaTSMC28 nm294 mm212,040,000[231]
GK106 Kepler2,540,000,0002012NvidiaTSMC28 nm221 mm211,490,000[208]
GK107 Kepler1,270,000,0002012NvidiaTSMC28 nm118 mm210,760,000[208]
GK208 Kepler1,020,000,0002013NvidiaTSMC28 nm79 mm212,910,000[208]
Oland GCN11,040,000,0002013AMDTSMC28 nm90 mm211,560,000[208]
Bonaire GCN22,080,000,0002013AMDTSMC28 nm160 mm213,000,000
Durango (Xbox One)4,800,000,0002013AMDTSMC28 nm375 mm212,800,000[232][233]
Liverpool (PlayStation 4)?2013AMDTSMC28 nm348 mm2?[234]
Hawaii GCN26,300,000,0002013AMDTSMC28 nm438 mm214,380,000[208]
GM200 Maxwell8,000,000,0002015NvidiaTSMC28 nm601 mm213,310,000
GM204 Maxwell5,200,000,0002014NvidiaTSMC28 nm398 mm213,070,000
GM206 Maxwell2,940,000,0002014NvidiaTSMC28 nm228 mm212,890,000
GM107Maxwell1,870,000,0002014NvidiaTSMC28 nm148 mm212,640,000
Tonga GCN35,000,000,0002014AMDTSMC,GlobalFoundries28 nm366 mm213,660,000
Fiji GCN38,900,000,0002015AMDTSMC28 nm596 mm214,930,000
Durango 2 (Xbox One S)5,000,000,0002016AMDTSMC16 nm240 mm220,830,000[235]
Neo (PlayStation 4 Pro)5,700,000,0002016AMDTSMC16 nm325 mm217,540,000[236]
Ellesmere/Polaris 10 GCN45,700,000,0002016AMDSamsung, GlobalFoundries14 nm232 mm224,570,000[237]
Baffin/Polaris 11 GCN43,000,000,0002016AMDSamsung, GlobalFoundries14 nm123 mm224,390,000[208][238]
Lexa/Polaris 12 GCN42,200,000,0002017AMDSamsung, GlobalFoundries14 nm101 mm221,780,000[208][238]
GP100 Pascal15,300,000,0002016NvidiaTSMC, Samsung16 nm610 mm225,080,000[239][240]
GP102 Pascal11,800,000,0002016NvidiaTSMC, Samsung16 nm471 mm225,050,000[208][240]
GP104 Pascal7,200,000,0002016NvidiaTSMC16 nm314 mm222,930,000[208][240]
GP106 Pascal4,400,000,0002016NvidiaTSMC16 nm200 mm222,000,000[208][240]
GP107 Pascal3,300,000,0002016NvidiaSamsung14 nm132 mm225,000,000[208][240]
GP108 Pascal1,850,000,0002017NvidiaSamsung14 nm74 mm225,000,000[208][240]
Scorpio (Xbox One X)6,600,000,0002017AMDTSMC16 nm367 mm217,980,000[232][241]
Vega 10 GCN512,500,000,0002017AMDSamsung, GlobalFoundries14 nm484 mm225,830,000[242]
GV100Volta21,100,000,0002017NvidiaTSMC12 nm815 mm225,890,000[243]
TU102 Turing18,600,000,0002018NvidiaTSMC12 nm754 mm224,670,000[244]
TU104 Turing13,600,000,0002018NvidiaTSMC12 nm545 mm224,950,000
TU106 Turing10,800,000,0002018NvidiaTSMC12 nm445 mm224,270,000
TU116 Turing6,600,000,0002019NvidiaTSMC12 nm284 mm223,240,000[245]
TU117 Turing4,700,000,0002019NvidiaTSMC12 nm200 mm223,500,000[246]
Vega 20 GCN513,230,000,0002018AMDTSMC7 nm331 mm239,970,000[208]
Navi 10 RDNA10,300,000,0002019AMDTSMC7 nm251 mm241,040,000[247]
Navi 12 RDNA?2020AMDTSMC7 nm??
Navi 14 RDNA6,400,000,0002019AMDTSMC7 nm158 mm240,510,000[248]
Arcturus CDNA25,600,000,0002020AMDTSMC7 nm750 mm234,100,000[249]
GA100 Ampere54,200,000,0002020NvidiaTSMC7 nm826 mm265,620,000[250][251]
GA102 Ampere28,300,000,0002020NvidiaSamsung8 nm628 mm245,035,000[252][253]
GA103 Ampere22,000,000,0002022NvidiaSamsung8 nm496 mm244,400,000[254]
GA104 Ampere17,400,000,0002020NvidiaSamsung8 nm392 mm244,390,000[255]
GA106 Ampere12,000,000,0002021NvidiaSamsung8 nm276 mm243,480,000[256]
GA107 Ampere8,700,000,0002021NvidiaSamsung8 nm200 mm243,500,000[257]
Navi 21 RDNA226,800,000,0002020AMDTSMC7 nm520 mm251,540,000
Navi 22 RDNA217,200,000,0002021AMDTSMC7 nm335 mm251,340,000
Navi 23 RDNA211,060,000,0002021AMDTSMC7 nm237 mm246,670,000
Navi 24 RDNA25,400,000,0002022AMDTSMC6 nm107 mm250,470,000
Aldebaran CDNA258,200,000,000 (MCM)2021AMDTSMC6 nm1448–1474 mm2[258]
1480 mm2[259]
1490–1580 mm2[260]
39,500,000–40,200,000
39,200,000
36,800,000–39,100,000
[261]
GH100 Hopper80,000,000,0002022NvidiaTSMC4 nm814 mm298,280,000[262]
AD102 Ada Lovelace76,300,000,0002022NvidiaTSMC4 nm608.4 mm2125,411,000[263]
AD103 Ada Lovelace45,900,000,0002022NvidiaTSMC4 nm378.6 mm2121,240,000[264]
AD104 Ada Lovelace35,800,000,0002022NvidiaTSMC4 nm294.5 mm2121,560,000[264]
AD106 Ada Lovelace?2023NvidiaTSMC4 nm190 mm2?[265][266]
AD107 Ada Lovelace?2023NvidiaTSMC4 nm146 mm2?[265][267]
Navi 31 RDNA357,700,000,000 (MCM)
45,400,000,000 (GCD)
6×2,050,000,000 (MCD)
2022AMDTSMC5 nm (GCD)
6 nm (MCD)
531 mm2 (MCM)
306 mm2 (GCD)
6×37.5 mm2 (MCD)
109,200,000 (MCM)
132,400,000 (GCD)
54,640,000 (MCD)
[268][269][270]
Navi 32 RDNA328,100,000,000 (MCM)2023AMDTSMC5 nm (GCD)
6 nm (MCD)
350 mm2 (MCM)
200 mm2 (GCD)
4×37.5 mm2 (MCD)
80,200,000 (MCM)[271]
Navi 33 RDNA313,300,000,0002023AMDTSMC6 nm204 mm265,200,000[272]
Aqua Vanjaram CDNA3153,000,000,000 (MCM)2023AMDTSMC5 nm (GCD)
6 nm (MCD)
??[273][274]
GB200 Grace Blackwell208,000,000,000 (MCM)2024NvidiaTSMC4 nm ??[275]
GB202 Blackwell (RTX 5090)92,200,000,0002025NvidiaTSMC4 nm 750 mm2122,600,000[276]
ProcessorTransistor countYearDesigner(s)Fab(s)MOSprocessAreaTransistor
density
(tr./mm2)
Ref

FPGA

[edit]

Afield-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

FPGATransistor countDate of introductionDesignerManufacturerProcessAreaTransistor density, tr./mm2Ref
Virtex70,000,0001997Xilinx
Virtex-E200,000,0001998Xilinx
Virtex-II350,000,0002000Xilinx130 nm
Virtex-II PRO430,000,0002002Xilinx
Virtex-41,000,000,0002004Xilinx90 nm
Virtex-51,100,000,0002006XilinxTSMC65 nm[277]
Stratix IV2,500,000,0002008AlteraTSMC40 nm[278]
Stratix V3,800,000,0002011AlteraTSMC28 nm[citation needed]
Arria 105,300,000,0002014AlteraTSMC20 nm[279]
Virtex-7 2000T6,800,000,0002011XilinxTSMC28 nm[280]
Stratix 10 SX 280017,000,000,000TBDIntelIntel14 nm560 mm230,400,000[281][282]
Virtex-Ultrascale VU44020,000,000,000Q1 2015XilinxTSMC20 nm[283][284]
Virtex-Ultrascale+ VU19P35,000,000,0002020XilinxTSMC16 nm900 mm2[f]38,900,000[285][286][287]
Versal VC190237,000,000,0002H 2019XilinxTSMC7 nm[288][289][290]
Stratix 10 GX 10M43,300,000,000Q4 2019IntelIntel14 nm1,400 mm2[f]30,930,000[291][292]
Versal VP180292,000,000,0002021?[g]XilinxTSMC7 nm[293][294]

Memory

[edit]
See also:Random-access memory § Timeline,flash memory § Timeline, andread-only memory § Timeline

Semiconductor memory is an electronicdata storage device, often used ascomputer memory, implemented onintegrated circuits. Nearly all semiconductor memories since the 1970s have usedMOSFETs (MOS transistors), replacing earlierbipolar junction transistors. There are two major types of semiconductor memory:random-access memory (RAM) andnon-volatile memory (NVM). In turn, there are two major RAM types:dynamic random-access memory (DRAM) andstatic random-access memory (SRAM), as well as two major NVM types:flash memory andread-only memory (ROM).

TypicalCMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not[clarification needed] is used to store 1 or 0. In flash memory, the data is stored in floating gates, and the resistance of the transistor is sensed[clarification needed] to interpret the data stored. Depending on how fine scale the resistance could be separated[clarification needed], one transistor could store up to threebits, meaning eight distinctive levels of resistance possible per transistor. However, a finer scale comes with the cost of repeatability issues, and hence reliability. Typically, low grade 2-bitsMLC flash is used forflash drives, so a 16 GB flash drive contains roughly 64 billion transistors.

For SRAM chips, six-transistor cells (six transistors per bit) was the standard.[295] DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4 Kb DRAM in the mid-1970s.[296][297] Insingle-level flash memory, each cell contains onefloating-gate MOSFET (one transistor per bit),[298] whereasmulti-level flash contains 2, 3 or 4 bits per transistor.

Flash memory chips are commonly stacked up in layers, up to 128-layer in production,[299] and 136-layer managed,[300] and available in end-user devices up to 69-layer from manufacturers.

Random-access memory (RAM)
Chip nameCapacity (bits)RAM typeTransistor countDate of introductionManufacturer(s)ProcessAreaTransistor
density
(tr./mm2)
Ref
1-bitSRAM (cell)61963Fairchild?[301]
1-bitDRAM (cell)11965Toshiba?[302][303]
?8-bitSRAM (bipolar)481965SDS,Signetics???[301]
SP9516-bitSRAM (bipolar)801965IBM???[304]
TMC316216-bitSRAM (TTL)961966Transitron??[297]
??SRAM (MOS)?1966NEC???[296]
256-bitDRAM (IC)2561968Fairchild???[297]
64-bitSRAM (PMOS)3841968Fairchild???[296]
144-bitSRAM (NMOS)8641968NEC
1101256-bitSRAM (PMOS)1,5361969Intel12,000 nm??[305][306][307]
11021KbDRAM (PMOS)3,0721970Intel,Honeywell???[296]
11031 KbDRAM (PMOS)3,0721970Intel8,000nm10 mm2307[308][295][309][297]
μPD4031 KbDRAM (NMOS)3,0721971NEC???[310]
?2 KbDRAM (PMOS)6,1441971General Instrument?12.7 mm2484[311]
21021 KbSRAM (NMOS)6,1441972Intel???[305][312]
?8 KbDRAM (PMOS)8,1921973IBM?18.8 mm2436[311]
51011 KbSRAM (CMOS)6,1441974Intel???[305]
211616 KbDRAM (NMOS)16,3841975Intel???[313][297]
21144 KbSRAM (NMOS)24,5761976Intel???[305][314]
?4 KbSRAM (CMOS)24,5761977Toshiba???[306]
64 KbDRAM (NMOS)65,5361977NTT?35.4 mm21851[311]
DRAM (VMOS)65,5361979Siemens?25.2 mm22601[311]
16 KbSRAM (CMOS)98,3041980Hitachi, Toshiba???[315]
256 KbDRAM (NMOS)262,1441980NEC1,500 nm41.6 mm26302[311]
NTT1,000 nm34.4 mm27620[311]
64 KbSRAM (CMOS)393,2161980Matsushita???[315]
288 KbDRAM294,9121981IBM?25 mm211,800[316]
64 KbSRAM (NMOS)393,2161982Intel1,500 nm??[315]
256 KbSRAM (CMOS)1,572,8641984Toshiba1,200 nm??[315][307]
8MbDRAM8,388,608January 5, 1984Hitachi???[317][318]
16 MbDRAM (CMOS)16,777,2161987NTT700 nm148 mm2113,400[311]
4 MbSRAM (CMOS)25,165,8241990NEC, Toshiba, Hitachi,Mitsubishi???[315]
64 MbDRAM (CMOS)67,108,8641991Matsushita, Mitsubishi,Fujitsu, Toshiba400 nm
KM48SL200016 MbSDRAM16,777,2161992Samsung???[319][320]
?16 MbSRAM (CMOS)100,663,2961992Fujitsu, NEC400 nm??[315]
256 MbDRAM (CMOS)268,435,4561993Hitachi, NEC250 nm
1GbDRAM1,073,741,824January 9, 1995NEC250 nm??[321][322]
Hitachi160 nm??
SDRAM1,073,741,8241996Mitsubishi150 nm??[315]
SDRAM (SOI)1,073,741,8241997Hyundai???[323]
4 GbDRAM (4-bit)1,073,741,8241997NEC150 nm??[315]
DRAM4,294,967,2961998Hyundai???[323]
8 GbSDRAM (DDR3)8,589,934,592April 2008Samsung50 nm??[324]
16 GbSDRAM (DDR3)17,179,869,1842008
32 GbSDRAM (HBM2)34,359,738,3682016Samsung20 nm??[325]
64 GbSDRAM (HBM2)68,719,476,7362017
128 GbSDRAM (DDR4)137,438,953,4722018Samsung10 nm??[326]
?RRAM[327] (3DSoC)[328]?2019SkyWater Technology[329]90 nm??
Flash memory
Chip nameCapacity (bits)Flash typeFGMOS transistor countDate of introductionManufacturer(s)ProcessAreaTransistor
density
(tr./mm2)
Ref
?256KbNOR262,1441985Toshiba2,000 nm??[315]
1MbNOR1,048,5761989Seeq,Intel?
4 MbNAND4,194,3041989Toshiba1,000 nm
16 MbNOR16,777,2161991Mitsubishi600 nm
DD28F032SA32 MbNOR33,554,4321993Intel?280 mm2120,000[305][330]
?64 MbNOR67,108,8641994NEC400 nm??[315]
NAND67,108,8641996Hitachi
128 MbNAND134,217,7281996Samsung, Hitachi?
256 MbNAND268,435,4561999Hitachi, Toshiba250 nm
512 MbNAND536,870,9122000Toshiba???[331]
1Gb2-bit NAND536,870,9122001Samsung???[315]
Toshiba,SanDisk160 nm??[332]
2 GbNAND2,147,483,6482002Samsung, Toshiba???[333][334]
8 GbNAND8,589,934,5922004Samsung60 nm??[333]
16 GbNAND17,179,869,1842005Samsung50 nm??[335]
32 GbNAND34,359,738,3682006Samsung40 nm
THGAM128 GbStacked NAND128,000,000,000April 2007Toshiba56 nm252 mm2507,900,000[336]
THGBM256 GbStacked NAND256,000,000,0002008Toshiba43 nm353 mm2725,200,000[337]
THGBM21TbStacked4-bit NAND256,000,000,0002010Toshiba32 nm374 mm2684,500,000[338]
KLMCG8GE4A512 GbStacked 2-bit NAND256,000,000,0002011Samsung?192 mm21,333,000,000[339]
KLUFG8R1EM4 TbStacked3-bitV-NAND1,365,333,333,5042017Samsung?150 mm29,102,000,000[340]
eUFS (1 TB)8 TbStacked 4-bit V-NAND2,048,000,000,0002019Samsung?150 mm213,650,000,000[341][342]
?1 Tb232L TLC NAND die333,333,333,3332022Micron?68.5 mm2
(memory array)
4,870,000,000
(14.6 Gbit/mm2)
[343][344][345][346]
?16 Tb232L package5,333,333,333,3332022Micron?68.5 mm2
(memory array)
77,900,000,000
(16×14.6 Gbit/mm2)
Read-only memory (ROM)
Chip nameCapacity (bits)ROM typeTransistor countDate of introductionManufacturer(s)ProcessAreaRef
??PROM?1956Arma?[347][348]
1KbROM (MOS)1,0241965General Microelectronics??[349]
33011 KbROM (bipolar)1,0241969Intel?[349]
17022 KbEPROM (MOS)2,0481971Intel?15 mm2[350]
?4 KbROM (MOS)4,0961974AMD,General Instrument??[349]
27088 KbEPROM (MOS)8,1921975Intel??[305]
?2 KbEEPROM (MOS)2,0481976Toshiba??[351]
μCOM-43 ROM16 KbPROM (PMOS)16,0001977NEC??[352]
271616 KbEPROM (TTL)16,3841977Intel?[308][353]
EA8316F16 KbROM (NMOS)16,3841978Electronic Arrays?436 mm2[349][354]
273232 KbEPROM32,7681978Intel??[305]
236464 KbROM65,5361978Intel??[355]
276464 KbEPROM65,5361981Intel3,500nm?[305][315]
27128128 KbEPROM131,0721982Intel?
27256256 KbEPROM (HMOS)262,1441983Intel??[305][356]
?256 KbEPROM (CMOS)262,1441983Fujitsu??[357]
512 KbEPROM (NMOS)524,2881984AMD1,700 nm?[315]
27512512 KbEPROM (HMOS)524,2881984Intel??[305][358]
?1MbEPROM (CMOS)1,048,5761984NEC1,200 nm?[315]
4 MbEPROM (CMOS)4,194,3041987Toshiba800 nm
16 MbEPROM (CMOS)16,777,2161990NEC600 nm
MROM16,777,2161995AKM,Hitachi??[322]

Transistor computers

[edit]
Part of anIBM 7070 card cage populated withStandard Modular System cards
Main article:Transistor computer

Before transistors were invented,relays were used in commercialtabulating machines and experimental early computers. The world's first workingprogrammable, fully automaticdigital computer,[359] the 1941Z3 22-bitword length computer, had 2,600 relays, and operated at aclock frequency of about 4–5 Hz. The 1940 Complex Number Computer had fewer than 500 relays,[360] but it was not fully programmable. The earliest practical computers usedvacuum tubes and solid-statediode logic.ENIAC had 18,000 vacuum tubes, 7,200 crystal diodes, and 1,500 relays, with many of the vacuum tubes containing twotriode elements.

The second generation of computers weretransistor computers that featured boards filled with discrete transistors, solid-state diodes andmagnetic memory cores. The experimental 195348-bitTransistor Computer, developed at theUniversity of Manchester, is widely believed to be the first transistor computer to come into operation anywhere in the world (the prototype had 92 point-contact transistors and 550 diodes).[361] A later version the 1955 machine had a total of 250 junction transistors and 1,300 point-contact diodes. The Computer also used a small number of tubes in its clock generator, so it was not the firstfully transistorized. The ETL Mark III, developed at theElectrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using thestored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out."[362] The 1958decimal architectureIBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000Standard Modular System (SMS) cards. The 1959MOBIDIC, short for "MOBIle DIgital Computer", at 12,000 pounds (6.0 short tons) mounted in the trailer of asemi-trailer truck, was a transistorized computer for battlefield data.

The third generation of computers usedintegrated circuits (ICs).[363] The 196215-bitApollo Guidance Computer used "about 4,000 "Type-G" (3-input NOR gate) circuits" for about 12,000 transistors plus 32,000 resistors.[364]TheIBM System/360, introduced 1964, used discrete transistors inhybrid circuit packs.[363] The 196512-bitPDP-8 CPU had 1409 discrete transistors and over 10,000 diodes, on many cards. Later versions, starting with the 1968 PDP-8/I, used integrated circuits. The PDP-8 was later reimplemented as a microprocessor as theIntersil 6100, see below.[365]

The next generation of computers were themicrocomputers, starting with the 1971Intel 4004, which usedMOS transistors. These were used inhome computers orpersonal computers (PCs).

This list includes early transistorized computers (second generation) and IC-based computers (third generation) from the 1950s and 1960s.

ComputerTransistor countYearManufacturerNotesRef
Transistor Computer921953University of ManchesterPoint-contact transistors, 550 diodes. Lacked stored program capability.[361]
TRADIC7001954Bell LabsPoint-contact transistors[361]
Transistor Computer (full size)2501955University of ManchesterDiscrete point-contact transistors, 1,300 diodes[361]
IBM 6083,0001955IBMGermanium transistors[366]
ETL Mark III1301956Electrotechnical LaboratoryPoint-contact transistors, 1,800 diodes, stored program capability[361][362]
Metrovick 9502001956Metropolitan-VickersDiscretejunction transistors
NEC NEAC-22016001958NECGermanium transistors[367]
Hitachi MARS-11,0001958Hitachi[368]
IBM 707030,0001958IBMAlloy-junction germanium transistors, 22,000 diodes[369]
Matsushita MADIC-I4001959MatsushitaBipolar transistors[370]
NEC NEAC-22032,5791959NEC[371]
Toshiba TOSBAC-21005,0001959Toshiba[372]
IBM 709050,0001959IBMDiscrete germanium transistors[373]
PDP-12,7001959Digital Equipment CorporationDiscrete transistors
Olivetti Elea 9003?1959Olivetti300,000 (?)discrete transistors and diodes[374]
Mitsubishi MELCOM 11013,5001960MitsubishiGermanium transistors[375]
M18 FADAC1,6001960AutoneticsDiscrete transistors
CPU ofIBM 7030 Stretch169,1001961IBMWorld's fastest computer from 1961 to 1964[376]
D-17B1,5211962AutoneticsDiscrete transistors
NEC NEAC-L216,0001964NECGe transistors[377]
CDC 6600 (entire computer)400,0001964Control Data CorporationWorld's fastest computer from 1964 to 1969[378]
IBM System/360?1964IBMHybrid circuits
PDP-8 "Straight-8"1,409[365]1965Digital Equipment Corporationdiscrete transistors, 10,000 diodes
PDP-8/S1,001[379][380][381]1966Digital Equipment Corporationdiscrete transistors, diodes
PDP-8/I1,409[citation needed]1968[382]Digital Equipment Corporation74 seriesTTL circuits[383]
Apollo Guidance Computer Block I12,3001966Raytheon /MIT Instrumentation Laboratory4,100ICs, each containing a 3-transistor, 3-input NOR gate. (Block II had 2,800 dual 3-input NOR gates ICs.)

Logic functions

[edit]

Transistor count for generic logic functions is based on staticCMOS implementation.[384]

FunctionTransistor countRef
NOT2
Buffer4
NAND 2-input4
NOR 2-input4
AND 2-input6
OR 2-input6
NAND 3-input6
NOR 3-input6
XOR 2-input6
XNOR 2-input8
MUX 2-input withTG6
MUX 4-input withTG18
NOT MUX 2-input8
MUX 4-input24
1-bitfull adder24
1-bitadder–subtractor48
AND-OR-INVERT6[385]
Latch, D gated8
Flip-flop, edge triggered dynamic D with reset12
8-bit multiplier3,000
16-bit multiplier9,000
32-bit multiplier21,000[citation needed]
small-scale integration2–100[386]
medium-scale integration100–500[386]
large-scale integration500–20,000[386]
very-large-scale integration20,000–1,000,000[386]
ultra-large scale integration>1,000,000

Parallel systems

[edit]

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was aserial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later eachmulti-core processor chip could contain more processing elements.[387]

Goodyear MPP: (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.[387]

Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.[387]

Cell Broadband Engine: (2006) with 9 cores per chip, had 234 million transistors per chip.[388]

Other devices

[edit]
Device typeDevice nameTransistor countDate of introductionDesigner(s)Manufacturer(s)MOSprocessAreaTransistor density, tr./mm2Ref
Deep learning engine / IPU[h]Colossus GC223,600,000,0002018GraphcoreTSMC16 nm~800 mm229,500,000[389][390][391][better source needed]
Deep learning engine / IPUWafer Scale Engine1,200,000,000,0002019CerebrasTSMC16 nm46,225 mm225,960,000[1][2][3][4]
Deep learning engine / IPUWafer Scale Engine 22,600,000,000,0002020CerebrasTSMC7 nm46,225 mm256,250,000[5][392][393]
Network switchNVLink4 NVSwitch25,100,000,0002022NvidiaTSMCN4 (4 nm)294 mm285,370,000[394]

Transistor density

[edit]

The transistor density is the number of transistors that arefabricated per unit area, typically measured in terms of the number of transistors persquare millimeter (mm2). The transistor density usually correlates with thegate length of asemiconductor node (also known as asemiconductor manufacturing process), typically measured innanometers (nm). As of 2019[update], the semiconductor node with the highest transistor density is TSMC's5 nanometer node, with 171.3 million transistors per square millimeter (note this corresponds to a transistor-transistor spacing of 76.4 nm, far greater than the relative meaningless "5nm")[395]

MOSFET nodes

[edit]
Further information:List of semiconductor scale examples
Semiconductor nodes
Node nameTransistor density (transistors/mm2)Production yearProcessMOSFETManufacturer(s)Ref
??196020,000nmPMOSBell Labs[396][397]
??196020,000 nmNMOS
??1963?CMOSFairchild[398]
??1964?PMOSGeneral Microelectronics[399]
??196820,000 nmCMOSRCA[400]
??196912,000 nmPMOSIntel[315][307]
??197010,000 nmCMOSRCA[400]
?30019708,000 nmPMOSIntel[309][297]
??197110,000 nmPMOSIntel[401]
?4801971?PMOSGeneral Instrument[311]
??1973?NMOSTexas Instruments[311]
?2201973?NMOSMostek[311]
??19737,500 nmNMOSNEC[19][18]
??19736,000 nmPMOSToshiba[20][402]
??19765,000 nmNMOSHitachi, Intel[311]
??19765,000 nmCMOSRCA
??19764,000 nmNMOSZilog
??19763,000 nmNMOSIntel[403]
?1,8501977?NMOSNTT[311]
??19783,000 nmCMOSHitachi[404]
??19782,500 nmNMOSTexas Instruments[311]
??19782,000 nmNMOSNEC, NTT
?2,6001979?VMOSSiemens
?7,28019791,000 nmNMOSNTT
?7,62019801,000 nmNMOSNTT
??19832,000 nmCMOSToshiba[315]
??19831,500 nmCMOSIntel[311]
??19831,200 nmCMOSIntel
??1984800 nmCMOSNTT
??1987700 nmCMOSFujitsu
??1989600 nmCMOSMitsubishi, NEC, Toshiba[315]
??1989500 nmCMOSHitachi, Mitsubishi, NEC, Toshiba
??1991400 nmCMOSMatsushita, Mitsubishi, Fujitsu, Toshiba
??1993350 nmCMOSSony
??1993250 nmCMOSHitachi, NEC
3LM32,0001994350 nmCMOSNEC[205]
??1995160 nmCMOSHitachi[315]
??1996150 nmCMOSMitsubishi
TSMC 180 nm?1998180 nmCMOSTSMC[405]
CS80?1999180 nmCMOSFujitsu[406]
??1999180 nmCMOSIntel, Sony, Toshiba[305][217]
CS85?1999170 nmCMOSFujitsu[407]
Samsung 140 nm?1999140 nmCMOSSamsung[315]
??2001130 nmCMOSFujitsu, Intel[406][305]
Samsung 100 nm?2001100 nmCMOSSamsung[315]
??200290 nmCMOSSony, Toshiba, Samsung[217][333]
CS100?200390 nmCMOSFujitsu[406]
Intel 90 nm1,450,000200490 nmCMOSIntel[408][305]
Samsung 80 nm?200480 nmCMOSSamsung[409]
??200465 nmCMOSFujitsu, Toshiba[410]
Samsung 60 nm?200460 nmCMOSSamsung[333]
TSMC 45 nm?200445 nmCMOSTSMC
Elpida 90 nm?200590 nmCMOSElpida Memory[411]
CS200?200565 nmCMOSFujitsu[412][406]
Samsung 50 nm?200550 nmCMOSSamsung[335]
Intel 65 nm2,080,000200665 nmCMOSIntel[408]
Samsung 40 nm?200640 nmCMOSSamsung[335]
Toshiba 56 nm?200756 nmCMOSToshiba[336]
Matsushita 45 nm?200745 nmCMOSMatsushita[81]
Intel 45 nm3,300,000200845 nmCMOSIntel[413]
Toshiba 43 nm?200843 nmCMOSToshiba[337]
TSMC 40 nm?200840 nmCMOSTSMC[414]
Toshiba 32 nm?200932 nmCMOSToshiba[415]
Intel 32 nm7,500,000201032 nmCMOSIntel[413]
??201020 nmCMOSHynix, Samsung[416][335]
Intel 22 nm15,300,000201222 nmCMOSIntel[413]
IMFT 20 nm?201220 nmCMOSIMFT[417]
Toshiba 19 nm?201219 nmCMOSToshiba
Hynix 16 nm?201316 nmFinFETSK Hynix[416]
TSMC16 nm28,880,000201316 nmFinFETTSMC[418][419]
Samsung10 nm51,820,000201310 nmFinFETSamsung[420][421]
Intel14 nm37,500,000201414 nmFinFETIntel[413]
14LP32,940,000201514 nmFinFETSamsung[420]
TSMC10 nm52,510,000201610 nmFinFETTSMC[418][422]
12LP36,710,000201712 nmFinFETGlobalFoundries, Samsung[238]
N7FF96,500,000

101,850,000[423]

20177 nmFinFETTSMC[424][425][426]
8LPP61,180,00020188 nmFinFETSamsung[420]
7LPE95,300,00020187 nmFinFETSamsung[425]
Intel10 nm100,760,000

106,100,000[423]

201810 nmFinFETIntel[427]
5LPE126,530,000

133,560,000[423] 134,900,000[428]

20185 nmFinFETSamsung[429][430]
N7FF+113,900,00020197 nmFinFETTSMC[424][425]
CLN5FF171,300,000

185,460,000[423]

20195 nmFinFETTSMC[395]
Intel 7100,760,000

106,100,000[423]

20217 nmFinFETIntel
4LPE145,700,000[428]20214 nmFinFETSamsung[431][432][433]
N4196,600,000[423][434]20214 nmFinFETTSMC[435]
N4P196,600,000[423][434]20224 nmFinFETTSMC[436]
3GAE202,850,000[423]20223 nmMBCFETSamsung[437][431][438]
N3314,730,000[423]20223 nmFinFETTSMC[439][440]
N4X?20234 nmFinFETTSMC[441][442][443]
N3E?20233 nmFinFETTSMC[440][444]
3GAP?20233 nmMBCFETSamsung[431]
Intel 4160,000,000[445]20234 nmFinFETIntel[446][447][448]
Intel 3?20233 nmFinFETIntel[447][448]
Intel 20A?20242 nmRibbonFETIntel[447][448]
Intel 18A?2025sub-2 nmRibbonFETIntel[447]
2GAP?20252 nmMBCFETSamsung[431]
N2?20252 nmGAAFETTSMC[440][444]
Samsung 1.4 nm?20271.4 nm?Samsung[449]

Gate count

[edit]

In certain applications, the termgate count is preferred over the term transistor count. It refers to the number oflogic gates built with transistors and other electronic devices needed to implement a design.[450][451][452][453]

See also

[edit]

Notes

[edit]
  1. ^Declassified 1998
  2. ^The TMS1000 is a microcontroller, the transistor count includes memory andinput/output controllers, not just the CPU.
  3. ^3,510 without depletion mode pull-up transistors
  4. ^6,813 without depletion mode pull-up transistors
  5. ^3,900,000,000 core chiplet die, 2,090,000,000 I/O die
  6. ^abEstimate
  7. ^Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular. Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later.
  8. ^"Intelligence Processing Unit"

References

[edit]
  1. ^abHruska, Joel (August 2019)."Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI".extremetech.com. RetrievedSeptember 6, 2019.
  2. ^abFeldman, Michael (August 2019)."Machine Learning chip breaks new ground with waferscale integration".nextplatform.com. RetrievedSeptember 6, 2019.
  3. ^abCutress, Ian (August 2019)."Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor".anandtech.com. RetrievedSeptember 6, 2019.
  4. ^ab"A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip".WikiChip Fuse. November 16, 2019. RetrievedDecember 2, 2019.
  5. ^abEverett, Joseph (August 26, 2020)."World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors".TechReportArticles.
  6. ^Cite error: The named referencem3ultra was invoked but never defined (see thehelp page).
  7. ^"John Gustafson's answer to How many individual transistors are in the world's most powerful supercomputer?".Quora. RetrievedAugust 22, 2019.
  8. ^Pires, Francisco (October 5, 2022)."Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning".Tom's Hardware. RetrievedOctober 5, 2022.
  9. ^Laws, David (April 2, 2018)."13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History".Computer History Museum.
  10. ^Handy, Jim (May 26, 2014)."How Many Transistors Have Ever Shipped?".Forbes.
  11. ^"1971: Microprocessor Integrates CPU Function onto a Single Chip".The Silicon Engine.Computer History Museum. RetrievedSeptember 4, 2019.
  12. ^abHolt, Ray."World's First Microprocessor". RetrievedMarch 5, 2016.1st fully integrated chip set microprocessor
  13. ^ab"Alpha 21364 - Microarchitectures - Compaq - WikiChip".en.wikichip.org. RetrievedSeptember 8, 2019.
  14. ^Holt, Ray M. (1998).The F14A Central Air Data Computer and the LSI Technology State-of-the-Art in 1968. p. 8.
  15. ^Holt, Ray M. (2013)."F14 TomCat MOS-LSI Chip Set".First Microprocessor.Archived from the original on November 6, 2020. RetrievedNovember 6, 2020.
  16. ^Ken Shirriff."The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor". 2015.
  17. ^Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan".Euromicro Newsletter.3 (4):50–7.doi:10.1016/0303-1268(77)90111-0.
  18. ^ab"NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived fromthe original on May 25, 2011. RetrievedJune 11, 2010.
  19. ^ab"1970s: Development and evolution of microprocessors"(PDF).Semiconductor History Museum of Japan. Archived fromthe original(PDF) on June 27, 2019. RetrievedJune 27, 2019.
  20. ^ab"1973: 12-bit engine-control microprocessor (Toshiba)"(PDF).Semiconductor History Museum of Japan. Archived fromthe original(PDF) on June 27, 2019. RetrievedJune 27, 2019.
  21. ^"Low Bandwidth Timeline – Semiconductor".Texas Instruments. RetrievedJune 22, 2016.
  22. ^"The MOS 6502 and the Best Layout Guy in the World".research.swtch.com. January 3, 2011. RetrievedSeptember 3, 2019.
  23. ^Shirriff, Ken (January 2023)."Counting the transistors in the 8086 processor: it's harder than you might think".
  24. ^"Digital History: ZILOG Z8000 (APRIL 1979)".OLD-COMPUTERS.COM : The Museum. RetrievedJune 19, 2019.
  25. ^"Chip Hall of Fame: Motorola MC68000 Microprocessor".IEEE Spectrum.Institute of Electrical and Electronics Engineers. June 30, 2017. RetrievedJune 19, 2019.
  26. ^Microprocessors: 1971 to 1976Archived December 3, 2013, at theWayback Machine Christiansen
  27. ^"Microprocessors 1976 to 1981". weber.edu. Archived fromthe original on December 3, 2013. RetrievedAugust 9, 2014.
  28. ^"W65C816S 16-bit Core".www.westerndesigncenter.com. RetrievedSeptember 12, 2017.
  29. ^abcdeDemone, Paul (November 9, 2000)."ARM's Race to World Domination". real world technologies. RetrievedJuly 20, 2015.
  30. ^Hand, Tom."The Harris RTX 2000 Microcontroller"(PDF).mpeforth.com. RetrievedAugust 9, 2014.
  31. ^"Forth chips list". UltraTechnology. March 15, 2001. RetrievedAugust 9, 2014.
  32. ^Koopman, Philip J. (1989)."4.4 Architecture of the Novix NC4016".Stack Computers: the new wave. Ellis Horwood Series in Computers and Their Applications. Carnegie Mellon University.ISBN 978-0745804187. RetrievedAugust 9, 2014.
  33. ^"Fujitsu SPARC".cpu-collection.de. RetrievedJune 30, 2019.
  34. ^abKimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function".IEEE Micro.8 (2):22–36.doi:10.1109/40.527.S2CID 9507994.
  35. ^"VL2333 - VTI - WikiChip".en.wikichip.org. RetrievedAugust 31, 2019.
  36. ^Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200".IEEE Micro.8 (2):12–21.doi:10.1109/40.526.S2CID 36938046.
  37. ^Bosshart, P.; Hewes, C.; Mi-Chang Chang; Kwok-Kit Chau; Hoac, C.; Houston, T.; Kalyan, V.; Lusky, S.; Mahant-Shetti, S.; Matzke, D.; Ruparel, K.; Ching-Hao Shaw; Sridhar, T.; Stark, D. (October 1987). "A 553K-Transistor LISP Processor Chip".IEEE Journal of Solid-State Circuits.22 (5):202–3.doi:10.1109/ISSCC.1987.1157084.S2CID 195841103.
  38. ^Fahlén, Lennart E.; Stockholm International Peace Research Institute (1987)."3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer".Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing. SIPRI Monograph Series. Oxford University Press. p. 57.ISBN 978-0-19-829122-0.
  39. ^Jouppi, Norman P.; Tang, Jeffrey Y. F. (July 1989). "A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance".IEEE Journal of Solid-State Circuits.24 (5): i.Bibcode:1989IJSSC..24.1348J.CiteSeerX 10.1.1.85.988.doi:10.1109/JSSC.1989.572612. WRL Research Report 89/11.
  40. ^"The CPU shack museum". CPUshack.com. May 15, 2005. RetrievedAugust 9, 2014.
  41. ^abc"Intel i960 Embedded Microprocessor".National High Magnetic Field Laboratory.Florida State University. March 3, 2003. Archived fromthe original on March 3, 2003. RetrievedJune 29, 2019.
  42. ^Venkatasawmy, Rama (2013).The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age.Rowman & Littlefield. p. 198.ISBN 9780739176214.
  43. ^Bakoglu, Grohoski, and Montoye."The IBM RISC System/6000 processor: Hardware overview." IBM J. Research and Development. Vol. 34 No. 1, January 1990, pp. 12-22.
  44. ^"SH Microprocessor Leading the Nomadic Era"(PDF).Semiconductor History Museum of Japan. Archived fromthe original(PDF) on June 27, 2019. RetrievedJune 27, 2019.
  45. ^"SH2: A Low Power RISC Micro for Consumer Applications"(PDF).Hitachi. Archived fromthe original(PDF) on May 10, 2019. RetrievedJune 27, 2019.
  46. ^"HARP-1: A 120 MHz Superscalar PA-RISC Processor"(PDF).Hitachi. Archived fromthe original(PDF) on April 23, 2016. RetrievedJune 19, 2019.
  47. ^White and Dhawan."POWER2: next generation of the RISC System/6000 family" IBM J. Research and Development. Vol. 38 No. 5, September 1994, pp. 493-502.
  48. ^"ARM7 Statistics". Poppyfields.net. May 27, 1994. RetrievedAugust 9, 2014.
  49. ^"Forth Multiprocessor Chip MuP21".www.ultratechnology.com. RetrievedSeptember 6, 2019.MuP21 has a 21-bit CPU core, a memory coprocessor, and a video coprocessor
  50. ^ab"F21 CPU".www.ultratechnology.com. RetrievedSeptember 6, 2019.F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21.
  51. ^"Ars Technica: PowerPC on Apple: An Architectural History, Part I - Page 2 - (8/2004)".archive.arstechnica.com. RetrievedAugust 11, 2020.
  52. ^Gary et al. (1994). "The PowerPC 603 microprocessor: a low-power design for portable applications."Proceedings of COMPCON 94. DOI: 10.1109/CMPCON.1994.282894
  53. ^Slaton et al. (1995). "The PowerPC 603e microprocessor: an enhanced, low-power, superscalar microprocessor."Proceedings of ICCD '95 International Conference on Computer Design. DOI: 10.1109/ICCD.1995.528810
  54. ^Bowhill, William J. et al. (1995). "Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU".Digital Technical Journal, Volume 7, Number 1, pp. 100–118.
  55. ^"Intel Pentium Pro 180".hw-museum.cz. February 20, 2015. RetrievedSeptember 8, 2019.
  56. ^"PC Guide Intel Pentium Pro ("P6")". PCGuide.com. April 17, 2001. Archived fromthe original on April 14, 2001. RetrievedAugust 9, 2014.
  57. ^Gaddis, N.; Lotz, J. (November 1996). "A 64-b quad-issue CMOS RISC microprocessor".IEEE Journal of Solid-State Circuits31 (11): pp. 1697–1702.
  58. ^Bouchard, Gregg."Design objectives of the 0.35 μm Alpha 21164 Microprocessor". IEEE Hot Chips Symposium, August 1996, IEEE Computer Society.
  59. ^Ulf Samuelsson."Transistor count of common uCs?".www.embeddedrelated.com. RetrievedSeptember 8, 2019.IIRC, The AVR core is 12,000 gates, and the megaAVR core is 20,000 gates. Each gate is 4 transistors. The chip is considerably larger since the memory uses quite a lot.
  60. ^Gronowski, Paul E. et al. (May 1998). "High-performance microprocessor design".IEEE Journal of Solid-State Circuits33 (5): pp. 676–686.
  61. ^Nakagawa, Norio; Arakawa, Fumio (April 1999)."Entertainment Systems and High-Performance Processor SH-4"(PDF).Hitachi Review.48 (2):58–63. RetrievedMarch 18, 2023.
  62. ^Nishii, O.; Arakawa, F.; Ishibashi, K.; Nakano, S.; Shimura, T.; Suzuki, K.; Tachibana, M.; Totsuka, Y.; Tsunoda, T.; Uchiyama, K.; Yamada, T.; Hattori, T.; Maejima, H.; Nakagawa, N.; Narita, S.; Seki, M.; Shimazaki, Y.; Satomura, R.; Takasuga, T.; Hasegawa, A. (1998)."A 200 MHZ 1.2 W 1.4 GFLOPS microprocessor with graphic operation unit".1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No. 98CH36156).IEEE. pp. 18.1-1 - 18.1-11.doi:10.1109/ISSCC.1998.672469.ISBN 0-7803-4344-1.S2CID 45392734. RetrievedMarch 17, 2023.
  63. ^abcDiefendorff, Keith (April 19, 1999)."Sony's Emotionally Charged Chip: Killer Floating-Point "Emotion Engine" To Power PlayStation 2000"(PDF).Microprocessor Report.13 (5).S2CID 29649747. Archived fromthe original(PDF) on February 28, 2019. RetrievedJune 19, 2019.
  64. ^abHennessy, John L.;Patterson, David A. (May 29, 2002).Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491.ISBN 978-0-08-050252-6. RetrievedApril 9, 2013.
  65. ^abc"NVIDIA GeForce 7800 GTX GPU Review".PC Perspective. June 22, 2005. RetrievedJune 18, 2019.
  66. ^Ando, H.; Yoshida, Y.; Inoue, A.; Sugiyama, I.; Asakawa, T.; Morita, K.; Muta, T.; Otokurumada, T.; Okada, S.; Yamashita, H.; Satsukawa, Y.; Konmoto, A.; Yamashita, R.; Sugiyama, H. (2003). "A 1.3GHz fifth generation SPARC64 microprocessor".Proceedings of the 40th Annual Design Automation Conference. Design Automation Conference. pp. 702–705.doi:10.1145/775832.776010.ISBN 1-58113-688-9.
  67. ^Krewell, Kevin (21 October 2002)."Fujitsu's SPARC64 V Is Real Deal".Microprocessor Report.
  68. ^"Intel Pentium M Processor 1.60 GHZ, 1M Cache, 400 MHZ FSB Product Specifications".
  69. ^"EE+GS".PS2 Dev Wiki.
  70. ^"Sony MARKETING (JAPAN) ANNOUNCES LAUNCH OF "PSX" DESR-5000 and DESR-7000 TOWARDS THE END OF 2003" (Press release). Sony. November 27, 2003.
  71. ^"EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP"(PDF).Sony. April 21, 2003. RetrievedMarch 19, 2023.
  72. ^"Sony PSX's 90nm CPU is 'not 90nm'".The Register. January 30, 2004.
  73. ^"Semi Insights stands by 'not 90-nm' description of PSX chip".EE Times. February 5, 2004.
  74. ^"Intel Pentium M Processor 760 (2M Cache, 2.00A GHZ, 533 MHZ FSB) Product Specifications".
  75. ^Fujitsu Limited (August 2004).SPARC64 V Processor For UNIX Server.
  76. ^"A Glimpse Inside The Cell Processor".Gamasutra. July 13, 2006. RetrievedJune 19, 2019.
  77. ^"Intel Pentium D Processor 920". Intel. RetrievedJanuary 5, 2023.
  78. ^"PRESS KIT — Dual-core Intel Itanium Processor". Intel. RetrievedAugust 9, 2014.
  79. ^abToepelt, Bert (January 8, 2009)."AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform". TomsHardware.com. RetrievedAugust 9, 2014.
  80. ^"ARM (Advanced RISC Machines) Processors". EngineersGarage.com. RetrievedAugust 9, 2014.
  81. ^ab"Panasonic starts to sell a New-generation UniPhier System LSI".Panasonic. October 10, 2007. RetrievedJuly 2, 2019.
  82. ^"SPARC64 VI Extensions" page 56, Fujitsu Limited, Release 1.3, 27 March 2007
  83. ^Morgan, Timothy Prickett (17 July 2008)."Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup".The Unix Guardian, Vol. 8, No. 27.
  84. ^Takumi Maruyama (2009).SPARC64 VIIIfx: Fujitsu's New Generation Octo Core Processor for PETA Scale computing(PDF). Proceedings of Hot Chips 21. IEEE Computer Society. Archived fromthe original(PDF) on October 8, 2010. RetrievedJune 30, 2019.
  85. ^"Intel Atom N450 specifications".Intel. RetrievedJune 8, 2023.
  86. ^"Intel Atom D510 specifications".Intel. RetrievedJune 8, 2023.
  87. ^Stokes, Jon (February 10, 2010)."Sun's 1 billion-transistor, 16-core Niagara 3 processor". ArsTechnica.com. RetrievedAugust 9, 2014.
  88. ^"IBM to Ship World's Fastest Microprocessor". IBM. September 1, 2010. Archived fromthe original on September 5, 2010. RetrievedAugust 9, 2014.
  89. ^"Intel to deliver first computer chip with two billion transistors". AFP. February 5, 2008. Archived fromthe original on May 20, 2011. RetrievedFebruary 5, 2008.
  90. ^"Intel Previews Intel Xeon 'Nehalem-EX' Processor." May 26, 2009. Retrieved on May 28, 2009.
  91. ^Morgan, Timothy Prickett (November 21, 2011),"Fujitsu parades 16-core Sparc64 super stunner",The Register, retrievedDecember 8, 2011
  92. ^Angelini, Chris (November 14, 2011)."Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express". TomsHardware.com. RetrievedAugust 9, 2014.
  93. ^"IDF2012 Mark Bohr, Intel Senior Fellow"(PDF).
  94. ^"Images of SPARC64"(PDF). fujitsu.com. RetrievedAugust 29, 2017.
  95. ^"Intel's Atom Architecture: The Journey Begins". AnandTech. RetrievedApril 4, 2010.
  96. ^"Intel Xeon Phi SE10X". TechPowerUp. RetrievedJuly 20, 2015.
  97. ^Shimpi, Lal."The Haswell Review: Intel Core i7-4770K & i5-4670K Tested".anandtech. RetrievedNovember 20, 2014.
  98. ^"Dimmick, Frank (August 29, 2014)."Intel Core i7 5960X Extreme Edition Review".Overclockers Club. RetrievedAugust 29, 2014.
  99. ^"Apple A8X".NotebookCheck. RetrievedJuly 20, 2015.
  100. ^"Intel Readying 15-core Xeon E7 v2". AnandTech. RetrievedAugust 9, 2014.
  101. ^"Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores".pcper. September 8, 2014. RetrievedJanuary 29, 2015.
  102. ^"Intel's Broadwell-U arrives aboard 15W, 28W mobile processors". TechReport. January 5, 2015. RetrievedJanuary 5, 2015.
  103. ^"Oracle Cranks up the Cores to 32 with Sparc M7 Chip". August 13, 2014.
  104. ^"Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review".Tom's Hardware. May 30, 2016. RetrievedApril 12, 2017.
  105. ^"The Broadwell-E Review".PC Gamer. July 8, 2016. RetrievedApril 12, 2017.
  106. ^"HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017".firstpost.com. September 1, 2017. RetrievedNovember 18, 2018.
  107. ^"Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review".Tom's Hardware. March 31, 2016. RetrievedApril 4, 2016.
  108. ^"About the ZipCPU".zipcpu.com. RetrievedSeptember 10, 2019.As of ORCONF, 2016, the ZipCPU used between 1286 and 4926 6-LUTs, depending upon how it is configured.
  109. ^"Qualcomm Snapdragon 835 (8998)".NotebookCheck. RetrievedSeptember 23, 2017.
  110. ^Takahashi, Dean (January 3, 2017)."Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process".VentureBeat.
  111. ^Singh, Teja (2017). "3.2 Zen: A Next-Generation High-Performance x86 Core".Proc. IEEE International Solid-State Circuits Conference. pp. 52–54.
  112. ^Cutress, Ian (February 22, 2017)."AMD Launches Zen". Anandtech.com. RetrievedFebruary 22, 2017.
  113. ^"Ryzen 5 1600 - AMD".Wikichip.org. April 20, 2018. RetrievedDecember 9, 2018.
  114. ^"Kirin 970 – HiSilicon".Wikichip. March 1, 2018. RetrievedNovember 8, 2018.
  115. ^abLeadbetter, Richard (April 6, 2017)."Inside the next Xbox: Project Scorpio tech revealed".Eurogamer. RetrievedMay 3, 2017.
  116. ^"Intel Xeon Platinum 8180".TechPowerUp. December 1, 2018. RetrievedDecember 2, 2018.
  117. ^Pellerano, Stefano (March 2, 2022)."Circuit Design to Harness the Power of Scaling and Integration (ISSCC 2022)".YouTube.
  118. ^Lee, Y."SiFive Freedom SoCs : Industry's First Open Source RISC V Chips"(PDF).HotChips 29 IOT/Embedded. Archived fromthe original(PDF) on August 9, 2020. RetrievedJune 19, 2019.
  119. ^"Documents at Fujitsu"(PDF). fujitsu.com. RetrievedAugust 29, 2017.
  120. ^Schmerer, Kai (November 5, 2018)."iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung".ZDNet.de (in German).
  121. ^"Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed".Qualcomm. RetrievedNovember 9, 2017.
  122. ^"Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors". techradar. RetrievedSeptember 23, 2017.
  123. ^"Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm". AnandTech. RetrievedDecember 6, 2018.
  124. ^"HiSilicon Kirin 710".Notebookcheck. September 19, 2018. RetrievedNovember 24, 2018.
  125. ^Yang, Daniel; Wegner, Stacy (September 21, 2018)."Apple iPhone Xs Max Teardown". TechInsights. RetrievedSeptember 21, 2018.
  126. ^"Apple's A12 Bionic is the first 7-nanometer smartphone chip".Engadget. RetrievedSeptember 26, 2018.
  127. ^"Kirin 980 – HiSilicon".Wikichip. November 8, 2018. RetrievedNovember 8, 2018.
  128. ^"Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset". dailyhunt. RetrievedSeptember 21, 2018.
  129. ^Zafar, Ramish (October 30, 2018)."Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU".Wccftech.
  130. ^"Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX".firstxw.com. April 16, 2019. Archived fromthe original on June 20, 2019. RetrievedJune 19, 2019.
  131. ^"Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors".Fujitsu. August 22, 2018. RetrievedJune 19, 2019.
  132. ^"Hot Chips 30: Nvidia Xavier SoC".fuse.wikichip.org. September 18, 2018. RetrievedDecember 6, 2018.
  133. ^Frumusanu, Andrei."The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed".www.anandtech.com. RetrievedFebruary 19, 2021.
  134. ^abcdef"Zen 2 Microarchitecture".WikiChip. RetrievedFebruary 21, 2023.
  135. ^"AMD Ryzen 9 3900X and Ryzen 7 3700X Review: Zen 2 and 7nm Unleashed".Tom's Hardware. July 7, 2019. RetrievedOctober 19, 2019.
  136. ^Frumusanu, Andrei."The Huawei Mate 30 Pro Review: Top Hardware without Google?".AnandTech. RetrievedJanuary 2, 2020.
  137. ^Zafar, Ramish (September 10, 2019)."Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU".Wccftech. RetrievedSeptember 11, 2019.
  138. ^Introducing iPhone 11 Pro — Apple Youtube Video, retrievedSeptember 11, 2019[dead YouTube link]
  139. ^"Hot Chips 2020 Live Blog: IBM z15".AnandTech. August 17, 2020.
  140. ^abBroekhuijsen, Niels (October 23, 2019)."AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look". RetrievedOctober 24, 2019.
  141. ^abMujtaba, Hassan (October 22, 2019)."AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail". RetrievedOctober 24, 2019.
  142. ^Friedman, Alan (December 14, 2019)."5nm Kirin 1020 SoC tipped for next year's Huawei Mate 40 line".Phone Arena. RetrievedDecember 23, 2019.
  143. ^Verheyde, Arne (December 5, 2019)."Amazon Compares 64-core ARM Graviton2 to Intel's Xeon".Tom's Hardware. RetrievedDecember 6, 2019.
  144. ^Morgan, Timothy Prickett (December 3, 2019)."Finally: AWS Gives Servers A Real Shot In The Arm".The Next Platform. RetrievedDecember 6, 2019.
  145. ^Friedman, Alan (October 10, 2019)."Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month".Phone Arena. RetrievedFebruary 19, 2021.
  146. ^"Xiaomi Mi 10 Teardown Analysis | TechInsights".www.techinsights.com. RetrievedFebruary 19, 2021.
  147. ^"The Linley Group - TI Jacinto Accelerates Level 3 ADAS".www.linleygroup.com. RetrievedFebruary 12, 2021.
  148. ^"Apple unveils A14 Bionic processor with 40% faster CPU and 11.8 billion transistors".Venturebeat. November 10, 2020. RetrievedNovember 24, 2020.
  149. ^"Apple says new Arm-based M1 chip offers the 'longest battery life ever in a Mac'".The Verge. November 10, 2020. RetrievedNovember 11, 2020.
  150. ^Ikoba, Jed John (October 23, 2020)."Multiple benchmark tests rank the Kirin 9000 as one of the most-powerful chipset yet".Gizmochina. RetrievedNovember 14, 2020.
  151. ^Frumusanu, Andrei."Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000".www.anandtech.com. RetrievedNovember 14, 2020.
  152. ^abBurd, Thomas (2022). "2.7 Zen3: The AMD 2nd-Generation 7nm x86-64 Microprocessor Core".Proc. IEEE International Solid-State Circuits Conference. pp. 54–56.
  153. ^"For a long time, Intel once again named the number of transistors in the chip. There are supposed to be about 6 billion for Rocket Lake-S. Coffee Lake-S is supposed to have about 4 billion. The chip with eight cores is about 30 % bigger than the predecessor with ten core".twitter. RetrievedMarch 16, 2021.
  154. ^"Intel's Core i7-11700K 'Rocket Lake' Delidded: A Big Die, Revealed".tomshardware. March 12, 2021. RetrievedMarch 16, 2021.
  155. ^"Intel's 14nm density".www.techcenturion.com. November 26, 2019. RetrievedNovember 26, 2019.
  156. ^"AMD Ryzen 7 5800H Specs".TechPowerUp. RetrievedSeptember 20, 2021.
  157. ^"AMD Epyc 7763 specifications". August 2023.
  158. ^Shankland, Stephen."Apple's A15 Bionic chip powers iPhone 13 with 15 billion transistors, new graphics and AI".CNET. RetrievedSeptember 20, 2021.
  159. ^"Apple iPhone 13 Pro Teardown | TechInsights".www.techinsights.com. RetrievedSeptember 29, 2021.
  160. ^ab"Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops".VentureBeat. October 18, 2021.
  161. ^"Apple Announces M1 Pro & M1 Max: Giant New Arm SoCs with All-Out Performance".AnanadTech. RetrievedDecember 2, 2021.
  162. ^"Apple unveils new computer chips amid shortage".BBC News. October 19, 2021.
  163. ^ab"Apple Joins 3D-Fabric Portfolio with M1 Ultra?".TechInsights. RetrievedJuly 8, 2022.
  164. ^"Hot Chips 2020 live blog".AnandTech. August 17, 2020.
  165. ^"Phantom X2 Series 5G powered by MediaTek Dimensity 9000".Mediatek. December 12, 2022.
  166. ^"MediaTek Dimensity 9000".Mediatek. January 21, 2023.
  167. ^"Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max".NotebookCheck. September 7, 2022.
  168. ^"iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip".CNET. September 7, 2022.
  169. ^"The Apple 2022 Fall iPhone Event Live Blog".AnandTech. September 7, 2022.
  170. ^"Apple unveils M1 Ultra, the world's most powerful chip for a personal computer".Apple Newsroom. RetrievedMarch 9, 2022.
  171. ^Shankland, Stephen."Meet Apple's Enormous 20-Core M1 Ultra Processor, the Brains in the New Mac Studio Machine".CNET. RetrievedMarch 9, 2022.
  172. ^ab"AMD releases Milan-X CPUs".AnandTech. March 21, 2022.
  173. ^"IBM Telum Hot Chips slide deck"(PDF). August 23, 2021.
  174. ^"IBM z16 announcement". April 5, 2022.
  175. ^"Apple unveils M2, taking the breakthrough performance and capabilities of M1 even further".Apple. June 6, 2022.
  176. ^"MediaTek Dimensity 9200: New flagship chipset debuts with ARM Cortex-X3 CPU and Immortalis-G715 GPU cores built around TSMC N4P node".NotebookCheck. November 8, 2022.
  177. ^"Dimensity 9200 specs".Mediatek. November 8, 2022.
  178. ^"Dimensity 9200 presentation".Mediatek. November 8, 2022.
  179. ^"AMD EPYC Genoa Gaps Intel Xeon in Stunning Fashion".ServeTheHome. November 10, 2022.
  180. ^"AMD Aims to Break the ZettaFLOP Barrier by 2035, Lays Down Next-Gen Plans to Resolve Efficiency Problems".Appuals. February 21, 2023.
  181. ^"AMD Lays The Path To Zettascale Computing: Talks CPU & GPU Performance Plus Efficiency Trends, Next-Gen Chiplet Packaging & More".WCCFtech. February 20, 2023.
  182. ^"AMD EPYC Genoa & SP5 Platform Leaked – 5nm Zen 4 CCD Measures Roughly 72mm, 12 CCD Package at 5428mm2, Up To 700W Peak Socket Power".WCCFtech. August 17, 2021.
  183. ^"Leaked AMD Epyc Genoa Docs Reveal 96 Cores, Max TDP of 700W, and Zen 4 Chiplet Dimensions".HardwareTimes. August 17, 2021.
  184. ^"Kirin 9000S has about 6 billion fewer transistors than Kirin 9000, but its performance is stronger! How did you do it?".iNews. September 13, 2023. RetrievedSeptember 24, 2023.
  185. ^"Apple Announces M4 SoC: Latest and Greatest Starts on 2024 iPad Pro".Anandtech. May 7, 2024.
  186. ^abc"Apple introduces new M3 chip lineup, starting with the M3, M3 Pro, and M3 Max".Arstechnica. October 31, 2023.
  187. ^Goldman, Joshua."Apple A17 Pro Chip: The New Brain Inside iPhone 15 Pro, Pro Max".CNET. RetrievedSeptember 12, 2023.
  188. ^"4th Gen Intel Xeon Scalable Sapphire Rapids Leaps Forward".ServeTheHome. January 10, 2023.
  189. ^"Wie vier Dies zu einem "monolithischen" Sapphire Rapids werden".hardwareLUXX. February 21, 2022.
  190. ^ab"Apple unveils M2 Pro and M2 Max: next-generation chips for next-level workflows".Apple (Press release). January 17, 2023.
  191. ^"Apple introduces M2 Ultra" (Press release). Apple. June 5, 2023.
  192. ^"AMD EPYC Bergamo Launched 128 Cores Per Socket and 1024 Threads Per 1U".ServeTheHome. June 13, 2023.
  193. ^"AMD Instinct MI300A Accelerators".AMD. RetrievedJanuary 14, 2024.
  194. ^Alcorn, Paul (December 6, 2023)."AMD unveils Instinct MI300X GPU and MI300A APU, claims up to 1.6X lead over Nvidia's competing GPUs".Tom's Hardware. RetrievedJanuary 14, 2024.
  195. ^Williams, Chris."Nvidia's Tesla P100 has 15 billion transistors, 21TFLOPS".www.theregister.co.uk. RetrievedAugust 12, 2019.
  196. ^"Famous Graphics Chips: NEC μPD7220 Graphics Display Controller".IEEE Computer Society.Institute of Electrical and Electronics Engineers. August 22, 2018. RetrievedJune 21, 2019.
  197. ^"GPU History: Hitachi ARTC HD63484. The second graphics processor".IEEE Computer Society.Institute of Electrical and Electronics Engineers. October 7, 2018. RetrievedJune 21, 2019.
  198. ^"Big Book of Amiga Hardware".
  199. ^MOS Technology Agnus.ISBN 5511916846.
  200. ^ab"30 Years of Console Gaming".Klinger Photography. August 20, 2017. RetrievedJune 19, 2019.
  201. ^"Sega Saturn".MAME. RetrievedJuly 18, 2019.
  202. ^"ASIC CHIPS ARE INDUSTRY'S GAME WINNERS".The Washington Post. September 18, 1995. RetrievedJune 19, 2019.
  203. ^"Is it Time to Rename the GPU?".Jon Peddie Research.IEEE Computer Society. July 9, 2018. RetrievedJune 19, 2019.
  204. ^"FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip". FastForward. RetrievedJanuary 29, 2014.
  205. ^ab"Reality Co-Processor − The Power In Nintendo64"(PDF).Silicon Graphics. August 26, 1997. Archived fromthe original(PDF) on May 19, 2020. RetrievedJune 18, 2019.
  206. ^"Imagination PowerVR PCX2 GPU".VideoCardz.net. RetrievedJune 19, 2019.
  207. ^abcdefghLilly, Paul (May 19, 2009)."From Voodoo to GeForce: The Awesome History of 3D Graphics".PC Gamer. RetrievedJune 19, 2019.
  208. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalam"3D accelerator database".Vintage 3D. RetrievedJuly 21, 2019.
  209. ^"RIVA128 Datasheet".SGS Thomson Microelectronics. RetrievedJuly 21, 2019.
  210. ^abcSinger, Graham (April 3, 2013)."History of the Modern Graphics Processor, Part 2".TechSpot. RetrievedJuly 21, 2019.
  211. ^"Remembering the Sega Dreamcast".Bit-Tech. September 29, 2009. RetrievedJune 18, 2019.
  212. ^Weinberg, Neil (September 7, 1998)."Comeback kid".Forbes. RetrievedJune 19, 2019.
  213. ^Charles, Bertie (1998)."Sega's New Dimension".Forbes.162 (5–9). Forbes Incorporated: 206.The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors
  214. ^Hagiwara, Shiro; Oliver, Ian (November–December 1999)."Sega Dreamcast: Creating a Unified Entertainment World".IEEE Micro.19 (6).IEEE Computer Society:29–35.doi:10.1109/40.809375. Archived fromthe original on August 23, 2000. RetrievedJune 27, 2019.
  215. ^"VideoLogic Neon 250 4MB".VideoCardz.net. RetrievedJune 19, 2019.
  216. ^Shimpi, Anand Lal (November 21, 1998)."Fall Comdex '98 Coverage".AnandTech. RetrievedJune 19, 2019.
  217. ^abc"EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP"(PDF).Sony. April 21, 2003. RetrievedJune 26, 2019.
  218. ^"NVIDIA NV10 A3 GPU Specs".TechPowerUp. RetrievedJune 19, 2019.
  219. ^IGN Staff (November 4, 2000)."Gamecube Versus PlayStation 2".IGN. RetrievedNovember 22, 2015.
  220. ^"NVIDIA NV2A GPU Specs".TechPowerUp. RetrievedJuly 21, 2019.
  221. ^"ATI Xenos GPU Specs".TechPowerUp. RetrievedJune 21, 2019.
  222. ^International, GamesIndustry (July 14, 2005)."TSMC to manufacture X360 GPU".Eurogamer. RetrievedAugust 22, 2006.
  223. ^"NVIDIA Playstation 3 RSX 65nm Specs".TechPowerUp. RetrievedJune 21, 2019.
  224. ^"PS3 Graphics Chip Goes 65nm in Fall". Edge Online. June 26, 2008. Archived fromthe original on July 25, 2008.
  225. ^"NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260". AnandTech.com. RetrievedAugust 9, 2014.
  226. ^"The Radeon HD 4850 & 4870: AMD Wins at $199 and $299". AnandTech.com. RetrievedAugust 9, 2014.
  227. ^abGlaskowsky, Peter."ATI and Nvidia face off-obliquely". CNET. Archived fromthe original on January 27, 2012. RetrievedAugust 9, 2014.
  228. ^Woligroski, Don (December 22, 2011)."AMD Radeon HD 7970". TomsHardware.com. RetrievedAugust 9, 2014.
  229. ^"NVIDIA Kepler GK110 Architecture"(PDF).NVIDIA. 2012. RetrievedJanuary 9, 2024.
  230. ^Smith, Ryan (November 12, 2012)."NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last".AnandTech.
  231. ^"Whitepaper: NVIDIA GeForce GTX 680"(PDF). NVIDIA. 2012. Archived fromthe original(PDF) on April 17, 2012.
  232. ^abKan, Michael (August 18, 2020)."Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs".PCMag. RetrievedSeptember 5, 2020.
  233. ^"AMD Xbox One GPU".www.techpowerup.com. RetrievedFebruary 5, 2020.
  234. ^"AMD PlayStation 4 GPU".www.techpowerup.com. RetrievedFebruary 5, 2020.
  235. ^"AMD Xbox One S GPU".www.techpowerup.com. RetrievedFebruary 5, 2020.
  236. ^"AMD PlayStation 4 Pro GPU".www.techpowerup.com. RetrievedFebruary 5, 2020.
  237. ^Smith, Ryan (June 29, 2016)."The AMD RX 480 Preview". Anandtech.com. RetrievedFebruary 22, 2017.
  238. ^abcSchor, David (July 22, 2018)."VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP".WikiChip Fuse. RetrievedMay 31, 2019.
  239. ^Harris, Mark (April 5, 2016)."Inside Pascal: NVIDIA's Newest Computing Platform".Nvidia developer blog.
  240. ^abcdef"GPU Database: Pascal".TechPowerUp. July 26, 2023.
  241. ^"AMD Xbox One X GPU".www.techpowerup.com. RetrievedFebruary 5, 2020.
  242. ^"Radeon's next-generation Vega architecture"(PDF).
  243. ^Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017)."Inside Volta: The World's Most Advanced Data Center GPU".Nvidia developer blog.
  244. ^"NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented"(PDF).Nvidia. 2018. RetrievedJune 28, 2019.
  245. ^"NVIDIA GeForce GTX 1650".www.techpowerup.com. RetrievedFebruary 5, 2020.
  246. ^"NVIDIA GeForce GTX 1660 Ti".www.techpowerup.com. RetrievedFebruary 5, 2020.
  247. ^"AMD Radeon RX 5700 XT".www.techpowerup.com. RetrievedFebruary 5, 2020.
  248. ^"AMD Radeon RX 5500 XT".www.techpowerup.com. RetrievedFebruary 5, 2020.
  249. ^"AMD Arcturus GPU Specs".TechPowerUp. RetrievedNovember 10, 2022.
  250. ^Walton, Jared (May 14, 2020)."Nvidia Unveils Its Next-Generation 7nm Ampere A100 GPU for Data Centers, and It's Absolutely Massive".Tom's Hardware.
  251. ^"Nvidia Ampere Architecture".www.nvidia.com. RetrievedMay 15, 2020.
  252. ^"NVIDIA GA102 GPU Specs".Techpowerup. RetrievedSeptember 5, 2020.
  253. ^"'Giant Step into the Future': NVIDIA CEO Unveils GeForce RTX 30 Series GPUs".www.nvidia.com. September 2020. RetrievedSeptember 5, 2020.
  254. ^"NVIDIA GA103 GPU Specs".TechPowerUp. RetrievedMarch 21, 2023.
  255. ^"NVIDIA GeForce RTX 3070 Specs".TechPowerUp. RetrievedSeptember 20, 2021.
  256. ^"NVIDIA GA106 specs".TechPowerUp. RetrievedMarch 22, 2023.
  257. ^"NVIDIA GA107 GPU Specs".TechPowerUp. RetrievedMarch 21, 2023.
  258. ^"MI250X die size estimates".Twitter. November 17, 2021.
  259. ^"AMD Instinct MI250 Professional Graphics Card".VideoCardz. November 2, 2022.
  260. ^"AMD's Instinct MI250X OAM Card Pictured: Aldebaran's Massive Die Revealed".Tom's Hardware. November 17, 2021.
  261. ^"AMD MI250X and Toplogies Explained at HC34".ServeTheHome. August 22, 2022.
  262. ^"Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips".HPCWire. March 22, 2022. RetrievedMarch 23, 2022.
  263. ^"NVIDIA details AD102 GPU, up to 18432 CUDA cores, 76.3B transistors and 608 mm2".VideoCardz. September 20, 2022.
  264. ^ab"NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102".VideoCardz. September 23, 2022.
  265. ^ab"Alleged Nvidia AD106 and AD107 GPU Pics, Specs, Die Sizes Revealed".Tom's Hardware. February 3, 2023.
  266. ^"NVIDIA GeForce RTX 4060 Ti "AD106-350" GPU Pictured, Uses Samsung GDDR6 Dies".WCCFtech. April 28, 2023.
  267. ^"NVIDIA's Smallest Ada GPU, The AD107-400, For GeForce RTX 4060 GPUs Pictured".WCCFtech. May 21, 2023.
  268. ^"AMD Unveils World's Most Advanced Gaming Graphics Cards, Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design".AMD (Press release). November 3, 2022.
  269. ^"AMD Announces the $999 Radeon RX 7900 XTX... (endnote RX-819)".TechPowerUp. November 4, 2022.
  270. ^"AMD Navi 31 GPU Specs".TechPowerUp. RetrievedNovember 7, 2023.
  271. ^"AMD Navi 32 GPU Specs".TechPowerUp. RetrievedNovember 7, 2023.
  272. ^"AMD Navi 33 GPU Specs".TechPowerUp. RetrievedMarch 21, 2023.
  273. ^"AMD Has a GPU to Rival Nvidia's H100".HPCWire. June 13, 2023. RetrievedJune 14, 2023.
  274. ^"AMD Aqua Vanjaram Specs".TechPowerUp. RetrievedJanuary 14, 2024.
  275. ^"NVIDIA Blackwell Platform Arrives to Power a New Era of Computing" (Press release). March 18, 2024.
  276. ^"NVIDIA GeForce RTX 5090 Specs".TechPowerUp. January 17, 2025. RetrievedJanuary 17, 2025.
  277. ^"Taiwan Company UMC Delivers 65nm FPGAs to Xilinx."SDA-ASIA Thursday, November 9, 2006.
  278. ^""Altera's new 40nm FPGAs — 2.5 billion transistors!".pldesignline.com. Archived fromthe original on June 19, 2010. RetrievedJanuary 22, 2009.
  279. ^"Design of a High-Density SoC FPGA at 20nm"(PDF). 2014. Archived fromthe original(PDF) on April 23, 2016. RetrievedJuly 16, 2017.
  280. ^Maxfield, Clive (October 2011)."New Xilinx Virtex-7 2000T FPGA provides equivalent of 20 million ASIC gates".EETimes. AspenCore. RetrievedSeptember 4, 2019.
  281. ^Greenhill, D.; Ho, R.; Lewis, D.; Schmit, H.; Chan, K. H.; Tong, A.; Atsatt, S.; How, D.; McElheny, P. (February 2017). "3.3 a 14nm 1GHz FPGA with 2.5D transceiver integration".2017 IEEE International Solid-State Circuits Conference (ISSCC). pp. 54–55.doi:10.1109/ISSCC.2017.7870257.ISBN 978-1-5090-3758-2.S2CID 2135354.
  282. ^"3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration | DeepDyve". May 17, 2017. Archived fromthe original on May 17, 2017. RetrievedSeptember 19, 2019.
  283. ^Santarini, Mike (May 2014)."Xilinx Ships Industry's First 20-nm All Programmable Devices"(PDF).Xcell journal. No. 86.Xilinx. p. 14. RetrievedJune 3, 2014.
  284. ^Gianelli, Silvia (January 2015)."Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives".www.xilinx.com. RetrievedAugust 22, 2019.
  285. ^Sims, Tara (August 2019)."Xilinx Announces the World's Largest FPGA Featuring 9 Million System Logic Cells".www.xilinx.com. RetrievedAugust 22, 2019.
  286. ^Verheyde, Arne (August 2019)."Xilinx Introduces World's Largest FPGA With 35 Billion Transistors".www.tomshardware.com. RetrievedAugust 23, 2019.
  287. ^Cutress, Ian (August 2019)."Xilinx Announces World Largest FPGA: Virtex Ultrascale+ VU19P with 9m Cells".www.anandtech.com. RetrievedSeptember 25, 2019.
  288. ^Abazovic, Fuad (May 2019)."Xilinx 7nm Versal taped out last year". RetrievedSeptember 30, 2019.
  289. ^Cutress, Ian (August 2019)."Hot Chips 31 Live Blogs: Xilinx Versal AI Engine". RetrievedSeptember 30, 2019.
  290. ^Krewell, Kevin (August 2019)."Hot Chips 2019 highlights new AI strategies". RetrievedSeptember 30, 2019.
  291. ^Leibson, Steven (November 6, 2019)."Intel announces Intel Stratix 10 GX 10M FPGA, worlds highest capacity with 10.2 million logic elements". RetrievedNovember 7, 2019.
  292. ^Verheyde, Arne (November 6, 2019)."Intel Introduces World's Largest FPGA With 43.3 Billion Transistors". RetrievedNovember 7, 2019.
  293. ^Cutress, Ian (August 2020)."Hot Chips 2020 Live Blog: Xilinx Versal ACAPs". RetrievedSeptember 9, 2020.
  294. ^"Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices". April 27, 2021. RetrievedMay 8, 2021.
  295. ^abThe DRAM memory of Robert Dennard history-computer.com
  296. ^abcd"Late 1960s: Beginnings of MOS memory"(PDF).Semiconductor History Museum of Japan. January 23, 2019. RetrievedJune 27, 2019.
  297. ^abcdef"1970: Semiconductors compete with magnetic cores".Computer History Museum. RetrievedJune 19, 2019.
  298. ^"2.1.1 Flash Memory".TU Wien. RetrievedJune 20, 2019.
  299. ^Shilov, Anton."SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed".www.anandtech.com. RetrievedSeptember 16, 2019.
  300. ^"Samsung Begins Production of 100+ Layer Sixth-Generation V-NAND Flash".PC Perspective. August 11, 2019. RetrievedSeptember 16, 2019.
  301. ^ab"1966: Semiconductor RAMs Serve High-speed Storage Needs".Computer History Museum. RetrievedJune 19, 2019.
  302. ^"Specifications for Toshiba "TOSCAL" BC-1411".Old Calculator Web Museum.Archived from the original on July 3, 2017. RetrievedMay 8, 2018.
  303. ^"Toshiba "Toscal" BC-1411 Desktop Calculator".Old Calculator Web Museum.Archived from the original on May 20, 2007.
  304. ^Castrucci, Paul (May 10, 1966)."IBM first in IC memory"(PDF).IBM News. Vol. 3, no. 9. IBM Corporation. RetrievedJune 19, 2019 – viaComputer History Museum.
  305. ^abcdefghijklm"A chronological list of Intel products. The products are sorted by date"(PDF).Intel museum. Intel Corporation. July 2005. Archived fromthe original(PDF) on August 9, 2007. RetrievedJuly 31, 2007.
  306. ^ab"1970s: SRAM evolution"(PDF).Semiconductor History Museum of Japan. RetrievedJune 27, 2019.
  307. ^abcPimbley, J. (2012).Advanced CMOS Process Technology.Elsevier. p. 7.ISBN 9780323156806.
  308. ^ab"Intel: 35 Years of Innovation (1968–2003)"(PDF). Intel. 2003. Archived fromthe original(PDF) on November 4, 2021. RetrievedJune 26, 2019.
  309. ^abLojek, Bo (2007).History of Semiconductor Engineering.Springer Science & Business Media. pp. 362–363.ISBN 9783540342588.The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm2 memory cell size, a die size just under 10 mm2, and sold for around $21.
  310. ^"Manufacturers in Japan enter the DRAM market and integration densities are improved"(PDF).Semiconductor History Museum of Japan. RetrievedJune 27, 2019.
  311. ^abcdefghijklmnGealow, Jeffrey Carl (August 10, 1990)."Impact of Processing Technology on DRAM Sense Amplifier Design"(PDF).Massachusetts Institute of Technology. pp. 149–166. RetrievedJune 25, 2019 – viaCORE.
  312. ^"Silicon Gate MOS 2102A".Intel. RetrievedJune 27, 2019.
  313. ^"One of the Most Successful 16K Dynamic RAMs: The 4116".National Museum of American History.Smithsonian Institution. RetrievedJune 20, 2019.
  314. ^Component Data Catalog(PDF).Intel. 1978. pp. 3–94. RetrievedJune 27, 2019.
  315. ^abcdefghijklmnopqrst"Memory".STOL (Semiconductor Technology Online). Archived fromthe original on November 2, 2023. RetrievedJune 25, 2019.
  316. ^"The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM".National Museum of American History.Smithsonian Institution. RetrievedJune 20, 2019.
  317. ^"Computer History for 1984".Computer Hope. RetrievedJune 25, 2019.
  318. ^"Japanese Technical Abstracts".Japanese Technical Abstracts.2 (3–4). University Microfilms: 161. 1987.The announcement of 1M DRAM in 1984 began the era of megabytes.
  319. ^"KM48SL2000-7 Datasheet".Samsung. August 1992. RetrievedJune 19, 2019.
  320. ^"Electronic Design".Electronic Design.41 (15–21). Hayden Publishing Company. 1993.The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.
  321. ^Breaking the gigabit barrier, DRAMs at ISSCC portend major system-design impact. (dynamic random access memory; International Solid-State Circuits Conference; Hitachi Ltd. and NEC Corp. research and development), January 9, 1995
  322. ^ab"Japanese Company Profiles"(PDF).Smithsonian Institution. 1996. RetrievedJune 27, 2019.
  323. ^ab"History: 1990s".SK Hynix. Archived fromthe original on February 5, 2021. RetrievedJuly 6, 2019.
  324. ^"Samsung 50nm 2GB DDR3 chips are industry's smallest".SlashGear. September 29, 2008. RetrievedJune 25, 2019.
  325. ^Shilov, Anton (July 19, 2017)."Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand".AnandTech. RetrievedJune 29, 2019.
  326. ^"Samsung Unleashes a Roomy DDR4 256GB RAM".Tom's Hardware. September 6, 2018. Archived fromthe original on June 21, 2019. RetrievedJune 21, 2019.
  327. ^"First 3D Nanotube and RRAM ICs Come Out of Foundry".IEEE Spectrum: Technology, Engineering, and Science News. July 19, 2019. RetrievedSeptember 16, 2019.This wafer was made just last Friday... and it's the first monolithic 3D IC ever fabricated within a foundry
  328. ^"Three Dimensional Monolithic System-on-a-Chip".www.darpa.mil. RetrievedSeptember 16, 2019.
  329. ^"DARPA 3DSoC Initiative Completes First Year, Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater's 200mm U.S. Foundry".Skywater Technology Foundry (Press release). July 25, 2019. RetrievedSeptember 16, 2019.
  330. ^"DD28F032SA Datasheet".Intel. RetrievedJune 27, 2019.
  331. ^"TOSHIBA ANNOUNCES 0.13 MICRON 1Gb MONOLITHIC NAND FEATURING LARGE BLOCK SIZE FOR IMPROVED WRITE/ERASE SPEED PERFORMANCE".Toshiba. September 9, 2002. Archived fromthe original on March 11, 2006. RetrievedMarch 11, 2006.
  332. ^"TOSHIBA AND SANDISK INTRODUCE A ONE GIGABIT NAND FLASH MEMORY CHIP, DOUBLING CAPACITY OF FUTURE FLASH PRODUCTS".Toshiba. November 12, 2001. RetrievedJune 20, 2019.
  333. ^abcd"Our Proud Heritage from 2000 to 2009".Samsung Semiconductor.Samsung. RetrievedJune 25, 2019.
  334. ^"TOSHIBA ANNOUNCES 1 GIGABYTE COMPACTFLASH CARD".Toshiba. September 9, 2002. Archived fromthe original on March 11, 2006. RetrievedMarch 11, 2006.
  335. ^abcd"History".Samsung Electronics.Samsung. RetrievedJune 19, 2019.
  336. ^ab"TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS".Toshiba. April 17, 2007. Archived fromthe original on November 23, 2010. RetrievedNovember 23, 2010.
  337. ^ab"Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices".Toshiba. August 7, 2008. RetrievedJune 21, 2019.
  338. ^"Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules".Toshiba. June 17, 2010. RetrievedJune 21, 2019.
  339. ^"Samsung e·MMC Product family"(PDF).Samsung Electronics. December 2011. Archived fromthe original(PDF) on November 8, 2019. RetrievedJuly 15, 2019.
  340. ^Shilov, Anton (December 5, 2017)."Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads".AnandTech. RetrievedJune 23, 2019.
  341. ^Manners, David (January 30, 2019)."Samsung makes 1TB flash eUFS module".Electronics Weekly. RetrievedJune 23, 2019.
  342. ^Tallis, Billy (October 17, 2018)."Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND".AnandTech. RetrievedJune 27, 2019.
  343. ^"Micron's 232 Layer NAND Now Shipping".AnandTech. July 26, 2022.
  344. ^"232-Layer NAND".Micron. RetrievedOctober 17, 2022.
  345. ^"First to Market, Second to None: the World's First 232-Layer NAND".Micron. July 26, 2022.
  346. ^"Comparison: Latest 3D NAND Products from YMTC, Samsung, SK hynix and Micron".TechInsights. January 11, 2023.
  347. ^Han-Way Huang (December 5, 2008).Embedded System Design with C805. Cengage Learning. p. 22.ISBN 978-1-111-81079-5.Archived from the original on April 27, 2018.
  348. ^Marie-Aude Aufaure; Esteban Zimányi (January 17, 2013).Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lectures. Springer. p. 136.ISBN 978-3-642-36318-4.Archived from the original on April 27, 2018.
  349. ^abcd"1965: Semiconductor Read-Only-Memory Chips Appear".Computer History Museum. RetrievedJune 20, 2019.
  350. ^"1971: Reusable semiconductor ROM introduced".The Storage Engine.Computer History Museum. RetrievedJune 19, 2019.
  351. ^Iizuka, H.; Masuoka, F.; Sato, Tai; Ishikawa, M. (1976). "Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure".IEEE Transactions on Electron Devices.23 (4):379–387.Bibcode:1976ITED...23..379I.doi:10.1109/T-ED.1976.18415.ISSN 0018-9383.S2CID 30491074.
  352. ^μCOM-43 SINGLE CHIP MICROCOMPUTER: USERS' MANUAL(PDF).NEC Microcomputers. January 1978. RetrievedJune 27, 2019.
  353. ^"2716: 16K (2K x 8) UV ERASABLE PROM"(PDF). Intel. Archived fromthe original(PDF) on September 13, 2020. RetrievedJune 27, 2019.
  354. ^"1982 CATALOG"(PDF).NEC Electronics. RetrievedJune 20, 2019.
  355. ^Component Data Catalog(PDF).Intel. 1978. pp. 1–3. RetrievedJune 27, 2019.
  356. ^"27256 Datasheet"(PDF).Intel. RetrievedJuly 2, 2019.
  357. ^"History of Fujitsu's Semiconductor Business".Fujitsu. RetrievedJuly 2, 2019.
  358. ^"D27512-30 Datasheet"(PDF).Intel. RetrievedJuly 2, 2019.
  359. ^"A Computer Pioneer Rediscovered, 50 Years On".The New York Times. April 20, 1994. Archived fromthe original on November 4, 2016.
  360. ^"History of Computers and Computing, Birth of the modern computer, Relays computer, George Stibitz".history-computer.com. RetrievedAugust 22, 2019.Initially the 'Complex Number Computer' performed only complex multiplication and division, but later a simple modification enabled it to add and subtract as well. It used about 400-450 binary relays, 6-8 panels, and ten multiposition, multipole relays called "crossbars" for temporary storage of numbers.
  361. ^abcde"1953: Transistorized Computers Emerge".Computer History Museum. RetrievedJune 19, 2019.
  362. ^ab"ETL Mark III Transistor-Based Computer".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  363. ^ab"Brief History".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  364. ^"1962: Aerospace systems are first the applications for ICs in computers | The Silicon Engine | Computer History Museum".www.computerhistory.org. RetrievedSeptember 2, 2019.
  365. ^ab"PDP-8 (Straight 8) Computer Functional Restoration".www.pdp8.net. RetrievedAugust 22, 2019.backplanes contain 230 cards, approximately 10,148 diodes, 1409 transistors, 5615 resistors, and 1674 capacitors
  366. ^"IBM 608 calculator".IBM. January 23, 2003. RetrievedMarch 8, 2021.
  367. ^"【NEC】 NEAC-2201".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  368. ^"【Hitachi and Japanese National Railways】 MARS-1".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  369. ^The IBM 7070 Data Processing System. Avery et al. (page 167)
  370. ^"【Matsushita Electric Industrial】 MADIC-I transistor-based computer".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  371. ^"【NEC】 NEAC-2203".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  372. ^"【Toshiba】 TOSBAC-2100".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  373. ^7090 Data Processing System
  374. ^Luigi Logrippo."My first two computers: Elea 9003 and Elea 6001: Memories of a 'bare-metal' programmer".
  375. ^"【Mitsubishi Electric】 MELCOM 1101".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  376. ^Erich Bloch (1959).The Engineering Design of the Stretch Computer(PDF). Eastern Joint Computer Conference.
  377. ^"【NEC】NEAC-L2".IPSJ Computer Museum.Information Processing Society of Japan. RetrievedJune 19, 2019.
  378. ^Thornton, James (1970).Design of a Computer: the Control Data 6600. p. 20.
  379. ^"Digital Equipment PDP-8/S".
  380. ^"The PDP-8/S - an exercise in cost reduction"
  381. ^"PDP-8/S"
  382. ^"The Digital Equipment Corporation PDP-8: Models and Options: The PDP-8/I".
  383. ^James F. O'Loughlin."PDP-8/I: bigger on the inside yet smaller on the outside".
  384. ^Jan M. Rabaey, Digital Integrated Circuits, Fall 2001:Course Notes, Chapter 6: Designing Combinatorial Logic Gates in CMOS, retrieved October 27, 2012.
  385. ^Richard F. Tinder (January 2000).Engineering Digital Design. Academic Press.ISBN 978-0-12-691295-1.
  386. ^abcdEngineers, Institute of Electrical Electronics (2000).100-2000 (7th ed.).doi:10.1109/IEEESTD.2000.322230.ISBN 978-0-7381-2601-2. IEEE Std 100-2000.
  387. ^abcSmith, Kevin (August 11, 1983). "Image processor handles 256 pixels simultaneously".Electronics.
  388. ^Kanellos, Michael (February 9, 2005)."Cell chip: Hit or hype?".CNET News. Archived fromthe original on October 25, 2012.
  389. ^Kennedy, Patrick (June 2019)."Hands-on With a Graphcore C2 IPU PCIe Card at Dell Tech World".servethehome.com. RetrievedDecember 29, 2019.
  390. ^"Colossus – Graphcore".en.wikichip.org. RetrievedDecember 29, 2019.
  391. ^Graphcore."IPU Technology".www.graphcore.ai.
  392. ^"Cerebras Unveils 2nd Gen Wafer Scale Engine: 850,000 Cores, 2.6 Trillion Transistors - ExtremeTech".www.extremetech.com. April 21, 2021. RetrievedApril 22, 2021.
  393. ^"Cerebras Wafer Scale Engine WSE-2 and CS-2 at Hot Chips 34".ServeTheHome. August 23, 2022.
  394. ^"NVIDIA NVLink4 NVSwitch at Hot Chips 34".ServeTheHome. August 22, 2022.
  395. ^abSchor, David (April 6, 2019)."TSMC Starts 5-Nanometer Risk Production".WikiChip Fuse. RetrievedApril 7, 2019.
  396. ^"1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated".Computer History Museum. RetrievedJuly 17, 2019.
  397. ^Lojek, Bo (2007).History of Semiconductor Engineering.Springer Science & Business Media. pp. 321–3.ISBN 9783540342588.
  398. ^"1963: Complementary MOS Circuit Configuration is Invented".Computer History Museum. RetrievedJuly 6, 2019.
  399. ^"1964: First Commercial MOS IC Introduced".Computer History Museum. RetrievedJuly 17, 2019.
  400. ^abLojek, Bo (2007).History of Semiconductor Engineering.Springer Science & Business Media. p. 330.ISBN 9783540342588.
  401. ^Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (2018).Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques.CRC Press. p. 59.ISBN 9781351248655.
  402. ^Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978).Encyclopedia of Computer Science and Technology: Volume 10 – Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification.CRC Press. p. 402.ISBN 9780824722609.
  403. ^"Intel Microprocessor Quick Reference Guide".Intel. RetrievedJune 27, 2019.
  404. ^"1978: Double-well fast CMOS SRAM (Hitachi)"(PDF).Semiconductor History Museum of Japan. RetrievedJuly 5, 2019.
  405. ^"0.18-micron Technology".TSMC. RetrievedJune 30, 2019.
  406. ^abcd65nm CMOS Process Technology
  407. ^Diefendorff, Keith (15 November 1999). "Hal Makes Sparcs Fly".Microprocessor Report, Volume 13, Number 5.
  408. ^abCutress, Ian."Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review".AnandTech. RetrievedJune 19, 2019.
  409. ^"Samsung Shows Industry's First 2-Gigabit DDR2 SDRAM".Samsung Semiconductor.Samsung. September 20, 2004. RetrievedJune 25, 2019.
  410. ^Williams, Martyn (July 12, 2004)."Fujitsu, Toshiba begin 65nm chip trial production".InfoWorld. RetrievedJune 26, 2019.
  411. ^Elpida's presentation at Via Technology Forum 2005 and Elpida 2005 Annual Report
  412. ^"Fujitsu Introduces World-class 65-Nanometer Process Technology for Advanced Server, Mobile Applications". Archived fromthe original on September 27, 2011. RetrievedJune 20, 2019.
  413. ^abcd"Intel Now Packs 100 Million Transistors in Each Square Millimeter".IEEE Spectrum: Technology, Engineering, and Science News. March 30, 2017. RetrievedNovember 14, 2018.
  414. ^"40nm Technology".TSMC. RetrievedJune 30, 2019.
  415. ^"Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology".Toshiba. February 11, 2009. RetrievedJune 21, 2019.
  416. ^ab"History: 2010s".SK Hynix. Archived fromthe original on April 29, 2021. RetrievedJuly 8, 2019.
  417. ^Shimpi, Anand Lal (June 8, 2012)."SandForce Demos 19nm Toshiba & 20nm IMFT NAND Flash".AnandTech. RetrievedJune 19, 2019.
  418. ^abSchor, David (April 16, 2019)."TSMC Announces 6-Nanometer Process".WikiChip Fuse. RetrievedMay 31, 2019.
  419. ^"16/12nm Technology".TSMC. RetrievedJune 30, 2019.
  420. ^abc"VLSI 2018: Samsung's 8nm 8LPP, a 10nm extension".WikiChip Fuse. July 1, 2018. RetrievedMay 31, 2019.
  421. ^"Samsung Mass Producing 128Gb 3-bit MLC NAND Flash".Tom's Hardware. April 11, 2013. Archived fromthe original on June 21, 2019. RetrievedJune 21, 2019.
  422. ^"10nm Technology".TSMC. RetrievedJune 30, 2019.
  423. ^abcdefghi"Can TSMC maintain their process technology lead".SemiWiki. April 29, 2020.
  424. ^abJones, Scotten (May 3, 2019)."TSMC and Samsung 5nm Comparison".Semiwiki. RetrievedJuly 30, 2019.
  425. ^abcNenni, Daniel (January 2, 2019)."Samsung vs TSMC 7nm Update".Semiwiki. RetrievedJuly 6, 2019.
  426. ^"7nm Technology".TSMC. RetrievedJune 30, 2019.
  427. ^Schor, David (June 15, 2018)."A Look at Intel's 10nm Std Cell as TechInsights Reports on the i3-8121U, finds Ruthenium".WikiChip Fuse. RetrievedMay 31, 2019.
  428. ^ab"Samsung Foundry update 2019".SemiWiki. August 6, 2019.
  429. ^Jones, Scotten,7nm, 5nm and 3nm Logic, current and projected processes
  430. ^Shilov, Anton."Samsung Completes Development of 5nm EUV Process Technology".AnandTech. RetrievedMay 31, 2019.
  431. ^abcd"Samsung Foundry Innovations Power the Future of Big Data, AI/ML and Smart, Connected Devices". October 7, 2021.
  432. ^"Qualcomm confirms Snapdragon 8 Gen 1 is made using Samsung's 4nm process". December 2, 2021.
  433. ^"List of Snapdragon 8 Gen 1 smartphones available since December 2021". January 14, 2022.
  434. ^ab"TSMC Extends Its 5nm Family With A New Enhanced-Performance N4P Node".WikiChip. October 26, 2021.
  435. ^"MediaTek Launches Dimensity 9000 built on TSMC N4 process". December 16, 2021.
  436. ^"TSMC Expands Advanced Technology Leadership with N4P Process (press release)".TSMC. October 26, 2021.
  437. ^Armasu, Lucian (January 11, 2019),"Samsung Plans Mass Production of 3nm GAAFET Chips in 2021",www.tomshardware.com
  438. ^"Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins".AnandTech. June 30, 2022.
  439. ^"TSMC Plans New Fab for 3nm".EE Times. December 12, 2016. RetrievedSeptember 26, 2019.
  440. ^abc"TSMC Roadmap Update: 3nm in Q1 2023, 3nm Enhanced in 2024, 2nm in 2025".www.anandtech.com. October 18, 2021.
  441. ^"TSMC Introduces N4X Process (press release)".TSMC. December 16, 2021.
  442. ^"The Future Is Now (blog post)".TSMC. December 16, 2021.
  443. ^"TSMC Unveils N4X Node".AnandTech. December 17, 2021.
  444. ^ab"TSMC roadmap update".AnandTech. April 22, 2022.
  445. ^Smith, Ryan (June 13, 2022)."Intel 4 Process Node In Detail: 2x Density Scaling, 20% Improved Performance".AnandTech.
  446. ^Alcorn, Paul (March 24, 2021)."Intel Fixes 7nm, Meteor Lake and Granite Rapids Coming in 2023".Tom's Hardware. RetrievedJune 1, 2021.
  447. ^abcdCutress, Dr Ian."Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!".www.anandtech.com. RetrievedJuly 27, 2021.
  448. ^abcCutress, Dr Ian (February 17, 2022)."Intel Discloses Multi-Generation Xeon Scalable Roadmap: New E-Core Only Xeons in 2024".www.anandtech.com.
  449. ^"Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity at Samsung Foundry Forum 2022".Samsung Global Newsroom. October 4, 2022.
  450. ^Gate-count estimates for performing quantum chemistry on small quantum computers
  451. ^Does gate count matter? Hardware effciency of logic-minimization techniques for cryptographic primitives
  452. ^Quantum Algorithm for Spectral Measurement with a Lower Gate Count
  453. ^Quantum Gate Count Analysis

External links

[edit]
Models
Architecture
Instruction set
architectures
Types
Instruction
sets
Execution
Instruction pipelining
Hazards
Out-of-order
Speculative
Parallelism
Level
Multithreading
Flynn's taxonomy
Processor
performance
Types
By application
Systems
on chip
Hardware
accelerators
Word size
Core count
Components
Functional
units
Logic
Registers
Control unit
Datapath
Circuitry
Power
management
Related
GPU
Desktop
Mobile
Architecture
Components
Memory
Form factor
Performance
Misc
Retrieved from "https://en.wikipedia.org/w/index.php?title=Transistor_count&oldid=1281379919#Gate_count"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp