This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages) (Learn how and when to remove this message)
|

Gait is the pattern ofmovement of thelimbs ofanimals, includinghumans, duringlocomotion over a solid substrate. Most animals use a variety of gaits, selecting gait based on speed,terrain, the need tomaneuver, and energetic efficiency. Different animal species may use different gaits due to differences inanatomy that prevent use of certain gaits, or simply due to evolved innate preferences as a result of habitat differences. While various gaits are given specific names, the complexity of biological systems and interacting with the environment make these distinctions "fuzzy" at best. Gaits are typically classified according to footfall patterns, but recent studies often prefer definitions based on mechanics. The term typically does not refer to limb-based propulsion through fluid mediums such as water or air, but rather to propulsion across a solid substrate by generating reactive forces against it (which can apply to walking while underwater as well as on land).
Due to the rapidity of animal movement, simple direct observation is rarely sufficient to give any insight into the pattern of limb movement. In spite of early attempts to classify gaits based on footprints or the sound of footfalls, it was not untilEadweard Muybridge andÉtienne-Jules Marey began taking rapid series of photographs that proper scientific examination of gaits could begin.
Milton Hildebrand pioneered the contemporary scientific analysis and the classification of gaits. The movement of each limb was partitioned into a stance phase, where the foot was in contact with the ground, and a swing phase, where the foot was lifted and moved forwards.[1][2] Each limb must complete acycle in the same length of time, otherwise one limb's relationship to the others can change with time, and a steady pattern cannot occur. Thus, any gait can completely be described in terms of the beginning and end of stance phase of three limbs relative to a cycle of a reference limb, usually the lefthindlimb.
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(June 2025) (Learn how and when to remove this message) |

Gaits are generally classed as "symmetrical" and "asymmetrical" based on limb movement. These terms have nothing to do withleft-right symmetry. In a symmetrical gait, the left and right limbs of a pair alternate, while in an asymmetrical gait, the limbs move together. Asymmetrical gaits are sometimes termed "leaping gaits", due to the presence of a suspended phase.
The keyvariables for gait are the duty factor and theforelimb-hindlimb phase relationship. Duty factor is simply the percent of the total cycle which a given foot is on the ground. This value will usually be the same for forelimbs and hindlimbs unless the animal is moving with a specially trained gait or isaccelerating ordecelerating. Duty factors over 50% are considered a "walk", while those less than 50% are considered a run. Forelimb-hindlimb phase is thetemporal relationship between the limb pairs. If the same-side forelimbs and hindlimbs initiate stance phase at the same time, the phase is 0 (or 100%). If the same-side forelimb contacts the ground half of the cycle later than the hindlimb, the phase is 50%.
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(June 2025) (Learn how and when to remove this message) |
Gait choice can have effects beyond immediate changes in limb movement and speed, notably in terms ofventilation. Because they lack adiaphragm, lizards and salamanders must expand and contract their body wall in order to force air in and out of their lungs, but these are the same muscles used to laterally undulate the body during locomotion. Thus, they cannot move and breathe at the same time, a situation calledCarrier's constraint, though some, such asmonitor lizards, can circumvent this restriction viabuccal pumping. In contrast, the spinal flexion of a galloping mammal causes the abdominalviscera to act as a piston, inflating and deflating the lungs as the animal's spine flexes and extends, increasing ventilation and allowing greateroxygen exchange.
Animals typically use different gaits in a speed-dependent manner. Almost all animals are capable of symmetrical gaits, while asymmetrical gaits are largely confined to mammals, who are capable of enough spinal flexion to increase stride length (though small crocodilians are capable of using a bounding gait). Lateral sequence gaits during walking and running are most common in mammals,[3] but arboreal mammals such as monkeys, some opossums, and kinkajous use diagonal sequence walks for enhanced stability.[3] Diagonal sequence walks and runs (aka trots) are most frequently used by sprawling tetrapods such as salamanders and lizards, due to the lateral oscillations of their bodies during movement. Bipeds are a unique case, and most bipeds will display only three gaits—walking, running, and hopping—during natural locomotion. Other gaits, such as human skipping, are not used without deliberate effort.
Hexapod gaits have also been well characterized, particularly for drosophila and stick insects (Phasmatodea). Drosophila use atripod gait where 3 legs swing together while 3 legs remain on the ground in stance.[3] However, variability in gait is continuous. Flies do not show distinct transitions between gaits but are more likely to walk in a tripod configuration at higher speeds. At lower speeds, they are more likely to walk with 4 or 5 legs in stance.[4] Tetrapod coordination (when 4 legs are in stance) is where diagonally opposite pairs of legs swing together. Wave (sometimes called a metachronal wave) describes walking where only 1 leg enters swing at a time. This movement propagates from back to front on one side of the body and then the opposite. Stick Insects, a larger hexapod, only shows a tripod gait during the larval stage. As adults at low speeds, they are most likely to walk in a metachronal wave, where only 1 leg swings at a time. At higher speeds, they walk in a tetrapod coordination with 2 legs paired in swing or a metachronal wave, only moving one leg at a time.[5]
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(June 2025) (Learn how and when to remove this message) |
While gaits can be classified by footfall, new work involving whole-bodykinematics and force-plate records has given rise to an alternative classification scheme, based on the mechanics of themovement. In this scheme, movements are divided into walking and running. Walking gaits are all characterized by a "vaulting" movement of the body over the legs, frequently described as an inverted pendulum (displaying fluctuations in kinetic andpotential energy which are out of phase), a mechanism described byGiovanni Cavagna. In running, the kinetic and potential energy fluctuate in-phase, and the energy change is passed on tomuscles,bones,tendons andligaments acting as springs (thus it is described by thespring-mass model).
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(June 2025) (Learn how and when to remove this message) |

Speed generally governs gait selection, withquadrupedal mammals moving from a walk to a run to a gallop as speed increases. Each of these gaits has an optimum speed, at which the minimum calories per metre are consumed, and costs increase at slower or faster speeds. Gait transitions occur near the speed where the cost of a fast walk becomes higher than the cost of a slow run. Unrestrained animals will typically move at the optimum speed for their gait to minimize energy cost. Thecost of transport is used to compare the energetics of different gaits, as well as the gaits of different animals.
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(June 2025) (Learn how and when to remove this message) |
In spite of the differences in leg number shown interrestrialvertebrates, according to theinverted pendulum model of walking andspring-mass model of running, "walks" and "runs" are seen in animals with 2, 4, 6, or more legs. The term "gait" has even been applied to flying and swimming organisms that produce distinct patterns of wakevortices.