| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(Gd) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurringgadolinium (64Gd) is composed of 6 stableisotopes,154Gd,155Gd,156Gd,157Gd,158Gd and160Gd, and 1 long-livedradioisotope,152Gd, with158Gd being the most abundant (24.84%natural abundance). The predicteddouble beta decay of160Gd hasnever been observed.
In all, 32 radioisotopes of gadolinium have been characterized, with the three most stable being alpha emitters:152Gd (naturally occurring) with a half-life of 1.08×1014 years,150Gd with a half-life of 1.79×106 years, and148Gd (theoretically notbeta-stable) with a half-life of 86.9 years. All of the remaining radioactive isotopes have half-lives less than a year, the majority of these having half-lives less than two minutes. There are also 16 metastableisomers, with the most stable being143mGd (t1/2 = 110 seconds),145mGd (t1/2 = 85 seconds) and141mGd (t1/2 = 24.5 seconds).
The isotopes withatomic masses lower than the most abundant stable isotope,158Gd, primarily decay byelectron capture to isotopes ofeuropium. For higher atomic masses, the primarydecay mode isbeta decay to isotopes ofterbium.
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[5] [n 2][n 3] | Half-life[1] [n 4][n 5] | Decay mode[1] [n 6] | Daughter isotope [n 7][n 8] | Spin and parity[1] [n 9][n 5] | Natural abundance(mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 5] | Normal proportion[1] | Range of variation | |||||||||||||||||
| 134Gd | 64 | 70 | |||||||||||||||||
| 135Gd | 64 | 71 | 134.95250(43)# | 1.1(2) s | β+ (98%) | 135Eu | (5/2+) | ||||||||||||
| β+,p (98%) | 134Sm | ||||||||||||||||||
| 136Gd | 64 | 72 | 135.94730(32)# | 1# s [>200 ns] | β+? | 136Eu | 0+ | ||||||||||||
| β+, p? | 135Sm | ||||||||||||||||||
| 137Gd | 64 | 73 | 136.94502(32)# | 2.2(2) s | β+ | 137Eu | (7/2)+# | ||||||||||||
| β+,p? | 136Sm | ||||||||||||||||||
| 138Gd | 64 | 74 | 137.94025(22)# | 4.7(9) s | β+ | 138Eu | 0+ | ||||||||||||
| 138mGd | 2232.6(11) keV | 6.2(0.2) μs | IT | 138Gd | (8−) | ||||||||||||||
| 139Gd | 64 | 75 | 138.93813(21)# | 5.7(3) s | β+ | 139Eu | 9/2−# | ||||||||||||
| β+, p? | 138Sm | ||||||||||||||||||
| 139mGd[n 10] | 250(150)# keV | 4.8(9) s | β+ | 139Eu | 1/2+# | ||||||||||||||
| β+, p? | 138Sm | ||||||||||||||||||
| 140Gd | 64 | 76 | 139.933674(30) | 15.8(4) s | β+ (67(8)%) | 140Eu | 0+ | ||||||||||||
| EC (33(8)%) | |||||||||||||||||||
| 141Gd | 64 | 77 | 140.932126(21) | 14(4) s | β+ (99.97%) | 141Eu | (1/2+) | ||||||||||||
| β+, p (0.03%) | 140Sm | ||||||||||||||||||
| 141mGd | 377.76(9) keV | 24.5(5) s | β+ (89%) | 141Eu | (11/2−) | ||||||||||||||
| IT (11%) | 141Gd | ||||||||||||||||||
| 142Gd | 64 | 78 | 141.928116(30) | 70.2(6) s | EC (52(5)%) | 142Eu | 0+ | ||||||||||||
| β+ (48(5)%) | |||||||||||||||||||
| 143Gd | 64 | 79 | 142.92675(22) | 39(2) s | β+ | 143Eu | 1/2+ | ||||||||||||
| β+, p? | 142Sm | ||||||||||||||||||
| β+,α? | 139Pm | ||||||||||||||||||
| 143mGd | 152.6(5) keV | 110.0(14) s | β+ | 143Eu | 11/2− | ||||||||||||||
| β+, p? | 142Sm | ||||||||||||||||||
| β+,α? | 139Pm | ||||||||||||||||||
| 144Gd | 64 | 80 | 143.922963(30) | 4.47(6) min | β+ | 144Eu | 0+ | ||||||||||||
| 144mGd | 3433.1(5) keV | 145(30) ns | IT | 144Gd | (10+) | ||||||||||||||
| 145Gd | 64 | 81 | 144.921710(21) | 23.0(4) min | β+ | 145Eu | 1/2+ | ||||||||||||
| 145mGd | 749.1(2) keV | 85(3) s | IT (94.3%) | 145Gd | 11/2− | ||||||||||||||
| β+ (5.7%) | 145Eu | ||||||||||||||||||
| 146Gd | 64 | 82 | 145.9183185(44) | 48.27(9) d | EC | 146Eu | 0+ | ||||||||||||
| 147Gd | 64 | 83 | 146.9191010(20) | 38.06(12) h | β+ | 147Eu | 7/2− | ||||||||||||
| 147mGd | 8587.8(5) keV | 510(20) ns | IT | 147Gd | 49/2+ | ||||||||||||||
| 148Gd | 64 | 84 | 147.9181214(16) | 86.9(39) y[2] | α[n 11] | 144Sm | 0+ | ||||||||||||
| 149Gd | 64 | 85 | 148.9193477(36) | 9.28(10) d | β+ | 149Eu | 7/2− | ||||||||||||
| α (4.3×10−4%) | 145Sm | ||||||||||||||||||
| 150Gd | 64 | 86 | 149.9186639(65) | 1.79(8)×106 y | α[n 12] | 146Sm | 0+ | ||||||||||||
| 151Gd | 64 | 87 | 150.9203549(32) | 123.9(10) d | EC | 151Eu | 7/2− | ||||||||||||
| α (1.1×10−6%) | 147Sm | ||||||||||||||||||
| 152Gd[n 13] | 64 | 88 | 151.9197984(11) | 1.08(8)×1014 y | α[n 14] | 148Sm | 0+ | 0.0020(1) | |||||||||||
| 153Gd | 64 | 89 | 152.9217569(11) | 240.6(7) d | EC | 153Eu | 3/2− | ||||||||||||
| 153m1Gd | 95.1737(8) keV | 3.5(4) μs | IT | 153Gd | 9/2+ | ||||||||||||||
| 153m2Gd | 171.188(4) keV | 76.0(14) μs | IT | 153Gd | (11/2−) | ||||||||||||||
| 154Gd[n 15] | 64 | 90 | 153.9208730(11) | Observationally Stable[n 16] | 0+ | 0.0218(2) | |||||||||||||
| 155Gd[n 15] | 64 | 91 | 154.9226294(11) | Observationally Stable[n 17] | 3/2− | 0.1480(9) | |||||||||||||
| 155mGd | 121.10(19) keV | 31.97(27) ms | IT | 155Gd | 11/2− | ||||||||||||||
| 156Gd[n 15] | 64 | 92 | 155.9221301(11) | Stable | 0+ | 0.2047(3) | |||||||||||||
| 156mGd | 2137.60(5) keV | 1.3(1) μs | IT | 156Gd | 7- | ||||||||||||||
| 157Gd[n 15] | 64 | 93 | 156.9239674(10) | Stable | 3/2− | 0.1565(4) | |||||||||||||
| 157m1Gd | 63.916(5) keV | 460(40) ns | IT | 157Gd | 5/2+ | ||||||||||||||
| 157m2Gd | 426.539(23) keV | 18.5(23) μs | IT | 157Gd | 11/2− | ||||||||||||||
| 158Gd[n 15] | 64 | 94 | 157.9241112(10) | Stable | 0+ | 0.2484(8) | |||||||||||||
| 159Gd[n 15] | 64 | 95 | 158.9263958(11) | 18.479(4) h | β− | 159Tb | 3/2− | ||||||||||||
| 160Gd[n 15] | 64 | 96 | 159.9270612(12) | Observationally Stable[n 18] | 0+ | 0.2186(3) | |||||||||||||
| 161Gd | 64 | 97 | 160.9296763(16) | 3.646(3) min | β− | 161Tb | 5/2− | ||||||||||||
| 162Gd | 64 | 98 | 161.9309918(43) | 8.4(2) min | β− | 162Tb | 0+ | ||||||||||||
| 163Gd | 64 | 99 | 162.93409664(86) | 68(3) s | β− | 163Tb | 7/2+ | ||||||||||||
| 163mGd | 138.22(20) keV | 23.5(10) s | IT? | 163Gd | 1/2− | ||||||||||||||
| β− | 163Tb | ||||||||||||||||||
| 164Gd | 64 | 100 | 163.9359162(11) | 45(3) s | β− | 164Tb | 0+ | ||||||||||||
| 164mGd | 1095.8(4) keV | 589(18) ns | IT | 164Gd | (4−) | ||||||||||||||
| 165Gd | 64 | 101 | 164.9393171(14) | 11.6(10) s | β− | 165Tb | 1/2−# | ||||||||||||
| 166Gd | 64 | 102 | 165.9416304(17) | 5.1(8) s | β− | 166Tb | 0+ | ||||||||||||
| 166mGd | 1601.5(11) keV | 950(60) ns | IT | 166Gd | (6−) | ||||||||||||||
| 167Gd | 64 | 103 | 166.9454900(56) | 4.2(3) s | β− | 167Tb | 5/2−# | ||||||||||||
| 168Gd | 64 | 104 | 167.94831(32)# | 3.03(16) s | β− | 168Tb | 0+ | ||||||||||||
| 169Gd | 64 | 105 | 168.95288(43)# | 750(210) ms | β− | 169Tb | 7/2−# | ||||||||||||
| β−, n? (<0.7%)[6] | 168Tb | ||||||||||||||||||
| 170Gd | 64 | 106 | 169.95615(54)# | 675+94 −75 ms[6] | β− | 170Tb | 0+ | ||||||||||||
| β−, n? (<3%)[6] | 169Tb | ||||||||||||||||||
| 171Gd | 64 | 107 | 170.96113(54)# | 392+145 −136 ms[6] | β− | 171Tb | 9/2+# | ||||||||||||
| β−, n? (<10%)[6] | 170Tb | ||||||||||||||||||
| 172Gd | 64 | 108 | 171.96461(32)# | 163+113 −99 ms[6] | β− | 172Tb | 0+# | ||||||||||||
| β−, n? (<50%)[6] | 171Tb | ||||||||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
As a pure alpha emitter with a half-life of86.9±3.9 year (the same asplutonium-238 within error),[2] gadolinium-148 would be ideal forradioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.[7]
Gadolinium-153 has a half-life of 240.6 days and emits gamma radiation with strong peaks at 41keV and 102 keV. It is used as a gamma ray source forX-ray absorptiometry and fluorescence, for bone density gauges forosteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. Innuclear medicine, it serves to calibrate the equipment needed likesingle-photon emission computed tomography systems (SPECT) to makex-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor fromeuropium orenriched gadolinium.[8] It can also detect the loss ofcalcium in the hip and back bones, allowing the ability to diagnose osteoporosis.[9]
Daughter products other than gadolinium