Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

G protein-coupled inwardly rectifying potassium channel

From Wikipedia, the free encyclopedia
Family of lipid-gated inward-rectifier potassium ion channels
potassium inwardly rectifying channel, subfamily J, member 3
Identifiers
SymbolKCNJ3
Alt. symbolsKir3.1, GIRK1, KGA
IUPHAR434
NCBI gene3760
HGNC6264
OMIM601534
RefSeqNM_002239
UniProtP48549
Other data
LocusChr. 2q24.1
Search for
StructuresSwiss-model
DomainsInterPro
potassium inwardly rectifying channel, subfamily J, member 6
Identifiers
SymbolKCNJ6
Alt. symbolsKCNJ7, Kir3.2, GIRK2, KATP2, BIR1, hiGIRK2
IUPHAR435
NCBI gene3763
HGNC6267
OMIM600877
RefSeqNM_002240
UniProtP48051
Other data
LocusChr. 21q22.1
Search for
StructuresSwiss-model
DomainsInterPro
potassium inwardly rectifying channel, subfamily J, member 9
Identifiers
SymbolKCNJ9
Alt. symbolsKir3.3, GIRK3
IUPHAR436
NCBI gene3765
HGNC6270
OMIM600932
RefSeqNM_004983
UniProtQ92806
Other data
LocusChr. 1q23.2
Search for
StructuresSwiss-model
DomainsInterPro
potassium inwardly rectifying channel, subfamily J, member 5
Identifiers
SymbolKCNJ5
Alt. symbolsKir3.4, CIR, KATP1, GIRK4
IUPHAR437
NCBI gene3762
HGNC6266
OMIM600734
RefSeqNM_000890
UniProtP48544
Other data
LocusChr. 11q24
Search for
StructuresSwiss-model
DomainsInterPro

TheG protein-coupled inwardly rectifying potassium channels (GIRKs) are a family oflipid-gatedinward-rectifier potassium ion channels which are activated (opened) by the signaling lipid PIP2 and asignal transduction cascade starting withligand-stimulatedG protein-coupled receptors (GPCRs).[1][2] GPCRs in turn release activatedG-protein βγ- subunits (Gβγ) from inactiveheterotrimeric G protein complexes (Gαβγ). Finally, the Gβγ dimeric protein interacts with GIRK channels to open them so that they become permeable to potassium ions, resulting inhyperpolarization of the cell membrane.[3] G protein-coupled inwardly rectifying potassium channels are a type ofG protein-gated ion channels because of this direct interaction of G protein subunits with GIRK channels. The activation likely works by increasing the affinity of the channel for PIP2. In high concentration PIP2 activates the channel absent G-protein, but G-protein does not activate the channel absent PIP2.

GIRK1 to GIRK3 are distributed broadly in the central nervous system, where their distributions overlap.[4][5][6] GIRK4, instead, is found primarily in the heart.[7]

Subtypes

[edit]
proteingenealiases
GIRK1KCNJ3Kir3.1
GIRK2KCNJ6Kir3.2
GIRK3KCNJ9Kir3.3
GIRK4KCNJ5Kir3.4

Examples

[edit]

A wide variety of G protein-coupled receptors activate GIRKs, including theM2-muscarinic,A1-adenosine,α2-adrenergic,D2-dopamine,μ-δ-, andκ-opioid,5-HT1A serotonin,somatostatin,galanin,m-Glu,GABAB,TAAR1,CB1 andCB2, andsphingosine-1-phosphate receptors.[2][3][8]

Examples of GIRKs include a subset of potassium channels in the heart, which, when activated byparasympathetic signals such asacetylcholine throughM2 muscarinic receptors, causes an outward current of potassium, which slows down theheart rate.[9][10] These are calledmuscarinic potassium channels (IKACh) and are heterotetramers composed of twoGIRK1 and twoGIRK4 subunits.[7][11]

References

[edit]
  1. ^Dascal N (1997). "Signalling via the G protein-activated K+ channels".Cell. Signal.9 (8):551–73.doi:10.1016/S0898-6568(97)00095-8.PMID 9429760.
  2. ^abYamada M, Inanobe A, Kurachi Y (December 1998)."G protein regulation of potassium ion channels".Pharmacological Reviews.50 (4):723–60.doi:10.1016/S0031-6997(24)01385-1.PMID 9860808.
  3. ^abLedonne A, Berretta N, Davoli A, Rizzo GR, Bernardi G, Mercuri NB (2011)."Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons".Front Syst Neurosci.5: 56.doi:10.3389/fnsys.2011.00056.PMC 3131148.PMID 21772817.inhibition of firing due to increased release of dopamine; (b) reduction of D2 and GABAB receptor-mediated inhibitory responses (excitatory effects due to disinhibition); and (c) a direct TA1 receptor-mediated activation of GIRK channels which produce cell membrane hyperpolarization.
  4. ^Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T (March 1995). "Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain".Biochem. Biophys. Res. Commun.208 (3):1166–73.doi:10.1006/bbrc.1995.1456.PMID 7702616.
  5. ^Karschin C, Dissmann E, Stühmer W, Karschin A (June 1996)."IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain".J. Neurosci.16 (11):3559–70.doi:10.1523/JNEUROSCI.16-11-03559.1996.PMC 6578832.PMID 8642402.
  6. ^Chen SC, Ehrhard P, Goldowitz D, Smeyne RJ (December 1997). "Developmental expression of the GIRK family of inward rectifying potassium channels: implications for abnormalities in the weaver mutant mouse".Brain Res.778 (2):251–64.doi:10.1016/S0006-8993(97)00896-2.PMID 9459542.S2CID 13599513.
  7. ^abKrapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE (1995). "The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins".Nature.374 (6518):135–41.Bibcode:1995Natur.374..135K.doi:10.1038/374135a0.PMID 7877685.S2CID 4334467.
  8. ^Svízenská I, Dubový P, Sulcová A (October 2008). "Cannabinoid Receptors 1 and 2 (CB1 and CB2), Their Distribution, Ligands and Functional Involvement in Nervous System Structures — A Short Review".Pharmacology Biochemistry and Behavior.90 (4):501–11.doi:10.1016/j.pbb.2008.05.010.PMID 18584858.S2CID 4851569.
  9. ^Kunkel MT, Peralta EG (1995)."Identification of domains conferring G protein regulation on inward rectifier potassium channels".Cell.83 (3):443–9.doi:10.1016/0092-8674(95)90122-1.PMID 8521474.S2CID 14720432.
  10. ^Wickman K, Krapivinsky G, Corey S, Kennedy M, Nemec J, Medina I, Clapham DE (1999)."Structure, G protein activation, and functional relevance of the cardiac G protein-gated K+ channel, IKACh".Ann. N. Y. Acad. Sci.868 (1):386–98.Bibcode:1999NYASA.868..386W.doi:10.1111/j.1749-6632.1999.tb11300.x.PMID 10414308.S2CID 25949938. Archived fromthe original on 2006-01-29. Retrieved2008-02-03.
  11. ^Corey S, Krapivinsky G, Krapivinsky L, Clapham DE (1998)."Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh".J. Biol. Chem.273 (9):5271–8.doi:10.1074/jbc.273.9.5271.PMID 9478984.

External links

[edit]
Ligand-gated
Voltage-gated
Constitutively active
Proton-gated
Voltage-gated
Calcium-activated
Inward-rectifier
Tandem pore domain
Voltage-gated
Miscellaneous
Cl:Chloride channel
H+:Proton channel
M+:CNG cation channel
M+:TRP cation channel
H2O (+solutes):Porin
Cytoplasm:Gap junction
By gating mechanism
Ion channel class
see alsodisorders
Calcium
VDCCsTooltip Voltage-dependent calcium channels
Blockers
Activators
Potassium
VGKCsTooltip Voltage-gated potassium channels
Blockers
Activators
IRKsTooltip Inwardly rectifying potassium channel
Blockers
Activators
KCaTooltip Calcium-activated potassium channel
Blockers
Activators
K2PsTooltip Tandem pore domain potassium channel
Blockers
Activators
Sodium
VGSCsTooltip Voltage-gated sodium channels
Blockers
Activators
ENaCTooltip Epithelial sodium channel
Blockers
Activators
ASICsTooltip Acid-sensing ion channel
Blockers
Chloride
CaCCsTooltip Calcium-activated chloride channel
Blockers
Activators
CFTRTooltip Cystic fibrosis transmembrane conductance regulator
Blockers
Activators
Unsorted
Blockers
Others
TRPsTooltip Transient receptor potential channels
LGICsTooltip Ligand gated ion channels
Retrieved from "https://en.wikipedia.org/w/index.php?title=G_protein-coupled_inwardly_rectifying_potassium_channel&oldid=1316668964"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp