Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of gadolinium

From Wikipedia, the free encyclopedia
(Redirected fromGadolinium-152)

Isotopes ofgadolinium (64Gd)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
148Gdsynth86.9 y[2]α144Sm
150Gdsynth1.79×106 yα146Sm
151Gdsynth123.9 dε151Eu
α147Sm
152Gd0.2%1.08×1014 yα148Sm
153Gdsynth240.6 dε153Eu
154Gd2.18%stable
155Gd14.8%stable
156Gd20.5%stable
157Gd15.7%stable
158Gd24.8%stable
160Gd21.9%stable
Standard atomic weightAr°(Gd)

Naturally occurringgadolinium (64Gd) is composed of 6 stableisotopes,154Gd,155Gd,156Gd,157Gd,158Gd and160Gd, and 1radioisotope,152Gd, with158Gd being the most abundant (24.84%natural abundance). The predicteddouble beta decay of160Gd hasnever been observed; only a lower limit on itshalf-life of more than 1.3×1021 years has been set experimentally.[5]

Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying152Gd (naturally occurring) with a half-life of 1.08×1014 years, and150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lives less than 100 years, the majority of these having half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastableisomers, with the most stable being143mGd (t1/2 = 110 seconds),145mGd (t1/2 = 85 seconds) and141mGd (t1/2 = 24.5 seconds).

The primarydecay mode at atomic weights lower than the most abundant stable isotope,158Gd, iselectron capture, and the primary mode at higher atomic weights isbeta decay. The primarydecay products for isotopes lighter than158Gd areisotopes of europium and the primary products of heavier isotopes areisotopes of terbium.

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[6]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity[1]
[n 9][n 5]
Natural abundance(mole fraction)
Excitation energy[n 5]Normal proportion[1]Range of variation
135Gd6471134.95250(43)#1.1(2) sβ+ (98%)135Eu(5/2+)
β+,p (98%)134Sm
136Gd6472135.94730(32)#1# s [>200 ns]β+?136Eu0+
β+, p?135Sm
137Gd6473136.94502(32)#2.2(2) sβ+137Eu(7/2)+#
β+,p?136Sm
138Gd6474137.94025(22)#4.7(9) sβ+138Eu0+
138mGd2232.6(11) keV6.2(0.2) μsIT138Gd(8−)
139Gd6475138.93813(21)#5.7(3) sβ+139Eu9/2−#
β+, p?138Sm
139mGd[n 10]250(150)# keV4.8(9) sβ+139Eu1/2+#
β+, p?138Sm
140Gd6476139.933674(30)15.8(4) sβ+ (67(8)%)140Eu0+
EC (33(8)%)
141Gd6477140.932126(21)14(4) sβ+ (99.97%)141Eu(1/2+)
β+, p (0.03%)140Sm
141mGd377.76(9) keV24.5(5) sβ+ (89%)141Eu(11/2−)
IT (11%)141Gd
142Gd6478141.928116(30)70.2(6) sEC (52(5)%)142Eu0+
β+ (48(5)%)
143Gd6479142.92675(22)39(2) sβ+143Eu1/2+
β+, p?142Sm
β+,α?139Pm
143mGd152.6(5) keV110.0(14) sβ+143Eu11/2−
β+, p?142Sm
β+,α?139Pm
144Gd6480143.922963(30)4.47(6) minβ+144Eu0+
144mGd3433.1(5) keV145(30) nsIT144Gd(10+)
145Gd6481144.921710(21)23.0(4) minβ+145Eu1/2+
145mGd749.1(2) keV85(3) sIT (94.3%)145Gd11/2−
β+ (5.7%)145Eu
146Gd6482145.9183185(44)48.27(10) dEC146Eu0+
147Gd6483146.9191010(20)38.06(12) hβ+147Eu7/2−
147mGd8587.8(5) keV510(20) nsIT147Gd49/2+
148Gd6484147.9181214(16)86.9(39) y[2]α[n 11]144Sm0+
149Gd6485148.9193477(36)9.28(10) dβ+149Eu7/2−
α (4.3×10−4%)145Sm
150Gd6486149.9186639(65)1.79(8)×106 yα[n 12]146Sm0+
151Gd6487150.9203549(32)123.9(10) dEC151Eu7/2−
α (1.1×10−6%)147Sm
152Gd[n 13]6488151.9197984(11)1.08(8)×1014 yα[n 14]148Sm0+0.0020(1)
153Gd6489152.9217569(11)240.6(7) dEC153Eu3/2−
153m1Gd95.1737(8) keV3.5(4) μsIT153Gd9/2+
153m2Gd171.188(4) keV76.0(14) μsIT153Gd(11/2−)
154Gd6490153.9208730(11)Observationally Stable[n 15]0+0.0218(2)
155Gd[n 16]6491154.9226294(11)Observationally Stable[n 17]3/2−0.1480(9)
155mGd121.10(19) keV31.97(27) msIT155Gd11/2−
156Gd[n 16]6492155.9221301(11)Stable0+0.2047(3)
156mGd2137.60(5) keV1.3(1) μsIT156Gd7-
157Gd[n 16]6493156.9239674(10)Stable3/2−0.1565(4)
157m1Gd63.916(5) keV460(40) nsIT157Gd5/2+
157m2Gd426.539(23) keV18.5(23) μsIT157Gd11/2−
158Gd[n 16]6494157.9241112(10)Stable0+0.2484(8)
159Gd[n 16]6495158.9263958(11)18.479(4) hβ159Tb3/2−
160Gd[n 16]6496159.9270612(12)Observationally Stable[n 18]0+0.2186(3)
161Gd6497160.9296763(16)3.646(3) minβ161Tb5/2−
162Gd6498161.9309918(43)8.4(2) minβ162Tb0+
163Gd6499162.93409664(86)68(3) sβ163Tb7/2+
163mGd138.22(20) keV23.5(10) sIT?163Gd1/2−
β163Tb
164Gd64100163.9359162(11)45(3) sβ164Tb0+
164mGd1095.8(4) keV589(18) nsIT164Gd(4−)
165Gd64101164.9393171(14)11.6(10) sβ165Tb1/2−#
166Gd64102165.9416304(17)5.1(8) sβ166Tb0+
166mGd1601.5(11) keV950(60) nsIT166Gd(6−)
167Gd64103166.9454900(56)4.2(3) sβ167Tb5/2−#
168Gd64104167.94831(32)#3.03(16) sβ168Tb0+
169Gd64105168.95288(43)#750(210) msβ169Tb7/2−#
β, n? (<0.7%)[7]168Tb
170Gd64106169.95615(54)#675+94
−75
 ms
[7]
β170Tb0+
β, n? (<3%)[7]169Tb
171Gd64107170.96113(54)#392+145
−136
 ms
[7]
β171Tb9/2+#
β, n? (<10%)[7]170Tb
172Gd64108171.96461(32)#163+113
−99
 ms
[7]
β172Tb0+#
β, n? (<50%)[7]171Tb
This table header & footer:
  1. ^mGd – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
  7. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^Bold symbol as daughter – Daughter product is stable.
  9. ^( ) spin value – Indicates spin with weak assignment arguments.
  10. ^Order of ground state and isomer is uncertain.
  11. ^Theorized to also undergo β+β+ decay to148Sm
  12. ^Theorized to also undergo β+β+ decay to150Sm
  13. ^primordialradionuclide
  14. ^Theorized to also undergo β+β+ decay to152Sm
  15. ^Believed to undergo α decay to150Sm
  16. ^abcdefFission product
  17. ^Believed to undergo α decay to151Sm
  18. ^Believed to undergo ββ decay to160Dy with ahalf-life over 3.1×1019 years

Gadolinium-148

[edit]

With a half-life of86.9±3.9 year via alpha decay alone,[2] gadolinium-148 would be ideal forradioisotope thermoelectric generators. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.[8]

Gadolinium-153

[edit]

Gadolinium-153 has a half-life of240.4±10 d and emits gamma radiation with strong peaks at 41keV and 102 keV. It is used as a gamma ray source forX-ray absorptiometry and fluorescence, for bone density gauges forosteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. Innuclear medicine, it serves to calibrate the equipment needed likesingle-photon emission computed tomography systems (SPECT) to makex-rays. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor fromeuropium orenriched gadolinium.[9] It can also detect the loss ofcalcium in the hip and back bones, allowing the ability to diagnose osteoporosis.[10]

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^abcChiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148".Applied Radiation and Isotopes.194. Elsevier BV: 110708.doi:10.1016/j.apradiso.2023.110708.ISSN 0969-8043.
  3. ^"Standard Atomic Weights: Gadolinium".CIAAW. 2024.
  4. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  5. ^F. A. Danevich; et al. (2001). "Quest for double beta decay of160Gd and Ce isotopes".Nuclear Physics A.694 (1–2):375–391.arXiv:nucl-ex/0011020.Bibcode:2001NuPhA.694..375D.doi:10.1016/S0375-9474(01)00983-6.S2CID 11874988.
  6. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  7. ^abcdefgKiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022)."Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region".The Astrophysical Journal.936 (107): 107.Bibcode:2022ApJ...936..107K.doi:10.3847/1538-4357/ac80fc.hdl:2117/375253.
  8. ^Council, National Research; Sciences, Division on Engineering Physical; Board, Aeronautics Space Engineering; Board, Space Studies; Committee, Radioisotope Power Systems (2009).Radioisotope Power Systems: An Imperative for Maintaining U.S. Leadership in Space Exploration.CiteSeerX 10.1.1.367.4042.doi:10.17226/12653.ISBN 978-0-309-13857-4.
  9. ^"PNNL: Isotope Sciences Program – Gadolinium-153".pnl.gov. Archived fromthe original on 2009-05-27.
  10. ^"Gadolinium".BCIT Chemistry Resource Center. British Columbia Institute of Technology. Archived fromthe original on 23 August 2011. Retrieved30 March 2011.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_gadolinium&oldid=1250436473#Gadolinium-152"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp