Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

General Motors LS-based small-block engine

From Wikipedia, the free encyclopedia
(Redirected fromGM LS engine)
Family of V8 and V6 engines
This article is about the third, fourth, and fifth generation of Chevrolet/General Motors small-block engine. For the first- and second-generation Chevrolet small-block engine, seeChevrolet small-block engine (first- and second-generation). For the engine found in the C8 Corvette Z06, seeChevrolet Gemini small-block engine.

This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "General Motors LS-based small-block engine" – news ·newspapers ·books ·scholar ·JSTOR
(October 2018) (Learn how and when to remove this message)
Reciprocating internal combustion engine
General Motors LS small-block engine
An LS1 engine in a 1998Chevrolet Camaro
Overview
ManufacturerGeneral Motors
DesignerTom Stephens[1]
Ed Koerner[1]
Production1997–present
Layout
Configuration90°V8, 90°V6
Displacement293–511 cu in (4.8–8.4 L)
Cylinder bore3.78–4.185 in (96.0–106.3 mm)
Piston stroke3.3–4.125 in (83.8–104.8 mm)
Cylinder block materialAluminum
Cast iron
Cylinder head materialAluminum
Cast iron
Valvetrain
  • 16-valve,OHV (2 valves per cyl.)
Compression ratio9.08:1–13.1:1
Combustion
Fuel systemFuel injection,carburetors[N 1]
Fuel typeGasoline,E85
Oil systemWet sump,Dry sump
Cooling systemWater-cooled
Output
Power output255–755 hp (190–563 kW)
Torque output285–715 lb⋅ft (386–969 N⋅m)
Dimensions
Dry weight402–464 lb (182–210 kg)[3][4]
Chronology
PredecessorChevrolet small-block engine (first and second generation)
SuccessorChevrolet Gemini small-block engine

TheGeneral Motors LS-based small-block engines are a family ofV8 and offshootV6 engines designed and manufactured by the Americanautomotive companyGeneral Motors. Introduced in 1997, the family is a continuation of the earlierfirst- and second-generation Chevrolet small-block engine, of which over 100 million have been produced altogether[5] and is also considered one of the most popular V8 engines ever.[6][7][8][9] The LS family spans the third, fourth, and fifth generations of the small-block engines, with a sixth generation expected to enter production soon.[10][11] Various small-block V8s were and still are available ascrate engines.[12][13]

The "LS" nomenclature originally came from theRegular Production Option (RPO) code LS1, assigned to the first engine in the Gen III engine series. The LS nickname has since been used to refer generally to all Gen III and IV engines,[14] but that practice can be misleading, since not all engine RPO codes in those generations begin with LS.[15] Likewise, although Gen V engines are generally referred to as "LT" small-blocks after the RPO LT1 first version, GM also used other two-letter RPO codes in the Gen V series.[16][17]

The LS1 was first fitted in theChevrolet Corvette (C5),[18] and LS or LT engines have powered every generation of the Corvette since (with the exception of the Z06 variant of theeighth generation Corvette, which is powered by the unrelatedChevrolet Gemini small-block engine).[19] Various other General Motors automobiles have been powered by LS- and LT-based engines, including sports cars such as theChevrolet Camaro/Pontiac Firebird andHolden Commodore, trucks such as theChevrolet Silverado, and SUVs such as theCadillac Escalade.[1]

A clean-sheet design, the only shared components between the Gen III engines and the first two generations of theChevrolet small-block engine are theconnecting rod bearings andvalve lifters.[1] However, the Gen III and Gen IV engines were designed with modularity in mind, and several engines of the two generations share a large number of interchangeable parts.[20] Gen V engines do not share as much with the previous two, although theengine block is carried over, along with the connecting rods.[21] The serviceability and parts availability for various Gen III and Gen IV engines have made them a popular choice forengine swaps in the car enthusiast andhot rodding community; this is known colloquially as anLS swap.[22][23][24] These engines also enjoy a high degree of aftermarket support due to their popularity and affordability.[25]

Background

[edit]

The brainchild ofChevrolet chief engineerEd Cole, thefirst generation of the Chevrolet small-block engine was first unveiled in the 1955Chevrolet Corvette andChevrolet Bel Air, both powered by the 265 cu in (4,343 cc) "Turbo-Fire." The 265 Turbo-Fire distinguished itself from other engines of the era such asCadillac's331 series of the late 1940s and early 1950s by reducing the size and weight of various components within the engine; a compactengine block combined with a lightvalvetrain gave the Turbo-Fire a 40 lb (18 kg) weight reduction compared to theinline-sixes (despite having two more cylinders) that initially powered the first generation of the Corvette, alongside a significant horsepower increase of 25%. This contributed to lowering the Corvette's 0–60 mph (0–97 km/h) from 11 seconds to 8.7.[26][27][28]

Nicknamed the "Mighty Mouse," the Turbo-Fire soon became popular within the hot rodding community too, along with scoring wins instock car racing.[28] A larger version of the Turbo-Fire arrived in 1957, nowbored out to 3.875 in (98.4 mm). This gave the new engine a total displacement of 283 cu in (4,638 cc); this newer version was dubbed the "Super Turbo-Fire." The Super Turbo-Fire was also the first engine offered withmechanical fuel injection. The top-of-the-line model produced 283 hp (211 kW; 287 PS), giving it a 1:1 cubic inch to horsepower ratio;[18] this lowered the Corvette's 0–60 mph (0–97 km/h) to 7.2 seconds.[27]

General Motors would produce more powerful and largerdisplacement iterations of the small-block, until stringentemission regulations in the late 1960s severely limited performance. TheMalaise era (roughly 1973 to 1983), as it was known, saw some of the lowest horsepower figures in several muscle and or pony car engines. This included the Corvette whose power output dropped below 200 hp (149 kW; 203 PS) despite a displacement of 350 cu in (5,735 cc).[29]

1992 saw thesecond generation of Chevrolet small-block hit the market in that year'sChevrolet Corvette in the form of the LT1 small-block. It featured a newignition system, reverse-flow cooling (cooling the cylinder heads first), and new engine block, but the valvetrain and engine mounts were carried over in order to maintain a degree of compatibility with the previous generation. Other modifications such as a better flowingintake manifold andcylinder heads gave the LT1 a power output of 300 hp (224 kW; 304 PS).[30][18] The second generation culminated in the LT4 small-block, which gained a minor power increase of 30 hp (22 kW; 30 PS). Other changes included a lighter valvetrain and strengthenedcrankshaft.[30]

The decision to stick with pushrod technology was seen as archaic at the time; such engines were seen as outdated compared to the smaller capacity (but more powerful and fuel efficient) overhead cam engines favored by European and Asian manufacturers. One of GM's domestic rivals,Ford, had announced plans to axe itssmall block engine from production in the early 1990s,[31] in favor of its Modular engines. Another domestic rival, Chrysler Corporation, had stopped building passenger cars with V8 engines years prior, relegating them to its trucks and SUVs. Many car enthusiasts also desired adual overhead cam engine;[26] GM in response had developed theNorthstar engines for Cadillac, but those engines were initially exclusive to that brand and not originally designed for rear-wheel-drive vehicles. Later on, Sam Winegarden, former General Motors chief engineer for small-blocks, stated that despite the stigma of the pushrod engine being "a symbol of the uncompetitiveness [sic] of the domestic industry," the decision to stick with pushrods was made on the basis that switching to overhead camshafts was unnecessary. The power requirements for the Corvette were satisfied by simply increasing engine displacement.[31] Current General Motors chief engineer for small-blocks Jake Lee also stated that switching to overhead camshafts would also increase the height of the engine by 4 in (102 mm), rendering it too tall to fit under thehood of the Corvette.[32]

Approval for the Gen III was granted in May 1992, after a seat-of-the-pants decision made by General Motors executives who went for a drive in two Corvettes—one equipped with a traditional pushrod engine and one with a newer dual overhead camshaft engine. Tom Stephens, then-executive director of General Motors Powertrains, was the man in charge of the project. Stephens had the task of designing an engine that was not only more powerful than the previous small-block iterations, but one that could also deliver betterfuel economy and meetemissions standards. Work began in 1993, shortly after the release of the LT1 Gen II engine. A small team hand-picked from the Advanced Engineering department of General Motors was assembled to do much of the initial design work, with initial prototypes hitting test benches by the winter of 1993. Stephens also recruited Ed Koerner, a formerNHRA record holder, to help with much of the hands-on work, while Stephens dealt with corporate.[33][34]

Design

[edit]

All three generations areoverhead valve engines, otherwise known as pushrod engines. Overhead valve engines have the valves mounted above the cylinder head, with apushrod androcker arm allowing thecamshaft (which is mounted inside the block) to open and close the valves. The advantages of an engine configuration like this (as opposed to anoverhead camshaft engine) is that since the camshaft is located within the engine valley, a pushrod engine will be shorter in height compared an overhead camshaft engine.[35] Another advantage is that there are fewer mechanical components such astiming chains and extra camshafts, which increases reliability by keeping the engine simple.[31]

A pushrod configuration that would typically be found in a LS-based small-block. To the left are the valves and are attached to the pushrods, which are actuated by the valve lifters attached to the camshaft.

All three generations were outfitted with eitheraluminum orcast iron engine blocks, with all passenger car engine blocks being aluminum, whereas truck engine blocks could be either material. Every single engine was also fitted with aluminum cylinder heads,[2] except for the 1999 and 2000model year of the LQ4, which were cast iron.[36] Other modifications to the cylinder heads included a redesign to include significantly better airflow, with evenly spaced exhaust and intakevalves.[18][26] A deeper engine skirt meant that the third and following generations were slightly larger than its predecessors; the deeper skirts strengthened the block and improved rigidity. A deep engine skirt refers to an engine block which extends below the centerline position of the crankshaft within the engine.[37] Another feature across all generations was the 4.4 in (112 mm)bore spacing and pushrods, the former of which is also in use in theChevrolet Gemini small-block engine.[38] The use of aluminum allowed for further weight reduction; the 1997 LS1 was almost 100 lb (45 kg) lighter than previous cast-iron small-block iterations.[26] GM also made extensive use of economies of scale for the LS: with the exception of the 4.8L and 7.0L engines, all variants used the same 3.622" stroke (with most of those variants using the same basic crankshaft casting), the 4.8L and 5.3L variants utilized the same block casting, and several variants used the same length connecting rod.[39]

Other modifications include long runner intake manifolds,powder-forged connecting rods and the introduction of six-boltmain bearings (as opposed to two or four on the previous generations). Long runner intake manifolds in the LS series increases the airflow into the cylinders at low revolutions, increasingtorque production at lower revolutions.[40] Truck applications of the LS engine have even longer intake manifolds, being approximately 3 in (76 mm) taller than passenger car manifolds.[41] Most engines were also fitted withhypereutectic pistons,[24] replacing the previouscast pistons which were weaker and less thermally stable.[42]

Powder-forging involvessintering a specific mixture of metals and non-metals which have been compressed in aforming press. The mixture is then quickly transferred into a traditional die cavity in aforging press and is pressed once then cooled. Powder-forging is also more cost-effective compared to traditional die forging, reducing the amount of tooling required to trim inconsistencies in hot-forged connecting rods.[43] Stronger than the forged steel connecting rods of the previous two generations, powder-forged connecting rods have been fitted to every LS and LT engine except for the LS7.[44]

Generation III (1997–2007)

[edit]
Reciprocating internal combustion engine
Generation III
An LS1 engine in aChevrolet Corvette C5
Overview
ManufacturerGeneral Motors
Also calledVortec
Production1997–2007
Layout
Configuration90°V8
Displacement
  • 4,806 cc (293.3 cu in)
  • 5,327 cc (325.1 cu in)
  • 5,665 cc (345.7 cu in)
  • 5,967 cc (364.1 cu in)
Cylinder bore
  • 96 mm (3.78 in)
  • 99 mm (3.9 in)
  • 101.6 mm (4.00 in)
Piston stroke
  • 83 mm (3.27 in)
  • 92 mm (3.62 in)
Cylinder block material
Cylinder head material
ValvetrainOHV 2 valves per cylinder
Combustion
Fuel systemSequential multi-port fuel injection
Fuel typeGasoline
E85
Oil systemWet sump
Cooling systemWater-cooled
Dimensions
Dry weight500–580 lb (230–260 kg)[45]
Chronology
Predecessor
SuccessorGeneration IV

TheGeneration III small-block V8 is a "clean sheet" General Motors design produced from 1997 to 2007, which replaced the ChevroletGeneration I andGeneration II engine families derived from the longstanding Chevrolet small block V8 produced between 1954 and 2003.

Like the previous two generations, the Buick and Oldsmobile small blocks, the Gen III/IV can be found in many different brands. The engine blocks were cast in aluminum for car applications, and iron for most truck applications (notable exceptions include theChevrolet TrailBlazer SS,Chevrolet SSR, and a limited run of Chevrolet Silverado/GMC Sierra extended-cab standard-box 4WD trucks).

The architecture of the LS series makes for an extremely strong engine block with the aluminum engines being nearly as strong as the iron generation I and II engines. The LS engine also usedcoil-near-plug style ignition to replace thedistributor setup of all previous small-block based engines.

The traditional five-bolt pentagonal cylinder head pattern was replaced with a square four-bolt design (much like the 1964–1990Oldsmobile V8), and the pistons are of the flat-topped variety (in the LS1, LS2, LS3, LS6, LS7, LQ9, and L33), while all other variants, including the new LS9 and LQ4 truck engine, received a dished version of the GM hypereutectic piston.

The cylinderfiring order was changed to 1-8-7-2-6-5-4-3[46] so that the LS series now corresponds to the firing pattern of other modern V8 engines (for example theFord Modular V8).

3.898 in. bore blocks (1997–2005)

[edit]

The first of the Generation IIIs, the LS1 was the progenitor of the new architecture design that would transform the entire V8 line and influence the last of thebig-blocks.

5.7L

[edit]

The Generation III 5.7L (LS1 and LS6) engines share little other than similar displacement, external dimensions, and rod bearings, with its predecessor (LT1). It is an all-aluminum 5,665 cc (5.7 L; 345.7 cu in) pushrod engine with a bore and stroke of 99 mm × 92 mm (3.898 in × 3.622 in).[47]

LS1
[edit]

When introduced in the 1997 Corvette, the LS1 was rated at 345 hp (257 kW) at 5,600 rpm and 350 lb⋅ft (475 N⋅m) at 4,400 rpm. After improvements to the intake and exhaust manifolds in 2001, the rating improved to 350 hp (261 kW) and 365 lb⋅ft (495 N⋅m) (375 lb⋅ft (508 N⋅m) for manual-transmission Corvettes.[48][49] The LS1 was used in the Corvette from 97 to 04. It was also used in 98-02 GM F-Body (Camaro & Firebird) cars with a rating of over 305–345 hp (227–257 kW), which was rumored to be conservative. The extra horsepower was claimed to come from the intake ram-air effect available in the SS and WS6 models. In Australia, continuous modifications were made to the LS1 engine throughout its lifetime, reaching 382 hp/376 ft-lb in theHSV's VYII series, and aCallaway modified version named "C4B" was fitted to HSV GTS models producing 400 bhp (298 kW) and 376 lb⋅ft (510 N⋅m) of torque.[50]

Applications:

Year(s)ModelPowerTorque
1997–2004Chevrolet Corvette C5345–350 hp (257–261 kW) at 5600 rpm350–375 lb⋅ft (475–508 N⋅m) at 4400 rpm
1998–2002Pontiac Firebird Formula, Trans Am305–345 hp (227–257 kW) at 5600 rpm335 lb⋅ft (454 N⋅m) at 4400 rpm
1998–2002Chevrolet Camaro Z28305–310 hp (227–231 kW) at 5200 rpm335–340 lb⋅ft (454–461 N⋅m) at 4400 rpm
1998–2002Chevrolet Camaro SS320–325 hp (239–242 kW) at 5200 rpm345–350 lb⋅ft (468–475 N⋅m) at 4400 rpm
2004Pontiac GTO350 hp (261 kW) at 5200 rpm365 lb⋅ft (495 N⋅m) at 4000 rpm
2001–2004HSV GTO342–382 hp (255–285 kW) at 5600 rpm350 lb⋅ft (475 N⋅m) at 4400 rpm, 376 lb⋅ft (510 N⋅m) at 4800 rpm
1999–2005Holden Statesman295 hp (220 kW) at 5000 rpm, 315–328 hp (235–245 kW) at 5200 rpm323–343 lb⋅ft (438–465 N⋅m) at 4400 rpm, 339 lb⋅ft (460 N⋅m) at 4000 rpm
2001–2005Holden Monaro302–328 hp (225–245 kW) at 5200 rpm, 349 hp (260 kW) at 5600 rpm339–343 lb⋅ft (460–465 N⋅m) at 4400 rpm, 347 lb⋅ft (470 N⋅m) at 4000 rpm
GM LS6 engine in aChevrolet Corvette Z06

LS6
[edit]
Not to be confused with the 454 CIDLS-6 V8 of the 1970s, or the GMIron Duke engine from the late 1970s.

TheLS6 is a higher-output version of GM's LS1 engine and retains the same capacity. The initial 2001 LS6 produced 385 bhp (287 kW) and 385 lb⋅ft (522 N⋅m), but the engine was modified for 2002 through 2004 to produce 405 bhp (302 kW) and 400 lb⋅ft (542 N⋅m) of torque. The LS6 was originally only used in the high-performance C5 Corvette Z06 model, with theCadillac CTS V-Series getting the 400 bhp (298 kW) engine later. The V-Series used the LS6 for two years before being replaced by the LS2 in 2006. For 2006, the Z06 replaced the LS6 with the newLS7. The LS6 shares its basic block architecture with theGM LS1 engine, but other changes were made to the design such as windows cast into the block between cylinders, improved main web strength and bay to bay breathing, an intake manifold and MAF-sensor with higher flow capacity, a camshaft with higher lift and more duration, a higher compression ratio of 10.5:1, sodium-filled exhaust valves, and a revised oiling system better suited to high lateral acceleration.[51]LS6 intake manifolds were also used on all 2001+ LS1/6 engines. The casting number, located on the top rear edge of the block, is 12561168.

TheSSC Ultimate Aero TT also utilized the LS6 block, albeit with an enlargeddisplacement of 6.3 L (384.4 cu in) and the addition of twoturbochargers.[52]

Applications:

Year(s)ModelPowerTorque
2001–2004Chevrolet Corvette C5 Z06385–405 hp (287–302 kW) at 6000 rpm385–400 lb⋅ft (522–542 N⋅m) at 4800 rpm
2004–2005Cadillac CTS V-Series400 hp (298 kW) at 6000 rpm395 lb⋅ft (536 N⋅m) at 4800 rpm
2007–2008SSC Ultimate Aero TT (modified)1,180 hp (880 kW) at 6950 rpm1,106 lb⋅ft (1,500 N⋅m) at 6150 rpm

3.78 in. bore blocks (1999–2007)

[edit]

The 4.8L and the 5.3L are smaller truck versions of the LS1 and were designed to replace the 305 and the 350 in trucks. The 4.8L and 5.3L engines share the same Gen III LS-series engine block and heads (upper end) and therefore, most parts interchange freely between these engines and other variants in the LS family.

4.8L LR4

[edit]

The Vortec 4800 LR4 (VIN code "V") is aGeneration III small block V8 truck engine. Displacement is 4,806 cc (4.8 L; 293.3 cu in) with a bore and stroke of 96 mm × 83 mm (3.78 in × 3.27 in). It is the smallest of the Generation III Vortec truck engines. The LR4 engines in 1999 produced 255 hp (190 kW) while the 2000 and above models made 270–285 hp (201–213 kW) and all have a torque rating between 285–295 lb⋅ft (386–400 N⋅m), depending on the model year and application. The 2005–2006 models made 285 hp (213 kW) and 295 lb⋅ft (400 N⋅m). The LR4 was manufactured atSt. Catharines, Ontario, andRomulus, Michigan. It uses flat-top pistons.

Applications:

Year(s)ModelPowerTorque
2000–2006Chevrolet Tahoe/GMC Yukon270–285 hp (201–213 kW) at 5200 rpm285–295 lb⋅ft (386–400 N⋅m) at 4000 rpm
1999–2007Chevrolet Silverado/GMC Sierra 1500255–285 hp (190–213 kW) at 5200 rpm285–295 lb⋅ft (386–400 N⋅m) at 4000 rpm
2003–2007Chevrolet Express/GMC Savana 2500/3500275–285 hp (205–213 kW) at 5200 rpm290–295 lb⋅ft (393–400 N⋅m) at 4000 rpm

5.3 L

[edit]

TheVortec 5300, or LM7/L59/LM4, is a V8 truck engine.[clarify] It is a longer-stroked by 9 mm (0.35 in) version of theVortec 4800 and replaced theL31. L59 denoted aflexible-fuel version of the standard-fuel LM7 engine. Displacement is 5,327 cc (5.3 L; 325.1 cu in) from a bore and stroke of 96 mm × 92 mm (3.78 in × 3.62 in). Vortec 5300s were built inSt. Catharines, Ontario, andRomulus, Michigan. The aluminum block variants, the LM4 and the L33, share the same displacement, but instead use an aluminum block with cast-in cylinder liners, much like the LS1.

LM7
[edit]

The Vortec 5300 LM7 (VIN code 8th digit "T") was introduced in 1999. The "garden variety" Generation III V8 has a cast-iron block and aluminum heads.

The 1999 LM7 engine produced 270 hp (201 kW) and 315 lb⋅ft (427 N⋅m) of torque.

The 2000–2003 engines produced 285 hp (213 kW) and 325 lb⋅ft (441 N⋅m) of torque.

The 2004–2007 engines produced 295 hp (220 kW) and 335 lb⋅ft (454 N⋅m) of torque.

The stock cam specifications at .050 lift are: 190/191 duration, .466/.457 lift, 114 LSA, 112/116 timing.

Applications:

Year(s)ModelPowerTorque
2002–2005Cadillac Escalade 2WD285–295 hp (213–220 kW)325–335 lb⋅ft (441–454 N⋅m)
2002–2006Chevrolet Avalanche 1500285–295 hp (213–220 kW)325–335 lb⋅ft (441–454 N⋅m)
2003–2007Chevrolet Express/GMC Savana 1500/2500285–295 hp (213–220 kW)325–335 lb⋅ft (441–454 N⋅m)
1999–2007Chevrolet Silverado/GMC Sierra 1500 (and 1999–2000 2500)270–295 hp (201–220 kW)315–335 lb⋅ft (427–454 N⋅m)
2000–2006Chevrolet Suburban/GMC Yukon XL 1500285–295 hp (213–220 kW)325–335 lb⋅ft (441–454 N⋅m)
2000–2006Chevrolet Tahoe/GMC Yukon285–295 hp (213–220 kW)325–335 lb⋅ft (441–454 N⋅m)
L59
[edit]

The Vortec 5300 L59 (VIN code "Z") is aflexible-fuel version of the LM7. The 2002–2003 L59 made 285 hp (213 kW) and 320 lb⋅ft (434 N⋅m), while the 2004–2007 L59 made 295 hp (220 kW) and 335 lb⋅ft (454 N⋅m).

Applications:

Year(s)ModelPowerTorque
2002–2006Chevrolet Tahoe/GMC Yukon285–295 hp (213–220 kW)320–335 lb⋅ft (434–454 N⋅m)
2002–2006Chevrolet Suburban/GMC Yukon XL 1500285–295 hp (213–220 kW)320–335 lb⋅ft (434–454 N⋅m)
2005–2006Chevrolet Avalanche 1500285–295 hp (213–220 kW)320–335 lb⋅ft (434–454 N⋅m)
2002–2007Chevrolet Silverado/GMC Sierra 1500285–295 hp (213–220 kW)320–335 lb⋅ft (434–454 N⋅m)
LM4
[edit]

The Vortec 5300 LM4 (VIN code "P") is an aluminum block version of the LM7, and had a short production life, as did the specific vehicles in which LM4s are found. LM4s made 290 hp (216 kW) and 325 lb⋅ft (441 N⋅m). The LM4 and LM7 should not be confused with the L33, described below.

Applications:

Year(s)ModelPowerTorque
2003–2004Isuzu Ascender290 hp (216 kW) at 5200 rpm325 lb⋅ft (441 N⋅m) at 4000 rpm
2003–2004GMC Envoy XL
2003–2004Chevrolet SSR
2004GMC Envoy XUV
2004Buick Rainier
2003–2005Chevrolet TrailBlazer EXT
L33
[edit]

The Vortec 5300 L33 (VIN code "B") was marketed as the Vortec 5300 HO. While it used the same aluminum block as was used in the LM4, the L33 included some major differences from the LM4, resulting in higher output than the LM4 and LM7. Instead of the LM4's dished pistons, the L33 used the 4.8L's flat top pistons. It also used 799 cylinder heads, identical to 243 castings found on LS6s and LS2s, lacking only LS6-spec valve springs and lightweight valves. This combination raised the compression from 9.5:1 to 10.0:1. The L33 also used a unique camshaft not shared with any other engine, with the specifications at .050 duration being: 193 duration, .482 lift, 116 LSA. As a result, power increased by 15 hp (11 kW), to 310 hp (230 kW) and 335 lb⋅ft (454 N⋅m). It was available in extended-cab standard-bed 4WD pickup trucks. Only 25% of 2005 Chevrolet/GMC full-size pickup trucks had an L33 engine.

Applications:

Year(s)ModelPowerTorque
2005–2007Chevrolet Silverado 1500 4WD/GMC Sierra 1500 4WD310 hp (231 kW) at 5200 rpm335 lb⋅ft (454 N⋅m) at 4000 rpm

4.00 in. bore blocks (1999–2007)

[edit]

The 6.0 L is a larger version of the LS engine. 6.0 L blocks were cast of iron, designed to bridge the gap between the new small blocks and big blocks in truck applications. There were two versions of this engine: LQ4 and LQ9, the latter being more performance oriented.

6.0 L

[edit]

TheVortec 6000 is a V8 truck engine. Displacement is 5,967 cc (6.0 L; 364.1 cu in) from a bore and stroke of 101.6 mm × 92 mm (4.00 in × 3.62 in). It is an iron/aluminum (1999 and 2000model year engines had cast iron heads) design and produces 300 to 345 hp (224 to 257 kW) and 360 to 380 lb⋅ft (488 to 515 N⋅m).

LQ4
[edit]

The Vortec 6000 LQ4 (VIN code "U") is a V8 truck engine. It produces 300 to 335 hp (224 to 250 kW) and 360 to 380 lb⋅ft (488 to 515 N⋅m). LQ4s were built inRomulus, Michigan, andSilao, Mexico.

Applications:

Year(s)ModelPowerTorque
1999–2007Chevrolet Silverado/GMC Sierra 1500HD/2500/2500HD/3500300 hp (224 kW; 304 PS) at 4400 rpm360 lb⋅ft (488 N⋅m) at 4000 rpm
2001GMC Sierra C3325 hp (242 kW; 330 PS) at 5200 rpm370 lb⋅ft (502 N⋅m) at 4000 rpm
2002–2007GMC Sierra Denali
2000–2006Chevrolet Suburban 2500/GMC Yukon XL 2500300–320 hp (224–239 kW; 304–324 PS) at 5200 rpm355–375 lb⋅ft (481–508 N⋅m) at 4000 rpm
2002–2007Hummer H2316–325 hp (236–242 kW; 320–330 PS) at 5200 rpm360–365 lb⋅ft (488–495 N⋅m) at 4000 rpm
2002–2006GMC Yukon/Yukon XL Denali and Chevrolet Suburban 1500 LTZ325–335 hp (242–250 kW; 330–340 PS) at 5200 rpm370–380 lb⋅ft (502–515 N⋅m) at 4000 rpm
2003–2007Chevrolet Express/GMC Savana 2500/3500300–325 hp (224–242 kW; 304–330 PS) at 4400 rpm360–375 lb⋅ft (488–508 N⋅m) at 4000 rpm
2003–2008Chevrolet W-Series/GMC W-Series/Isuzu NPR
LQ9
[edit]

The Vortec HO 6000 or VortecMAX (VIN code "N") is a special high-output version of theVortec 6000 V8 truck engine originally designed for Cadillac in 2002. This engine was renamed as the VortecMAX for 2006. It features high-compression (10:1) flat-top pistons for an extra 20 hp (15 kW) and 10 lb⋅ft (14 N⋅m), bringing output to 345 hp (257 kW) and 380 lb⋅ft (515 N⋅m). Vehicles fitted with the LQ9 came exclusively with a 4.10:1 rear axle ratio. LQ9s were built only inRomulus, Michigan.

Year(s)ModelPowerTorque
2002–2006Cadillac Escalade AWD345 hp (257 kW) at 5200 rpm380 lb⋅ft (515 N⋅m) at 4000 rpm
2005–2006Cadillac Escalade 2WD
2002–2006Cadillac Escalade EXT
2003–2006Cadillac Escalade ESV
2003–2007Chevrolet Silverado SS & H/O Edition
2005–2006GMC Sierra Denali
2006–2007Chevrolet Silverado Classic VortecMAX/GMC Sierra Classic VortecMAX

Generation IV (2005–2020)

[edit]
Reciprocating internal combustion engine
Generation IV
GM LS2 engine in a 2005Chevrolet Corvette C6
Overview
ManufacturerGeneral Motors
Also calledVortec
Production2004–2020
Layout
Configuration90°V8
Displacement
  • 4,806 cc (293.3 cu in)
  • 5,327 cc (325.1 cu in)
  • 5,967 cc (364.1 cu in)
  • 6,162 cc (376.0 cu in)
  • 7,008 cc (427.7 cu in)
Cylinder bore
  • 96 mm (3.78 in)
  • 101.6 mm (4.00 in)
  • 103.25 mm (4.065 in)
  • 104.8 mm (4.126 in)
  • 106.3 mm (4.185 in)
Piston stroke
  • 83 mm (3.27 in)
  • 92 mm (3.62 in)
  • 101.6 mm (4.00 in)
  • 104.8 mm (4.126 in)
Cylinder block materialAluminum
Cast iron
Cylinder head materialAluminum
ValvetrainOHV 2 valves per cylinder
Combustion
SuperchargerEaton four-lobe Roots type (LS9 & LSA)
Fuel systemSequential multi-port fuel injection
Fuel typeGasoline
E85
Oil systemWet sump
Dry sump
Cooling systemWater-cooled
Chronology
PredecessorGeneration III
SuccessorGeneration V

In 2004, the Generation III was superseded by theGeneration IV. This category of engines has provisions for high-displacement ranges up to 7,441 cc (7.4 L; 454.1 cu in) and power output to 776 bhp (579 kW). Based on the Generation III design, the Generation IV was designed withdisplacement on demand in mind, a technology that allows every other cylinder in the firing order to be deactivated. It can also accommodatevariable valve timing.

Athree-valve-per-cylinder design was originally slated for the LS7, which would have been a first for a GM pushrod engine, but the idea was shelved owing to design complexities and when the same two-valve configuration as the other Generation III and IV engines proved to be sufficient to meet the goals for the LS7.

4.00 in. bore blocks (2005–2020)

[edit]

This family of blocks was the first of the generation IV small block with the LS2 being the progenitor of this family and generation. This family of blocks has seen a wide range of applications from performance vehicles to truck usage.

6.0 L

[edit]

TheGeneration IV 6000 is a V8 engine that displaces 5,972 cc (6.0 L; 364.4 cu in) from a bore and stroke of 101.6 mm × 92 mm (4.000 in × 3.622 in). It features either a cast iron or aluminum engine block with cast aluminum heads. Certain versions featurevariable cam phasing,Active Fuel Management, andflex-fuel capability.

LS2
[edit]
LS2 can also refer to the 1973–1974 Super Duty 455 cu in (7.5 L)Pontiac V8 engine
LS2 can also refer to the 1985Oldsmobile Diesel V6 engine.

TheLS2 was introduced as the Corvette's new base engine for the 2005 model year. It also appeared as the standard powerplant for the 2005–2006 GTO. It produces 400 bhp (298 kW) at 6000 rpm and 400 lb⋅ft (542 N⋅m) at 4400 rpm from a slightly larger displacement of 5,967 cc (6.0 L; 364.1 cu in). It is similar to the high-performanceLS6, but with improved torque throughout the rpm range. The LS2 uses the "243" casting heads used on theLS6 (although without the sodium-filled valves), a smaller camshaft, and an additional 18 cubic inches (290 cc). The compression of theLS2 was also raised to 10.9:1 compared to theLS1s' 10.25:1 and theLS6s' 10.5:1. TheLS2 in the E-series HSVs are modified in Australia to produce 412 bhp (307 kW) and 412 lb⋅ft (559 N⋅m) of torque. TheLS2 in theChevrolet Trailblazer SS and theSaab 9-7X Aero are rated at 395 bhp (295 kW) (2006–2007) or 390 bhp (291 kW) (2008–2009) and 400 lb⋅ft (542 N⋅m) of torque due to a different (sometimes referred to as a "truck") intake manifold that produces more torque at lower rpms.

TheLS2 is also used as the basis of theNASCAR Specification Engine that is used as an optional engine in NASCAR's Camping World SeriesEast andWest divisions starting in 2006, and starting in 2010 may also be used on tracks shorter than two kilometers (1.25 miles) in theCamping World Truck Series.[53]

A version of the NASCAR V8 cylinder block cast incompacted graphite iron by Grainger & Worrall won the UK's Casting of the Year Award 2010.[54]

Applications:

L76
[edit]

TheL76 is derived from theLS2, and like theLS2 it features an aluminum engine block. However, theL76 does featureActive fuel management (AFM). While thedisplacement on demand technology was disabled on Holdens, this feature is enabled on the 2008Pontiac G8 GT and subsequently refitted in the 2009 model Holdens with AFM enabled, but only on models fitted with the 6L80 Automatic Transmission. The engine also meetsEuro III emissions requirements. Output is 348 bhp (260 kW) at 5600 rpm and 376 lb⋅ft (510 N⋅m) at 4400 rpm for the Holden variant, and 361 bhp (269 kW) and 385 lb⋅ft (522 N⋅m) for the G8 GT.[56] TheVortec 6000 or newVortecMAX version is based on the HoldenL76 engine, and featuresvariable cam phasing, along with Active Fuel Management. It can be considered the replacement for the Generation IIILQ9 engine. It produces 367 hp (274 kW) at 5400 rpm and 375 lb⋅ft (508 N⋅m) at 4400 rpm. Production of the truck-spec L76 started in late 2006, and it was only available with the new body style Silverado and Sierra, as well as the then-new Suburban. The final year for the truck-spec L76 was 2009 for all three applications; it was replaced by the 6.2L L9H engine for MY 2010 in the pickup trucks.

Applications:

L98
[edit]
For the tuned-port Generation I engine of the same RPO, seeChevrolet small-block engine (first- and second-generation) § L98.

TheL98 is a slightly modified version of theL76, specific to Holden vehicles. Since Holden did not use thedisplacement on demand technology of theL76, some redundant hardware was removed to form theL98. Power increased to 270 kW (362 bhp) at 5700 rpm and 530 N⋅m (391 lb⋅ft) at 4400 rpm.

Applications:

L77
[edit]
L77 can also refer to the455 Oldsmobile large crank journal engine.

L77 engines were released in the Holden Commodore Series II VE range in both manual and automatic transmissions, along with the Chevrolet Caprice PPV (police car). TheL77 differs from theL76 with its inclusion ofFlex-fuel capability, allowing it to run onE85 fuel. TheL77 is rated at 270 kW (362 hp) and 530 N⋅m (391 lb⋅ft) of torque in the manual Commodore SS and SS-V, in automatic Commodores it is rated at 260 kW (349 hp) and 517 N⋅m (381 lb⋅ft) of torque.

Applications:

LY6
[edit]

TheLY6 is a Generation IV small-block V8 truck engine with a cast-iron block. It shares the same bore and stroke as itsLQ4 predecessor. Like other Gen IV engines, it featuresvariable valve timing. It generated 361 hp (269 kW) at 5,600 rpm and 385 lb⋅ft (522 N⋅m) of torque at 4,400 rpm using "regular" gas, or ~87 octane. Redline is 6,000 rpm and the compression ratio is 9.6:1. This engine uses L92 / LS3 style rectangle port cylinder heads, though without the sodium-filled exhaust valves of the LS3.

Applications:

L96
[edit]

The L96 is essentially identical to its predecessor, the LY6. The primary difference is that the L96 is flex-fuel capable, while the LY6 is not.

Applications:

LFA
[edit]

TheLFA (VIN code "5") is a Generation IV small-block V8 truck engine. TheLFA variant is used in the GM's"two-mode" hybrid GMT900 trucks and SUVs, and is an all-aluminum design. It has a 10.8:1 compression ratio and produces 332 hp (248 kW) at 5100 rpm and 367 lb⋅ft (498 N⋅m) at 4100 rpm.

In 2008, this engine was selected by Wards asone of the 10 best engines in any regular production vehicle.

Applications:

LZ1
[edit]

TheLZ1 is almost entirely based on its predecessor, theLFA, but with some revisions, such as including up-integrated electronic throttle control, long-life spark plugs, GM's Oil Life System,Active Fuel Management, andvariable valve timing.[57] It has the same compression ratio and power/torque ratings as its predecessor.

Applications:

3.78 in. bore blocks (2005–2017)

[edit]

This family of blocks is just an updated version of its Generation III predecessor with Generation IV updates and capabilities. Applications of this family were mainly for trucks but did see some mild usage (with some modifications) in front-wheel-drive cars.

4.8 L

[edit]
LY2
[edit]

The Vortec 4800LY2 (VIN code "C") is a Generation IV small-block V8 truck engine. Like its LR4 predecessor, it gets its displacement from a bore and stroke of 96 mm × 83 mm (3.78 in × 3.27 in). The smallest member of the Generation IV engine family is unique in that it is the only member used in trucks that does not featurevariable valve timing; it also lacks Active Fuel Management. It has a cast-iron block. Power output is 260–295 hp (194–220 kW) and torque is 295–305 lb⋅ft (400–414 N⋅m).

Applications:

L20
[edit]

The Vortec 4800 L20 makes more power and featuresvariable valve timing. The system adjusts both intake and exhaust timing but does not come with Active Fuel Management. The L20 has a cast-iron block and power output is 260–302 hp (194–225 kW) while torque is 295–305 lb⋅ft (400–414 N⋅m). The Vortec 4800 base engines were dropped from the Chevrolet Tahoe and GMC Yukon in favor of the 5300 with Active Fuel Management.

Applications:

5.3 L

[edit]

The Generation IV 5.3L engines share all the improvements and refinements found in other Generation IV engines. Eight versions of the Gen IV 5.3L engine were produced: three iron blocks (LY5, LMG, and LMF) and five aluminum blocks (LH6, LH8, LH9, LC9, and LS4). All versions featuredActive Fuel Management except for the LH8, LH9, and LMF.

LH6
[edit]

The Vortec 5300 LH6 (VIN code "M") with Active Fuel Management replaced the LM4 for 2005, and was the first of theGeneration IV small-block V8 truck engines to go into production. The LH6 produced 300 to 315 hp (224 to 235 kW) and 330 to 338 lb⋅ft (447 to 458 N⋅m). It is the aluminum block counterpart to the LY5.

Applications:

LS4
[edit]
LS4 can also refer to a 454 cu in (7.4 L)Chevrolet Big-Block engine of the 1970s
5.3 L LS4 V8 in a 2006Chevrolet Impala SS

TheLS4 is a 5,327 cc (5.3 L; 325.1 cu in) version of the Generation IV block. Though it has the same displacement as theVortec 5300 LY5, it features an aluminum block instead of iron, and uses the same cylinder head casting as the Generation III LS6 engine. The LS4 is adapted fortransversefront-wheel drive applications, with a bellhousing bolt pattern that differs from the rear-wheel-drive blocks (so as to mate with the 4T65E).

According to GM, "the crankshaft is shortened 13–3 mm (0.51–0.12 in) at the flywheel end and 10 mm (0.39 in) at the accessory drive end – to reduce the length of the engine compared to the 6.0 L. All accessories are driven by a single serpentine belt to save space. The water pump is mounted remotely with an elongated pump manifold that connects it to the coolant passages. Revised oil pan baffles, or windage trays, are incorporated into the LS4 to ensure that the oil sump stays loaded during high-g cornering."[58]Active Fuel Management is also used. Output of this version is 303 hp (226 kW) (300 hp on LaCrosse Super) and 323 lb⋅ft (438 N⋅m).

Applications:

LY5
[edit]

Introduced in 2007, the Vortec 5300 LY5 (VIN code "J") is the replacement for the LM7 Generation III engine. For SUV applications, it is rated at 320 hp (239 kW) and 340 lb⋅ft (461 N⋅m) of torque, while for pickup truck applications, it is rated at 315–320 hp (235–239 kW) at 5200 rpm and 335–340 lb⋅ft (454–461 N⋅m) at 4000 rpm.

Applications:

LC9
[edit]

The Vortec 5300 LC9 (VIN code "3" or "7") is the aluminum block flex-fuel version of the LH6, and is found in 4WD models. SUV applications are rated at 320 hp (239 kW) at 5400 rpm and 335 lb⋅ft (454 N⋅m) at 4000 rpm.[59] Pickup truck applications are rated at 315 hp (235 kW) at 5300 rpm and 335 lb⋅ft (454 N⋅m) at 4000 rpm.[59] Variable valve timing was added for the 2010 model year.

Applications:

LMG
[edit]

The Vortec 5300 LMG (VIN code "0") is theflexible-fuel version of the LY5. Power and torque ratings for SUV and pickup truck applications are the same as each application's LY5 rating. Variable valve timing was added for the 2010 model year. Active Fuel Management is standard on this model for fuel economy purposes.[60]

Applications:

LH8
[edit]

The LH8 was introduced in 2008 as the V8 option for the Hummer H3. It was the simplest, most basic 5.3L V8 of its family, lacking any special technologies. Also known as the Vortec 5300, the LH8 was available in the H3 and GM mid-size pickups through 2009.

The LH8 is a variant of the 5.3L Gen IV small-block V8 modified to fit in the engine bay of the GMT345 SUV and GMT355 trucks. It produces 300 hp (224 kW) at 5200 rpm and 320 lb⋅ft (434 N⋅m) at 4000 rpm. It has a displacement of 5,327 cc (5.3 L; 325.1 cu in)[61] and a compression ratio of 9.9:1.[62]

Applications:

LH9
[edit]

In 2010, the LH8 was replaced by the LH9. The LH9 was upgraded with Variable Valve Timing (VVT) and flex-fuel capability (but not Active Fuel Management). The Vortec 5300 LH9 produces 300 hp (224 kW) at 5200 rpm and 320 lb⋅ft (434 N⋅m) at 4000 rpm. It has a displacement of 5,327 cc (5.3 L; 325.1 cu in).[61] The compression ratio was 9.9:1 for 2010, but was reduced to 9.7:1 for the remaining two years of production.[63][64][65]

Applications:

LMF
[edit]

Introduced in 2008, the LMF is a low-tech LY5, used in the lower-volume half-ton vans that still used the 4L60-E 4-speed automatic, lacking Active Fuel Management. The LMF features variable valve timing.[66]

Applications:

4.125 in. bore blocks (2006–2017)

[edit]

Inspired by the LS1.R in size and performance goals, this family of blocks was designed for race-oriented performance. The only engine with this bore size that was used in a production vehicle is the LS7 with the LSX being only for aftermarket use. One unique feature of this family is that the cylinders are siamesed, no water passages between neighboring cylinders.[67] This was done to increase both bore size and block strength.

7.0 L

[edit]

LS7
[edit]
LS7 can also refer to a 454 over-the-counter 460+ hp high compression engineChevrolet Big-Block engine of the 1970s
7.0L LS7 engine in a 2006Chevrolet Corvette Z06

TheLS7 is a 7,011 cc (7.0 L; 427.8 cu in) engine based on the Gen IV architecture. The block is changed, withsleeved cylinders in an aluminum block with a larger bore of 4.125 in (104.8 mm) and longer stroke of 4 in (101.6 mm) than the LS2. The small-block's 4.4 in (110 mm) bore spacing is retained, requiring pressed-in cylinder liners. The crankshaft and main bearing caps areforged steel for durability, the connecting rods are forged titanium, and the pistons arehypereutectic. The two-valve arrangement is retained, though the titanium intake valves by Del West have grown to 2.2 in (56 mm) and sodium-filled exhaust valves are up to 1.61 in (41 mm).

Peak output is 505 bhp (512 PS; 377 kW) at 6300 rpm (72.0 BHP/L) and 470 lb⋅ft (637 N⋅m) oftorque at 4800 rpm with a 7000 rpm redline.[68] During GM's reliability testing of this engine in its prototype phase, the LS7 was remarked to have been repeatedly tested to be 8000 rpm capable, although power was not recorded at that rpm level, because of the constraints of the camshaft's hydraulic lifters and the intake manifold ability to flow required air at that engine speed.

The LS7 was hand-built by the General Motors Performance Build Center inWixom, Michigan. Most of these engines are installed in the Z06, some are also sold to individuals by GM as acrate engine. The 2014 and 2015 Z28 were the only Camaros to receive the 427 LS7. As of early 2022, the LS7 is no longer being supplied as a crate engine, with Chevrolet intending to fulfill all current orders until inventory is depleted.[69]

After an extensive engineering process over several years,Holden Special Vehicles fitted the LS7 to a special edition model: the W427. The HSV-tuned engine produced 375 kW (510 PS; 503 bhp) at 6500 rpm and 640 N⋅m (472 lb⋅ft) at 5000 rpm of torque.[70] It was unveiled at theMelbourne International Motor Show on February 29, 2008,[71] and went on sale in August 2008. The first Australian car to be fitted with this engine, however, was theCSV GTS of 2007, which was claimed to have a power output of 400 kW (536 hp) and 600 N⋅m (443 lb⋅ft).[72]

Applications:

LS427
[edit]

TheLS427 is a 7,011 cc (7.0 L; 427.8 cu in) engine based on the LS7. The LS427 replaces the dry-sump oiling system with a wet-sump system and includes a higher-lift camshaft. This engine was only available as a crate option and did not appear in any production vehicles. It was introduced in June 2020 and discontinued in January 2022 along with the LS7.

Peak output is 570 bhp (578 PS; 425 kW) and 540 lb⋅ft (732 N⋅m) oftorque with a 7000 rpm redline.[74]

4.06 in. bore blocks (2007–2017)

[edit]

This family was designed as a replacement for the LS2 but enlarged to better accommodatevariable valve timing andActive Fuel Management while still generating decent performance. This family of engines has mainly seen duty in performance cars and high-end SUVs.

6.2 L

[edit]

L92 / L9H / L94
[edit]

TheL92, also known as the Vortec 6200, displaces 6,162 cc (6.2 L; 376.0 cu in), and first debuted in the 2007 Cadillac Escalade. It is an all-aluminum design which, while still a pushrod engine, boasts variable valve timing. The system adjusts both intake and exhaust timing between two settings. This engine produces 403 hp (301 kW) and 417 lb⋅ft (565 N⋅m) in the GMC Yukon Denali/XL Denali, GMC Sierra Denali, Hummer H2, and briefly in the Chevrolet Tahoe LTZ (MY 2008.5 – MY 2009) and rated at 403 hp (301 kW) and 415 lb⋅ft (563 N⋅m). Starting in 2009, it was also available in the Chevrolet Silverado and GMC Sierra, as theL9H, with power ratings of 403 hp (301 kW) and 417 lb⋅ft (565 N⋅m).

Engines built prior to April 1, 2006, contained AFM hardware; however, the mode was not enabled in the PCM, and thus the system was not functional. Engines built after this date also lacked any AFM hardware, and instead used a valley cover plate similar to the L20, until the debut of the L94 variants mentioned below.

The 2009 L92 was modified with flex-fuel capability, becoming the L9H, but still had no AFM hardware. In 2010, the L9H was further modified with Active Fuel Management, becoming theL94 (in the Cadillac Escalade and GMC Yukon Denali).

Applications:

LS3
[edit]
LS3 can also refer to a 402 cu in (6.6 L)Chevrolet Big-Block engine of the 1970s.
GM LS3 engine in a 2008Chevrolet Corvette

TheLS3 was introduced as the Corvette's new base engine for the 2008 model year. It produces 430 bhp (321 kW; 436 PS) at 5900 rpm and 424 lb⋅ft (575 N⋅m) at 4600 rpm without the optional Corvette exhaust and is SAE certified. The block is an updated version of the LS2 casting featuring a larger bore of 103.25 mm (4.065 in) creating a displacement of 6,162 cc (6.2 L; 376.0 cu in). It also features higher flowing cylinder heads sourced from theL92, a more aggressive camshaft with 0.551 in (14 mm) lift, a 10.7:1 compression ratio, a revised valvetrain with 0.236 in (6 mm) offset intake rocker arms, a high-flow intake manifold, and 47 lb (21 kg)/hour fuel injectors from the LS7 engine.

The L76/L92/LS3 cylinder heads use 2.165 in (55 mm) intake valves, and 1.59 in (40 mm) exhaust valves. Improved manufacturing efficiency makes these heads cheaper to produce than the outgoing LS6 heads, significantly undercutting the price of aftermarket heads. The large valves, however, limit maximum rpm – 6000 in the L76 (with AFM), and 6600 in the LS3 (with hollow stem valves).

In addition to the above, a dual-mode exhaust package with a bypass on acceleration was available on C6 Corvettes. The dual-mode exhaust uses vacuum-actuated outlet valves, which control engine noise during low-load operation, but open for maximum performance during high-load operation. The system is similar to the C6 Z06, but uses a 2.5 in (64 mm) diameter exhaust compared to the Z06's 3 in (76.2 mm). Power is boosted to 436 hp (325 kW) and 428 lb⋅ft (580 N⋅m) with this option. A similar system was optional on later-model fifth-generation Chevrolet Camaros and standard on the 2016–2017 Chevrolet SS, but no horsepower or torque increases were advertised on those vehicles.

LS3 engines found in manual transmission-equipped C6 Corvette Grand Sport models also received a dry sump oiling system similar to the one fitted to LS7-equipped Corvettes.

From April 2008, Australian performance car manufacturer HSV adopted the LS3 as its standard V8 throughout the range, replacing the 6.0-liter LS2. The LS3 received modifications for its application to HSV E Series models, producing 425 bhp (317 kW). The LS3 engine in the E Series II GTS (released September 2009) was upgraded to produce 436 bhp (325 kW). All HSV MY12.5 excluding the base Maloo and Clubsport variants have been upgraded to produce 436 bhp (325 kW).

From September 2015, Holden introduced the LS3 in all V8 models of the VF II Commodore and WN II Caprice-V, replacing the 6.0L L77.

Applications:

L99
[edit]
For the 4.3 L Generation II engine of the same RPO, seeChevrolet small-block engine § 4.3 L.

TheL99 is derived from the LS3 with reduced output but addsActive Fuel Management (formerly called Displacement on Demand) andvariable valve timing, which allows it to run on only four cylinders during light load conditions.

Applications:

LS9
[edit]

The Gen IVLS9 is a supercharged 6,162 cc (6.2 L; 376.0 cu in) engine, based on the LS3; the LS7 block was not used because of the higher cylinder pressures created by the supercharger requiring the thicker cylinder walls of the LS3. It has a bore and stroke of 103.25 mm × 92 mm (4.065 in × 3.622 in). It is equipped with anEaton four-lobeRoots type supercharger and has acompression ratio of 9.1:1. Power output is rated 638 bhp (647 PS; 476 kW) at 6500 rpm and 604 lb⋅ft (819 N⋅m) at 3800 rpm oftorque.[75] Note: GM previously used the LS9 RPO code on 1969 and later Chevrolet trucks (both 2WD and 4WD) including Blazers, Jimmys, and Suburbans, as well as car carriers. The original LS9 was a 350 cu in (5.7 L) V8, developing 160 hp (119 kW) and 245 lb⋅ft (332 N⋅m) of torque. In 2017,Holden Special Vehicles used a modified version of the LS9 in their GTSR W1, the last-everHolden Commodore based vehicle produced in Australia.

Applications:

LSA
[edit]

The supercharged 6.2LLSA is similar to the LS9 and debuted in the 2009 CTS-V. The LSA has been SAE certified at 556 bhp (415 kW) at 6100 rpm and 551 lb⋅ft (747 N⋅m) at 3800 rpm. GM labeled it "the most powerful ever offered in Cadillac's nearly 106-year history." The LSA features a smaller 1.9 L (120 cu in) supercharger rather than the 2.3 L (140 cu in) variant of the LS9. Other differences include a slightly lower 9.0:1 compression ratio, single-unit heat exchanger, and cast pistons.

A 580 bhp (433 kW) and 556 lb⋅ft (754 N⋅m) version of the LSA engine is used in the 2012 Camaro ZL1. On May 15, 2013, Holden Special Vehicles announced that this version of the LSA engine would also be used in the GEN-F GTS.

Applications:

Generation V (2013–present)

[edit]
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "General Motors LS-based small-block engine" – news ·newspapers ·books ·scholar ·JSTOR
(October 2015) (Learn how and when to remove this message)
Reciprocating internal combustion engine
Generation V
The L86 in the 2015 GMC Yukon Denali
Overview
ManufacturerGeneral Motors
Also calledEcoTec3
Production2013–present
Layout
Configuration90°V6
90°V8
Displacement
  • 4,301 cc (262.5 cu in)
  • 5,328 cc (325.1 cu in)
  • 6,162 cc (376.0 cu in)
  • 6,564 cc (400.6 cu in)
Cylinder bore
  • 99.6 mm (3.92 in)
  • 96 mm (3.78 in)
  • 103.25 mm (4.065 in)
Piston stroke
  • 92 mm (3.622 in)
  • 98 mm (3.858 in) (L8T only)
Cylinder block materialAluminum
Cast iron (L8T only)
Cylinder head materialAluminum
ValvetrainOHV 2 valves per cylinder
Compression ratio
  • 10.0:1
  • 11.0:1
  • 11.5:1
Combustion
SuperchargerEaton TVS supercharger (LT4 & LT5)
Fuel systemDirect injection
Fuel typeGasoline
E85
Oil systemWet sump
Cooling systemWater-cooled
Chronology
PredecessorGeneration IV

In 2007,WardsAuto.com reported that the LS3 (used in the 2008 Chevrolet Corvette) and Vortec 6000 LFA (used in the 2008 Chevrolet Tahoe Hybrid) engines would be the final two designs in the Generation IV small-block engine family, and the future designs would be part of the Generation V engine family. An experimental engine was built based on the L92 engine from theCadillac Escalade,GMC Yukon Denali, andHummer H2, and reported to generate 450 bhp (336 kW) on gasoline via direct fuel injection, increased compression ratio to 11.5:1, and a modified engine controller.[76] The firstGen V LT engine was the LT1, announced in 2012 as the initial powerplant for the redesignedCorvette C7, succeeding the LS engine family. The new logo formally adopts the Small Block name for the engines.

The fifth generation of the iconic GM small block engine family features the same cam-in-block architecture and 4.4 in (110 mm) bore centers (the distance between the centers of each cylinder) that were born with the original small block in 1954. Structurally, the Gen-V small-block is similar to the Gen III/IV engines, including a deep-skirt cylinder block. Refinements and new or revised components are used throughout, including a revised cooling system and all-newcylinder heads. Because the positions of the intake and exhaust valves are flipped from where they would be in an LS engine, as well as the need for an addition to the camshaft to drive the high-pressure fuel pump for the direct fuel injection, few parts are interchangeable with the Gen III/IV engines.

All Gen V engines use aluminumblocks with aluminum cylinder heads, and includedirect injection, piston cooling jets,active fuel management,variable displacement oil pump, andcontinuously variable valve timing. (The L8T is an exception; see below for details.) However, they all retain their ancestors' two-valvepushrodvalvetrain and 4.4 inch bore spacing.

4.06 in. bore blocks (2014–present)

[edit]

This family of blocks was the first of the Generation V small block with the LT1 being the progenitor of this family and generation. This family of blocks has seen a wide range of applications from performance vehicles to truck usage.

6.2 L

[edit]

LT1
[edit]
For the 5.7 L Generation II engine of the same RPO, seeChevrolet_small-block_engine_(first-_and_second-generation) § LT1.
The 6.2L LT1 engine in a 2022Chevrolet Camaro LT1

The 6.2 L; 376.0 cu in (6,162 cc) LT1 engine debuted in the 2014 Chevrolet Corvette Stingray and is the first Generation V small block engine. Like its LS3 predecessor, it gets itsdisplacement from abore andstroke of 103.25 mm × 92 mm (4.065 in × 3.622 in) with acompression ratio of 11.5 to 1.

Applications:

Year(s)ModelPowerTorque
2014–2019Chevrolet Corvette C7455 hp (339 kW) at 6000 rpm460 lb⋅ft (624 N⋅m) at 4600 rpm
460 hp (343 kW) at 6000 rpm (performance exhaust)465 lb⋅ft (630 N⋅m) at 4600 rpm (performance exhaust)
2016–2024Chevrolet Camaro SS455 hp (339 kW) at 6000 rpm455 lb⋅ft (617 N⋅m) at 4400 rpm
2020–2024Chevrolet Camaro LT1455 hp (339 kW) at 6000 rpm455 lb⋅ft (617 N⋅m) at 4400 rpm

LT2
[edit]

The LT2 engine debuted in the 2020 Corvette Stingray as the successor to the LT1. It was designed specifically with mid-engine placement and dry-sump lubrication in mind.

Applications:

Year(s)ModelPowerTorque
2020–presentChevrolet Corvette C8490 hp (365 kW) at 6450 rpm465 lb⋅ft (630 N⋅m) at 5150 rpm
495 hp (369 kW) at 6450 rpm (performance exhaust)470 lb⋅ft (637 N⋅m) at 5150 rpm (performance exhaust)

L86/L87
[edit]

The 6.2 L; 376.0 cu in (6,162 cc) EcoTec3 is a Generation V small-block V8 truck engine (VIN code "J"). The L86 is an LT1 engine modified for truck use with a compression ratio of 11.5 to 1. In 2019, GM introduced theL87 as the successor to the L86. Power and torque remain the same, but whereas the L86's "Active Fuel Management" alternates between V4 and V8 modes, the L87's "Dynamic Fuel Management" can alternate between any of 17 different firing orders which vary both how many and which cylinders are actually firing based on demand calculated every 125 milliseconds.

Applications:

Year(s)ModelPowerTorque
2014–presentChevrolet Silverado/GMC Sierra420 hp (313 kW) at 5600 rpm460 lb⋅ft (624 N⋅m) at 4100 rpm
2015–presentChevrolet Tahoe/GMC Yukon
Chevrolet Suburban/GMC Yukon XL
Cadillac Escalade/Escalade ESV

LT4
[edit]
For the 5.7 L Generation II engine of the same RPO, seeChevrolet small-block engine (first- and second-generation) § LT4.

The 6.2 L; 376.0 cu in (6,162 cc) LT4 engine builds on the design strengths of the previous LS9supercharged engine used in the sixth-generation Corvette ZR1 and leverages the technologies introduced on the seventh-generation Corvette Stingray, including direct injection, cylinder deactivation, and continuously variable valve timing, to take Corvette performance to an all-new level. The LT4 engine is based on the same Gen 5 small block foundation as the Corvette Stingray's LT1 6.2L naturally aspirated engine, incorporating several unique features designed to support its higher output and the greater cylinder pressures created by forced induction, including: Rotocast A356T6 aluminum cylinder heads that are stronger and handle heat better than conventional aluminum heads, lightweight titanium intake valves, forged powder metal steel connecting rods, 10.0:1 compression ratio, enhanced performance and efficiency enabled by direct injection, forged aluminum pistons with unique, stronger structure to ensure strength under high cylinder pressures, stainless steel exhaust manifolds for structure at higher temperatures, aluminum balancer for reduced mass, and standard dry-sump oiling system with a dual-pressure-control oil pump.[77] The engine uses a 1.7 L (103.7 cu in) Eaton TVS Supercharger. Although smaller than the previous 2.3 L (140.4 cu in) supercharger used on the sixth-generation ZR1, it spins to 5000 rpm faster thus generating boost quicker while making only slightly less total boost than the LS9 engine.[78] The Escalade-V variant uses a 2.7 L (164.8 cu in) Eaton TVS supercharger. This engine is also used byScuderia Cameron Glickenhaus for theirSCG 004S.[79]

Applications:

Year(s)ModelPowerTorque
2015–2019Chevrolet Corvette Z06650 hp (485 kW) at 6400 rpm650 lb⋅ft (881 N⋅m) at 3600 rpm
2016–2019Cadillac CTS-V640 hp (477 kW) at 6400 rpm630 lb⋅ft (854 N⋅m) at 3600 rpm
2017–2024Chevrolet Camaro ZL1650 hp (485 kW) at 6400 rpm650 lb⋅ft (881 N⋅m) at 3600 rpm
2022–presentCadillac CT5-V Blackwing668 hp (498 kW)659 lb⋅ft (893 N⋅m)
2023–presentCadillac Escalade-V682 hp (509 kW)653 lb⋅ft (885 N⋅m)

LT5
[edit]

The 6.2 L; 376.0 cu in (6,162 cc) LT5 engine debuted in the seventh-generation Corvette ZR1 at the 2017Dubai Motor Show. It draws its name from the5.7 L LT5 from the C4, manufactured from 1989–1993. The original LT5 is rarely known as a Chevy small block V8, as it was designed by Lotus, built by Mercury Marine, and implements a DOHC 32-valve multi-port injection system, instead of the 16-valve push-rod design. The new (and unrelated) LT5, however, has increased its displacement from 5.7 to 6.2L (350 to 376 cu in), retains the Gen V OHV valvetrain, and is topped with a 2.6 L (158.7 cu in) Eaton TVS supercharger and an improved intercooler. It simultaneously couples the standard direct injection system found on Gen 5 engines with port fuel injection, specifically to satisfy upper-RPM fuel demands. Power output is 755 hp (765 PS; 563 kW) at 6400 rpm and 715 lb⋅ft (969 N⋅m) of torque at 3600 rpm.

Applications:

Year(s)ModelPowerTorque
2019Chevrolet Corvette ZR1755 hp (563 kW) at 6400 rpm715 lb⋅ft (969 N⋅m) at 3600 rpm

6.6 L

[edit]

L8T
[edit]

The L8T is the first (and so far, only) iron block member of the Gen V family, and is the successor to the 6.0L Gen IVL96. It shares its 103.25 mm (4.065 in) bore with other 6.2L V8s such as the L86, but with a longer stroke of 98 mm (3.9 in) to displace 6.564 L (400.6 cu in).[80] It is rated for 401 hp (299 kW) at 5,200 rpm and 464 lb⋅ft (629 N⋅m) of torque at 4,000 rpm. The compression ratio is 10.8:1. The longer stroke yields little additional peak torque output compared to the L86, but only requires 87 Octane. The stroke is also shorter than the LS7's 101.6 mm (4.00 in), to optimize rod ratio for reliability.

Rather than allow a "high-strung" small-block to fail the heavy-duty truck market, the iron block, lack of both stop-start and cylinder deactivation, longer stroke and rod ratio, lower compression, lesser 87 Octane requirement, greater displacement, forged connecting rods, and forged crankshaft with central counterweights all suggest that the L8T was designed specifically to assuage the heavy-duty truck market's concerns.[81][82]

Applications:

Year(s)ModelPowerTorque
2020–presentChevrolet Silverado HD/GMC Sierra HD401 hp (299 kW) at 5200 rpm464 lb⋅ft (629 N⋅m) at 4000 rpm
2021–presentChevrolet Express/GMC Savana 2500/3500/4500

3.78 in. bore blocks (2014–present)

[edit]

Unlike the previous Generation III/IV 3.78 in (96 mm) bore block families, there is no 4.8 L (290 cu in) displacement variant (having been 'replaced' by GM's 5th Generation LT V8-based V6, the 4.3 L (260 cu in) LV3).

5.3 L

[edit]

L83
[edit]

Dubbed EcoTec3, the 5.3 L; 325.1 cu in (5,327 cc) is a Generation V small block V8 truck engine (VIN code "C"). Like its Vortec 5300 Generation IV predecessor, it gets its displacement from a bore and stroke of 96 mm × 92 mm (3.78 in × 3.62 in) with a compression ratio of 11.0:1.

Applications:

Year(s)ModelPowerTorque
2014–2019Chevrolet Silverado/GMC Sierra 1500355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm
376 hp (280 kW) at 5600 rpmE85416 lb⋅ft (564 N⋅m) at 4000 rpmE85
2015–2020Chevrolet Tahoe/GMC Yukon355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm
376 hp (280 kW) at 5600 rpmE85416 lb⋅ft (564 N⋅m) at 4000 rpmE85
2015–2020Chevrolet Suburban/GMC Yukon XL355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm
376 hp (280 kW) at 5600 rpmE85416 lb⋅ft (564 N⋅m) at 4000 rpmE85

L8B
[edit]

TheL8B is aneAssistmild hybrid version of theL83 featuring a 0.45-kWhlithium ion battery pack. This setup can improve fuel efficiency by about 13%. This adds about 100 lb (45 kg) to the total weight of the truck but provides an additional 13 hp (10 kW) and 44 lb⋅ft (60 N⋅m).[83][84]

Applications:

Year(s)ModelPowerTorque
2016–2018Chevrolet Silverado/GMC Sierra 1500 Hybrid355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm

L82/L84
[edit]

The L82 is one of two 5.3L V8s available in the fourth-generation Chevrolet Silverado and fifth-generation GMC Sierra. The L82 uses Active Fuel Management instead of the L84's Dynamic Fuel Management system and is only available on lower-trim trucks. The L84 is one of two 5.3L V8s available in the 4th generation Chevrolet Silverado and GMC Sierra. The L84 is distinguished from the L82 by the presence of the Dynamic Fuel Management System and is either available or standard on mid-to-high-level trims. The L84 is also the base engine on the 2021–present Chevrolet Tahoe, GMC Yukon, Chevrolet Suburban, and GMC Yukon XL.

Applications:

Year(s)ModelPowerTorque
L82
2019–2021Chevrolet Silverado/GMC Sierra355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm
L84
2019–presentChevrolet Silverado/GMC Sierra355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm
2021–presentChevrolet Tahoe/GMC Yukon355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm
Chevrolet Suburban/GMC Yukon XL355 hp (265 kW) at 5600 rpm383 lb⋅ft (519 N⋅m) at 4100 rpm

3.921 in. bore blocks (2014–present)

[edit]

These V6 engines are based on the V8 version of the Gen V family, but with two fewer cylinders – a design lineage that dates back to the previous 4.3L V6, which was itself a Gen I small block with a pair of cylinders removed.

Of special note, there were no V6 engines based on Generation II, III, or IV small-block V8s.

4.3 L

[edit]

Dubbed EcoTec3, the 4.3 L (260 cu in) is a Generation V small block V6 truck engine. It gets its displacement from bore and stroke of 99.6 mm × 92 mm (3.921 in × 3.622 in) with a compression ratio of 11.0 to 1. Firing order is 1-6-5-4-3-2.[85]

This engine replaces the unrelated4.3L V6 whose lineage dates back to 1978.

LV3
[edit]

Applications:

Year(s)ModelPowerTorque
2014–2021Chevrolet Silverado/GMC Sierra 1500285 hp (213 kW) at 5300 rpm305 lb⋅ft (414 N⋅m) at 3900 rpm
297 hp (221 kW) at 5300 rpmE85330 lb⋅ft (447 N⋅m) at 3900 rpmE85

LV1
[edit]

The engine is essentially the same as the LV3, but without Active Fuel Management technology. The LV1 made its debut in the 2018 model year GM full-size vans—the 2018 Chevrolet Express and 2018 GMC Savana—as the successor to the Gen IV 4.8LL20.[86]

Applications:

Year(s)ModelPowerTorque
2018–presentChevrolet Express/GMC Savana 2500/3500265 hp (198 kW) at 5200 rpm295 lb⋅ft (400 N⋅m) at 4000 rpm

Generation VI

[edit]

General Motors announced in January 2023 that plans for a sixth generation of small-block were in place, with the company investing $854 million into its various manufacturing plants. The timeline for the release of the new generation is not yet known.[87][88][89]

Engine table

[edit]

The eighth character in the VIN or the RPO code from the glove box sticker can be used to identify which type of LS engine a vehicle has.

YearsRPOPowerTorqueDisplacementBoreStrokeCompression ratioNotes
Generation III
1997–2005LS1295–382 hp (220–285 kW)323–376 lb⋅ft (438–510 N⋅m)5.7 L (346 cu in)3.898 in (99.0 mm)3.622 in (92.0 mm)10.25:1Aluminum
1999–2007LR4255–285 hp (190–213 kW)285–295 lb⋅ft (386–400 N⋅m)4.8 L (293 cu in)3.780 in (96.0 mm)3.268 in (83.0 mm)9.45:1Iron/Alum. heads
1999–2007LM7270–295 hp (201–220 kW)315–335 lb⋅ft (427–454 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.49:1Iron/Alum. heads
1999–2008LQ4300–335 hp (224–250 kW)355–375 lb⋅ft (481–508 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)9.40:1Iron/Iron-Alum. heads, 1999-2000 engines have iron heads
2001–2005LS6385–405 hp (287–302 kW)385–400 lb⋅ft (522–542 N⋅m)5.7 L (346 cu in)3.898 in (99.0 mm)3.622 in (92.0 mm)10.50:1Aluminum
2002–2007L59285–295 hp (213–220 kW)320–335 lb⋅ft (434–454 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.50:1Iron/Alum. heads, E85-capable
2002–2007LQ9345 hp (257 kW)380 lb⋅ft (520 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)10.00:1Iron/Alum. heads
2003–2005LM4290 hp (216 kW)325 lb⋅ft (441 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.50:1Aluminum
2005–2007L33310 hp (231 kW)335 lb⋅ft (454 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)10.00:1Aluminum, only available on 4WD extended-cab standard-bed trucks
Generation IV
2005–2009LS2390–400 hp (291–298 kW)400 lb⋅ft (540 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)10.90:1Aluminum
2005–2009LH6300–315 hp (224–235 kW)330–338 lb⋅ft (447–458 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.95:1Aluminum, AFM, VVT*
2005–2009LS4300–303 hp (224–226 kW)323 lb⋅ft (438 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)10.00:1Aluminum, AFM, FWD
2006–2010L76348–367 hp (260–274 kW)376–385 lb⋅ft (510–522 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)10.40:1Aluminum, AFM, VVT (truck applications only)
2006–2010L98362 hp (270 kW)391 lb⋅ft (530 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)10.40:1Aluminum, L76 with AFM hardware removed
2006–2015LS7503–536 hp (375–400 kW)443–472 lb⋅ft (601–640 N⋅m)7.0 L (427 cu in)4.125 in (104.8 mm)4.000 in (101.6 mm)11.00:1Aluminum, Ti connecting rods, dry sump
2007–2008L92403 hp (301 kW)415–417 lb⋅ft (563–565 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)10.50:1Aluminum, VVT
2007–2009LY2260–295 hp (194–220 kW)295–305 lb⋅ft (400–414 N⋅m)4.8 L (293 cu in)3.780 in (96.0 mm)3.268 in (83.0 mm)9.08:1Iron/Alum. heads
2007–2009LY5315–320 hp (235–239 kW)335–340 lb⋅ft (454–461 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.95:1Iron/Alum. heads, AFM, VVT*
2007–2013LY6361 hp (269 kW)385 lb⋅ft (522 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)9.60:1Iron/Alum. heads, VVT
2007–2014LC9315–320 hp (235–239 kW)335 lb⋅ft (454 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.60:1 or 9.95:1Aluminum, AFM, VVT*, E85-capable
2007–2014LMG315–320 hp (235–239 kW)335–340 lb⋅ft (454–461 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.60:1Iron/Alum. heads, AFM, VVT*, E85-capable
2008–2009LH8300 hp (224 kW)320 lb⋅ft (430 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.90:1Aluminum
2008–2009LFA332 hp (248 kW)367 lb⋅ft (498 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)10.80:1Aluminum, AFM, Hybrid
2008–2014LMF315–320 hp (235–239 kW)335–340 lb⋅ft (454–461 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.60:1Iron/Alum. heads, VVT*
2008–2017LS3425–436 hp (317–325 kW)424–428 lb⋅ft (575–580 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)10.70:1Aluminum, sodium exhaust valves
2009–2017LSA556–580 hp (415–433 kW)551–556 lb⋅ft (747–754 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)9.00:1Aluminum, 1.9 L (116 cu in) supercharger
2009–2013L9H403 hp (301 kW)417 lb⋅ft (565 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)10.50:1Aluminum, VVT, E85-capable*
2009–2013, 2017LS9638 hp (476 kW)604 lb⋅ft (819 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)9.10:1Aluminum, 2.3 L (140 cu in) supercharger, Ti connecting rods, forged pistons, dry sump
2010–2012LH9300 hp (224 kW)320 lb⋅ft (430 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)9.70:1 or 9.90:1Aluminum, VVT, E85-capable
2010–2013LZ1332 hp (248 kW)367 lb⋅ft (498 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)10.80:1Aluminum, AFM, VVT, Hybrid
2010–2013L94403 hp (301 kW)417 lb⋅ft (565 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)10.40:1Aluminum, AFM, VVT, E85-capable
2010–2015L99400 hp (298 kW)410 lb⋅ft (560 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)10.40:1Aluminum, AFM, VVT, E85-capable
2010–2017L20260–302 hp (194–225 kW)295–305 lb⋅ft (400–414 N⋅m)4.8 L (293 cu in)3.780 in (96.0 mm)3.268 in (83.0 mm)8.80:1Iron/Alum. heads, VVT, E85-capable
2010–2017L77349–362 hp (260–270 kW)381–391 lb⋅ft (517–530 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)10.40:1Aluminum, AFM, E85-capable
2010–2020L96361 hp (269 kW)385 lb⋅ft (522 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)9.70:1Iron/Alum. heads, VVT, E85-capable
2010–2020LC8342 hp (255 kW)373 lb⋅ft (506 N⋅m)6.0 L (364 cu in)4.000 in (101.6 mm)3.622 in (92.0 mm)9.70:1Iron/Alum. heads, VVT, CNG- & LPG-capable
Generation V
2014–2024LT1455–460 hp (339–343 kW)455–465 lb⋅ft (617–630 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)11.50:1Aluminum, VVT, AFM, DI, dry sump (Corvette)
2014–2020L83355–376 hp (265–280 kW)383–416 lb⋅ft (519–564 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)11.00:1Aluminum, VVT, AFM, DI, E85-capable
2014–2018L86420 hp (313 kW)460 lb⋅ft (620 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)11.50:1Aluminum, VVT, AFM, DI
2015–presentLT4640–682 hp (477–509 kW)630–659 lb⋅ft (854–893 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)10.00:1Aluminum, 1.7 L (104 cu in) supercharger, VVT, AFM, DI, dry sump (Corvette)
2016-2018L8B355 hp (265 kW)383 lb⋅ft (519 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)11.00:1Aluminum, VVT, AFM, DI, E85-capable
2019LT5755 hp (563 kW)715 lb⋅ft (969 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)10.00:1Aluminum, 2.6 L (159 cu in) supercharger, VVT, hybrid port/direct injection, dry sump
2019–2021L82355 hp (265 kW)383 lb⋅ft (519 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)11.00:1Aluminum, VVT, AFM, DI, E85-capable
2019–presentL84355 hp (265 kW)383 lb⋅ft (519 N⋅m)5.3 L (325 cu in)3.780 in (96.0 mm)3.622 in (92.0 mm)11.00:1Aluminum, VVT, AFM, DI, E85-capable
2020–presentLT2490–495 hp (365–369 kW)465–470 lb⋅ft (630–637 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)11.50:1Aluminum, VVT, AFM, DI, dry sump
2019–presentL87420 hp (313 kW)460 lb⋅ft (620 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)11.50:1Aluminum, VVT, AFM, DI
2020–presentL8T401 hp (299 kW)464 lb⋅ft (629 N⋅m)6.6 L (401 cu in)4.065 in (103.3 mm)3.860 in (98.0 mm)10.80:1Iron/Alum. heads, VVT, DI
2014–2021LV3V6285–297 hp (213–221 kW)305–330 lb⋅ft (414–447 N⋅m)4.3 L (260 cu in)3.921 in (99.6 mm)3.622 in (92.0 mm)11.00:1Aluminum, VVT, AFM, DI, E85-capable
2018-presentLV1V6265 hp (198 kW)295 lb⋅ft (400 N⋅m)4.3 L (260 cu in)3.921 in (99.6 mm)3.622 in (92.0 mm)11.00:1Aluminum, VVT, DI, E85-capable
Aftermarket / OEM
LSX376473 hp (353 kW)444 lb⋅ft (602 N⋅m)6.2 L (376 cu in)4.065 in (103.3 mm)3.622 in (92.0 mm)9.00:1Iron/Alum. heads
LSX454505 hp (377 kW)515 lb⋅ft (698 N⋅m)7.4 L (454 cu in)4.185 in (106.3 mm)4.125 in (104.8 mm)10.00:1Iron/Alum. heads
LSX454627 hp (468 kW)586 lb⋅ft (795 N⋅m)7.4 L (454 cu in)4.185 in (106.3 mm)4.125 in (104.8 mm)11.00:1Iron/Alum. heads
LSX454R776 hp (579 kW)680 lb⋅ft (922 N⋅m)7.4 L (454 cu in)4.185 in (106.3 mm)4.125 in (104.8 mm)13.10:1Iron/Alum. heads[90]
Note 1: Depending upon vehicle application (truck, SUV, car); horsepower, torque, and fuel requirements will vary. With few exceptions, redline RPM is generally 6,000 or higher. Note 2: Block features are generally dependent upon the generation but are not always built-in. Typical features are AFM (Active Fuel Management), VVT (Variable Valve Train), and Front Wheel Drive (FWD). Features marked with an * indicate that only certain model years had that feature.

Known issues

[edit]

In the early production run of the LS-series engine, some engines encountered 'piston slap' during the first few minutes after a cold engine start; this sound is caused by the pistons rocking slightly in the cylinder until they reach operating temperature/size. "Piston slap" sometimes sounds more like a knock or the sound of adiesel engine running. It is typically only present when the engine is cold and disappears as the engine reaches operating temperature.[91]

Another common problem with the 2001–2006 5.3L engines was cracking cylinder heads. This is commonly called the "Castech Head" failure. GM issued aTechnical Service Bulletin on this failure to help service technicians identify the problem. The head casting number (which can be viewed from the passenger side of the vehicle just in front of the valve cover) was 706. Some heads with this casting number would fail (but not all of them) as GM had different suppliers for the same head. The failure was due to undetected porosity around the oil drains in the head.[92]

Yet another common problem with the 2005–2016 fourth generation V8 LS engines was a failure of the specialized lifters in engines equipped with the AFM system. While in AFM operation, the lifters would sometimes fail to come out of AFM mode and cause the engine to go into 'limp home' mode. In this mode damage could occur to the pistons, camshaft, or the lifters themselves. The resulting solution was a package of components that would replace the lifters, lifter guides, camshaft, Valve Lifter Oil Manifold (VLOM) plate. Cylinder heads were required to be removed from the engine in order to replace all the components. The engine computer also required reprogramming to permanently Disable AFM.[93][94][95][96][97][98][99][100][101]

Build-your-own program

[edit]

In 2011, Chevrolet Performance began to offer the build your own engine program for LS7 (part number 19259944) or LS9 (part number 19259945) crate engines. It also provides customers the experience of visiting GM's unique Performance Build Center inWixom, Michigan, where they will join a specially trained engine builder to assist in the start-to-finish assembly of the engine they purchased – from installing the crankshaft in the cylinder block to topping off the engine with its intake system. In the case of the LS9, it also means installing the supercharger assembly. Upon completion, a personalized nameplate is added to the engine.[102]

The build-your-own engine program associated with the V8 engines, available for buyers of Chevrolet Corvette, Cadillac XLR, and certain top-spec Chevrolet Camaro models, was temporarily halted after the closure of GM Performance Build Center in Wixom, Michigan. The program's venue was reported to be relocated to the Corvette assembly plant in Bowling Green, Kentucky.[103]

Aftermarket

[edit]
LS7.R

TheLS7.R engine is a variation of the LS7 used in the highly successfulC6.RAmerican Le Mans Series racecar. It was crowned as Global Motorsportengine of the year by a jury of 50 race engine engineers on the Professional Motorsport World Expo 2006 in Cologne, Germany.[104]

LSX

LSx is also used to denote any LS engine.

Chassis with LSX engine

At the 2006SEMA show, GM Performance Parts introduced the LSX engine, an all-new cast-iron racing block based on the LS7 engine. It was designed with help from drag racing legendWarren Johnson. It offers displacements ranging from 364 to 511 cu in (6.0 to 8.4 L) with a bore and stroke of4+14 in × 4+12 in (108.0 mm × 114.3 mm) and is capable of withstanding 2,500 bhp (1,864 kW). This block incorporates two extra rows of head-bolt holes per bank for increased clamping capacity. The six bolt steel main caps are the same ones used on the LS7 engine. The engine debuted at the auto show in a customized1969 Camaro owned byReggie Jackson. The LSX was available starting the second quarter of 2007, set to be available in authorized dealerships and retailers on March 31, 2007. TheHennessey Venom GT also uses the LSX engine based on LS7.[105]

Chevrolet Performance LSX Bowtie block includes LSX specific six-bolts-per-cylinder head bolt pattern, billet-steel six-bolt dowel-located main bearing caps, extra-thick deck for maximum clamping force, extra-thick cylinder walls allow increased bore capacity (maximum 4.2 in (106.7 mm) bore still allows 0.2 in (5.1 mm) minimum wall thickness), true priority main oiling system, main web bay-to-bay breathing holes reduce crank windage, orange powder coat finish, machined bore at 3.88 in (98.6 mm) is ready for final boring/honing.

A 396 cu in (6.5 L) version engineered byIlmor is used inNASCAR for theCraftsman Truck Series and theARCA Racing Series as an option engine. Most teams in both series (known as "NT1" in the Truck Series and the "ARCA 396" in ARCA) have switched to the engine because of cost savings, as engines must last 1,500 miles and rebuilds are about one-thirds the cost of a new engine.[106][107]

LSX376

Chevrolet Performance LSX376 crate engines are updated versions of LSX crate engine family designed to support up to 1,000 hp (746 kW). All models use the Chevrolet Performance LSX Bowtie block.

LSX376-B15 (part number 19299306) includes forged steel crankshaft, forged powdered metal I-beam rods (both the crankshaft and rods from the LSA engine), forged aluminum pistons (9.0:1 compression), and high-flow rectangular-port six-bolt LSX-LS3 heads for supercharged and turbocharged combinations producing up to 15 psi (1.0 bar) of boost and up to about 1,000 hp (746 kW).

LSX376-B8 (part number 19171049) is a more economical version that is capable of approximately 8 psi (0.55 bar), for an engine producing approximately 600 hp (447 kW). It is designed for production-style supercharger and turbo systems used without enhancements or modifications.[108]

LSX454 and LSX454R

Chevrolet Performance created the 454 big-block Chevy race engine in 1970 and continued production of the crate engine through 2001. The addition of EFI and picking up the Vortec 7400 name took place in 1996 which was replaced with the Vortec 8100 platform once the 7400 was retired. Chevrolet Performance released the 454 again in 2011 as a small-block crate engine dubbed the LSX454R officially rated at 776 horsepower at 7,000 rpm and 649 lb-ft of torque at 5,100 rpm. The LSX454R was discontinued in July 2018 and was recorded as one of the more powerful LS crate engines to be assembled from Chevy Performance.[109][110][self-published source?]

Noonan Race Engineering

Noonan Race Engineering developed two billet aluminum blocks based on the LS engine. Bore sizes are up to 4.185 in (106.3 mm) and stroke up to 4.500 in (114.3 mm) are available, making a 495 cu in (8.1 L) displacement possible. The billet construction provides added block integrity suited to high horsepower applications. The block design incorporates turbocharger pressure feed lines in the front of the valley and oil dump ports in the side of the block to return oil to the sump. In addition to the solid block, a waterjacketed version was designed to provide better cooling options for street or endurance purposes. Noonan also developed intake manifolds for the LS, specifically forturbocharging ortwin turbo charging orsupercharging.[111]

See also

[edit]

Notes

[edit]
  1. ^The LS364 was a carbureted crate engine offered only for the aftermarket.[2]

References

[edit]
  1. ^abcdStrohl, Daniel (January 19, 2021)."The definitive Hemmings guide to the GM/Chevy LS-series V-8s".Hemmings Motor News.Archived from the original on March 8, 2023. RetrievedMarch 19, 2023.
  2. ^abStaff (September 21, 2017)."LS Engines 101: An Introductory Overview of the Gen III/IV LS Engine Family".OnAllCylinders.Archived from the original on September 24, 2024. RetrievedMarch 23, 2023.
  3. ^"How much does it weigh?".pro-touring.com. April 20, 2009.Archived from the original on September 24, 2024. RetrievedMarch 30, 2022.
  4. ^"Intro to the LS1 and LS6".Summit Racing Equipment. June 6, 2017.Archived from the original on June 13, 2022. RetrievedMarch 30, 2022.
  5. ^Lingeman, Jake (November 28, 2011)."GM builds 100-millionth small-block engine".Autoweek.Archived from the original on March 28, 2023. RetrievedMarch 18, 2023.
  6. ^Prosser, Dan (July 26, 2019)."The world's greatest car engines".Autocar. RetrievedMarch 18, 2023.
  7. ^McGuire, Bill; Freiburger, David (April 19, 2012)."Reader Voted - 20 Best V8s of All Time - Hot Rod Magazine".MotorTrend.Archived from the original on July 27, 2023. RetrievedMarch 18, 2023.
  8. ^Katsianis, Jordan (April 22, 2021)."Best V8 cars past and present – our favourite eights and the cars they're found in".evo.Archived from the original on September 24, 2024. RetrievedMarch 18, 2023.
  9. ^"10 Longest Produced American V8 Engines – Autowise".Archived from the original on September 24, 2024. RetrievedMarch 18, 2023.
  10. ^Gonderman, Monica (January 23, 2023)."The V-8 Is Not Dead: GM Confirms New Sixth-Gen Small-Block".MotorTrend. RetrievedMarch 20, 2023.
  11. ^Perkins, Chris (January 23, 2023)."GM Spending $854 Million to Build New Small-Block V-8".Road & Track.Archived from the original on September 24, 2024. RetrievedMarch 20, 2023.
  12. ^"Ranked: the longest-living car engines".Autocar.Archived from the original on July 27, 2023. RetrievedMarch 18, 2023.
  13. ^"LS7 and LS427/570 Engines Discontinued by Chevrolet".MotorTrend. January 31, 2022.Archived from the original on February 9, 2023. RetrievedMarch 19, 2023.
  14. ^Garbe, Eric (January 21, 2022)."A Guide to LS Cylinder Heads".Engine Builder Magazine.Archived from the original on March 20, 2023. RetrievedMarch 20, 2023.
  15. ^Garbe, Eric (January 21, 2022)."A Guide to LS Cylinder Heads".Engine Builder Magazine.Archived from the original on March 20, 2023. RetrievedMarch 18, 2023.
  16. ^"Everything You Want To Know About The GM Gen V / LT Engine".Holley Performance Products.Archived from the original on September 24, 2024. RetrievedMarch 18, 2023.
  17. ^Panait, Mircea (August 28, 2021)."General Motors LT Small-Block V8 Engine Guide".autoevolution. RetrievedMarch 19, 2023.
  18. ^abcdRupp, Steven; Udy, Jason (February 27, 2023)."The Legendary Small-Block Chevy V-8: A Look Back at Its Highlights and Evolution".MotorTrend.Archived from the original on March 24, 2023. RetrievedMarch 20, 2023.
  19. ^Sherman, Don (February 21, 2022)."LT6 Breakdown: The Z06's 670-hp V-8 is a landmark achievement".Hagerty Media.Archived from the original on March 21, 2023. RetrievedMarch 19, 2023.
  20. ^"LS Gen III vs Gen IV Swap Guide".www.ictbillet.com.Archived from the original on September 24, 2024. RetrievedMarch 19, 2023.
  21. ^Smith, Jeff (December 14, 2020)."Everything You Want To Know About The GM Gen V / LT Engine".Holley Performance Products.Archived from the original on September 24, 2024. RetrievedMarch 19, 2023.
  22. ^"9 Popular Engine Swaps - Choose Wisely".MotorTrend. March 26, 2014. RetrievedMarch 19, 2023.
  23. ^Garbe, Eric (August 12, 2021)."Popular Engine Swaps".Engine Builder Magazine.Archived from the original on September 24, 2024. RetrievedMarch 19, 2023.
  24. ^abRupp, Steven (January 22, 2022)."Everything You Need to Know About LS, LSX, and Vortec Engines: Specs, History, Swaps, and More".Hot Rod.Archived from the original on January 19, 2025. RetrievedMarch 21, 2023.
  25. ^Kelly, Iain (May 25, 2018)."Guide to LS engine swaps".WhichCar.Archived from the original on June 22, 2021. RetrievedMarch 19, 2023.
  26. ^abcdStenquist, Paul (January 18, 2013)."Talking About a New Generation: A Redesigned Engine for Corvette".The New York Times.ISSN 0362-4331.Archived from the original on March 22, 2023. RetrievedMarch 22, 2023.
  27. ^ab"From blue flame six to LT5".Machine Design. Vol. 65, no. 17. p. 32.ProQuest 217149408 – viaProQuest.
  28. ^abFurchgott, Roy (September 10, 2020)."Chevy's Little Engine That Could".The New York Times.ISSN 0362-4331.Archived from the original on March 22, 2023. RetrievedMarch 22, 2023.
  29. ^Conwill, David (May 18, 2021)."Even the malaise-era Chevy Corvette is still fun to drive, and value-priced".Hemmings Motor News.Archived from the original on March 23, 2023. RetrievedMarch 22, 2023.
  30. ^ab"Build Some Power With a '92-'96 Gen II LT1".MotorTrend. January 1, 2008. RetrievedMarch 23, 2023.
  31. ^abcWebster, Larry (May 1, 2004)."The Pushrod Engine Finally Gets its Due".Car and Driver.Archived from the original on April 2, 2023. RetrievedMarch 21, 2023.
  32. ^"2014 Chevrolet Corvette C7 Gains New LT1 6.2-Liter V-8".MotorTrend. October 24, 2012.Archived from the original on March 23, 2023. RetrievedMarch 23, 2023.
  33. ^"Chevy Gen III V-8 Secrets - A Look Inside The LS1 And LS6 Engines - Hot Rod Magazine".MotorTrend. May 4, 2009.Archived from the original on March 23, 2023. RetrievedMarch 23, 2023.
  34. ^"1997-2004 LS1 Engine - GM's All-New, All-Aluminum Mouse Motor".MotorTrend. June 30, 2014.Archived from the original on March 23, 2023. RetrievedMarch 23, 2023.
  35. ^Silvestro, Brian (April 25, 2018)."Why Pushrod Engines Have a Low Redline".Road & Track.Archived from the original on July 27, 2023. RetrievedMarch 21, 2023.
  36. ^Garbe, Eric (January 21, 2022)."A Guide to LS Cylinder Heads".Engine Builder Magazine.Archived from the original on March 20, 2023. RetrievedMarch 23, 2023.
  37. ^"Cylinder Block - Building, Inspecting - Tech - Hot Rod Magazine".MotorTrend. January 2, 1998. RetrievedMarch 23, 2023.
  38. ^"Flat-Plane Crank DOHC LT6 to Power the 2023 Corvette Z06! Details and Specs".MotorTrend. October 26, 2021.Archived from the original on October 27, 2021. RetrievedMarch 23, 2023.
  39. ^2022 Chevrolet Performance catalog: The LS/LT Engine Family Tree
  40. ^Gabe, Eric (January 26, 2023)."LS Intake Manifolds".Engine Builder Magazine. RetrievedFebruary 5, 2025.
  41. ^Holdener, Richard (2017).How to Build LS Gen IV Performance on the Dyno: Optimal Parts Combos for Maximum Horsepower.Forest Lake, MN: CarTech. p. 9.ISBN 978-1613253403.
  42. ^Carley, Larry (June 1, 2005)."Performance Pistons".Engine Builder Magazine.Archived from the original on May 30, 2024. RetrievedFebruary 5, 2025.
  43. ^Ashley, Steven (February 1991). "Connecting rods that crack by design".Mechanical Engineering.113 (2).American Society of Mechanical Engineers: 54.ISSN 0025-6501 – viaGale OneFile.
  44. ^"Everything You Wanted to Know About the GM LS Engine Family".auto.jepistons.com. September 10, 2022.Archived from the original on April 1, 2023. RetrievedMarch 30, 2023.
  45. ^Life is a [sic] Enigma (August 24, 2021)."LS Engine WEIGHTS".s10forum.com.Archived from the original on July 27, 2023. RetrievedMarch 31, 2022.
  46. ^Worner, Randy (December 21, 2022)."LS Firing Order and Cylinder Numbers".Chevy Geek.Archived from the original on September 24, 2024. RetrievedApril 25, 2023.
  47. ^"LS1 Info and Specifications". Smokemup.com.Archived from the original on February 11, 2012. RetrievedJanuary 25, 2012.
  48. ^"2005 Chevrolet Corvette Z51". September 2004.
  49. ^"LS Engines - Small Block Engine - Crate Engine". GM Performance Parts. March 24, 2011.Archived from the original on December 30, 2011. RetrievedJanuary 25, 2012.
  50. ^"GM 5.7 Liter V8 Small Block LS1 Engine". GM Authority. June 13, 2016.Archived from the original on September 24, 2024. RetrievedOctober 22, 2021.
  51. ^Corvette LS6 - Ruthless Pursuit of PowerArchived October 12, 2007, at theWayback Machine
  52. ^Staff (July 23, 2007)."SSC Ultimate Aero TT".Autocar.Archived from the original on May 25, 2023. RetrievedMay 26, 2023.
  53. ^"NASCAR's new motor". Circletrack.com.Archived from the original on January 22, 2012. RetrievedJanuary 25, 2012.
  54. ^"Nascar block wins award - Grainger & Worrall".www.gwcast.com.Archived from the original on December 24, 2013.
  55. ^"2005 Pontiac GTO Program #2423 | MotorWeek".Archived from the original on December 4, 2022. RetrievedJuly 28, 2021.
  56. ^"All-new G8 accelerates new era of rear-wheel-drive performance at Pontiac".Global Auto Index. February 7, 2007. Archived fromthe original on September 27, 2007. RetrievedAugust 30, 2007.
  57. ^"2010 Vortec 6.0L V8 VVT Hybrid (LZ1)". GM. 2010.Archived from the original on April 24, 2014. RetrievedMay 21, 2013.
  58. ^"2009 "LS4" 5.3L V8 ( LS4 )"(PDF).gmpowertrain.ca. Archived fromthe original(PDF) on October 8, 2010.
  59. ^ab"GM Powertrain". GM. Archived fromthe original on July 2, 2013. RetrievedMay 21, 2013.
  60. ^"GM 5.3L Liter V8 Vortec LMG Engine".GM Authority. April 5, 2014.Archived from the original on September 25, 2024. RetrievedJanuary 28, 2022.
  61. ^ab"GM Inside News Forum - Engine Guide". Gminsidenews.com. March 22, 2009. Archived fromthe original on January 17, 2009. RetrievedApril 26, 2009.
  62. ^"Chevrolet Pressroom - United States - Colorado".media.gm.com. RetrievedMay 18, 2019.
  63. ^"Chevrolet Pressroom - United States - Colorado".media.gm.com. RetrievedMay 18, 2019.
  64. ^"Chevrolet Pressroom - United States - Colorado".media.gm.com. RetrievedMay 18, 2019.
  65. ^"Chevrolet Pressroom - United States - Colorado".media.gm.com. RetrievedMay 18, 2019.
  66. ^"GM 5.3L Liter V8 Vortec LMF Engine Info, Power, Specs, Wiki | GM Authority". April 5, 2014.Archived from the original on September 25, 2024. RetrievedAugust 29, 2022.
  67. ^"Gen III & Gen IV Vortec Truck Engines".GM High Tech Performance Magazine. GM High-Tech Performance. February 26, 2007.Archived from the original on July 11, 2011. RetrievedSeptember 21, 2010.
  68. ^"2005 Chevrolet Corvette Z06, 2006 MY C6 US specifications".carfolio.com.Archived from the original on June 24, 2018. RetrievedJune 23, 2018.
  69. ^Brian Silvestro (January 28, 2022)."Chevy Officially Discontinues the LS7".Road & Track.Archived from the original on September 25, 2024. RetrievedFebruary 10, 2022.
  70. ^"2008 HSV W427 specifications".carfolio.com.Archived from the original on June 24, 2018. RetrievedJune 23, 2018.
  71. ^"Revealed: our fastest, most expensive road car".The Sydney Morning Herald. February 29, 2008.Archived from the original on April 20, 2008.
  72. ^"CSV GTS LS7 - HSV's faithful wait for an official 7.0-litre project, but CSV has already beaten the factory to the power punch".Wheels. Motoring.com.au. December 2007. Archived fromthe original on June 20, 2015. RetrievedJune 21, 2015.
  73. ^Vertical Aviation Technologies (2013)."Hummingbird 300LS". Archived fromthe original on January 28, 2013. RetrievedFebruary 14, 2013.
  74. ^"GM LS427/570".chevrolet.com. RetrievedJuly 17, 2023.
  75. ^"2007 Chevrolet Corvette ZR1, 2009 MY C6 US".carfolio.com. RetrievedJune 24, 2018.
  76. ^Sutton, Mike (August 29, 2007)."GM Reveals Small-Block V8 With Direct Injection".WardsAuto.com.Archived from the original on June 13, 2008. RetrievedAugust 30, 2007.
  77. ^"GM 6.2 Liter Supercharged V8 Small Block LT4 Engine".GM Authority. April 16, 2014.Archived from the original on September 11, 2017. RetrievedSeptember 8, 2017.
  78. ^Mackenzie, Angus (January 13, 2014)."The torque's the thing: 625-hp Z06 Corvette debuts in Detroit".www.gizmag.com. Gizmag.Archived from the original on September 6, 2015.
  79. ^Petrány, Máté (November 17, 2017)."2019 SCG 004S: This Is Glickenhaus's Volume Road/Race Car".Road & Track. Online. RetrievedJuly 18, 2022.
  80. ^"6.6L V-8 L8T Features & Specifications".GM Powered Solutions. GM. RetrievedNovember 11, 2024.
  81. ^"GM 6.6 Liter V8 L8T Engine". GM Authority. February 6, 2019.Archived from the original on April 8, 2024. RetrievedOctober 22, 2021.The L8T V8 is a gasoline engine produced by General Motors for use in Heavy Duty pickup trucks.
  82. ^Smith, Jeff (April 2, 2019)."The New GM L8T Engine Is A 401ci Gen-V That Hot-Rodders Will Love". enginelabs.Archived from the original on July 17, 2024. RetrievedOctober 22, 2021.Because this L8T is intended for heavy-duty truck pulling applications, GM lowered the static compression in order to operate this engine continuously on 87-octane gasoline.
  83. ^Smirnov, Andre (November 19, 2016)."2017 GMC Sierra 1500 eAssist Hybrid: Is There Future in Hybrid Pickup Trucks?".www.tfltruck.com.Archived from the original on April 6, 2017. RetrievedApril 5, 2017.
  84. ^"Chevrolet Introduces 2016 Silverado with eAssist" (Press release). Detroit, MI: Chevrolet Pressroom. February 25, 2016.Archived from the original on March 2, 2020. RetrievedApril 5, 2017.
  85. ^"4.3L V6 LV1".poweredsolutions.gm.com.Archived from the original on September 26, 2024. RetrievedNovember 10, 2021.
  86. ^"GM 4.3 Liter V6 EcoTec3 LV1 Engine".gmauthority.com. September 22, 2017.Archived from the original on April 14, 2024. RetrievedNovember 10, 2021.
  87. ^Perkins, Chris (January 23, 2023)."GM Spending $854 Million to Build New Small-Block V-8".Road & Track.Archived from the original on September 24, 2024. RetrievedMarch 22, 2023.
  88. ^Wren, Wesley (February 3, 2023)."This Is Why GM Is Launching a New Small Block V8".Autoweek.Archived from the original on May 1, 2024. RetrievedMarch 22, 2023.
  89. ^"The V-8 Is Not Dead: GM Confirms New Sixth-Gen Small-Block".MotorTrend. January 23, 2023.Archived from the original on March 24, 2023. RetrievedMarch 22, 2023.
  90. ^LSX454RArchived March 15, 2012, at theWayback Machine; GM Performance Parts online
  91. ^"What Is Piston Slap And False Knock?".auto.jepistons.com. RetrievedMarch 20, 2023.
  92. ^"Castech Head Failure TSB"(PDF).Archived(PDF) from the original on March 27, 2012. RetrievedJanuary 25, 2012.
  93. ^"LS Engine Tech - Active Fuel Management, Overview of the Chevy AFM System".help.summitracing.com. Archived fromthe original on October 11, 2023.
  94. ^"Why and How to Disable GM's Active Fuel Management (AFM)!".YouTube. April 28, 2021.Archived from the original on October 11, 2023. RetrievedSeptember 12, 2023.
  95. ^"SDPC Tech Tips: DOD/AFM Delete 101".YouTube. March 11, 2019.Archived from the original on October 11, 2023. RetrievedSeptember 12, 2023.
  96. ^"17 Plaintiffs Sent to Arbitration in GM Valve Lifter Lawsuit". February 24, 2023.Archived from the original on December 17, 2023. RetrievedSeptember 12, 2023.
  97. ^"Chevy AFM Problem Years (Is It Serious?) - Autocornerd". July 4, 2022.Archived from the original on July 17, 2024. RetrievedSeptember 12, 2023.
  98. ^"Technical Bulletin - GM LS AFM Deactivation Lifter Issues"(PDF).www.melling.com. Melling Engine parts. Archived fromthe original(PDF) on June 22, 2024.
  99. ^"GM Lifter Problems Could Lead to Class Action Lawsuit". October 14, 2021.Archived from the original on June 23, 2024. RetrievedSeptember 12, 2023.
  100. ^"General Motors Faulty AFM Lifters Class Action Lawsuit: Valve Train Defect".Consider The Consumer. January 4, 2022. Archived fromthe original on January 4, 2022.
  101. ^"Harrison et al v. General Motors, LLC, No. 2:2021cv12927 - Document 35 (E.D. Mich. 2022)".Archived from the original on June 21, 2024. RetrievedSeptember 12, 2023.
  102. ^"Build Your Own LS7 or LS9 Crate Engine".gm.com. October 28, 2011.Archived from the original on September 18, 2013. RetrievedSeptember 30, 2013.
  103. ^"GM relocating build-your-own engine program to Bowling Green".autoblog.com. September 16, 2013.Archived from the original on September 20, 2013.
  104. ^Nunez, Alex (November 13, 2006)."Corvette Racing's LS7.R named Race Engine of the Year".autoblog.Archived from the original on February 17, 2022. RetrievedFebruary 18, 2022.
  105. ^Hellwig, Ed (October 2006)."2006 SEMA Show - Reggie Jackson Camaro".Edmunds Inside Line. Archived fromthe original on August 20, 2007. RetrievedAugust 30, 2007.
  106. ^Mike Magda (December 25, 2014)."Ilmor 396 ARCA Engine Saves Money, Lays Off Engine Builders".enginelabs.com.Archived from the original on June 22, 2024. RetrievedFebruary 23, 2022.
  107. ^"Ilmor NT1 engine powers Gander RV & Outdoors Truck Series".Ilmor Engineering. February 8, 2020.Archived from the original on July 17, 2024. RetrievedFebruary 23, 2022 – via NASCAR.com.
  108. ^"Stronger LSX™ Bowtie Blocks are Foundations for Boost-Ready Chevrolet Performance LSX376 Crate Engines".gm.com. November 27, 2012.Archived from the original on September 27, 2013. RetrievedSeptember 24, 2013.
  109. ^Havins, Brian (August 17, 2018)."End Of The Line: A Last Look At The LSX454R".LSX Magazine.Archived from the original on February 15, 2022. RetrievedFebruary 15, 2022.
  110. ^Kluczyk, Barry (August 14, 2014)."Big Power Numbers from GM's LSX454R, but Reliability is the Focus".LSX Magazine.Archived from the original on February 15, 2022. RetrievedFebruary 15, 2022.
  111. ^Engineering, Noonan-Ultimate Race."LS Edge".Noonan - Ultimate Race Engineering.Archived from the original on September 9, 2024. RetrievedSeptember 30, 2019.
Wikimedia Commons has media related toGeneral Motors LS engines.
« previousGMengine timeline, 1980–present
Type1980s1990s2000s2010s2020s
012345678901234567890123456789012345678901234
GasolineFlat4EJ
Inline3GS-TEC
Family 0
SGE
E-Turbo
4Opel OHV engineGM Ecotec
Iron DukeFamily 0
Opel CIHSaab HAZ
GQuad 4ZZZR
Vauxhall Slant-4AS-TEC
Holden StarfireSaturnAtlasMGE
Family IISGE
Family 1
122GM L3B
XG
J
5Atlas
6Chevrolet Turbo-Thrift
RedBlueBlackRB30Atlas
Opel CIHE-TEC
VBuick/3800
Chevrolet 90°
GM 60°Gen V 90°
ShortstarHigh Value
Opel 54°High Feature
H
J
8Buick
Cadillac OHVNorthstarBlackwing
High Technology
Big Block
Small BlockGemini
LS/LT
Holden
Oldsmobile
Pontiac
DieselDetroit
OldsmobileDuramax
6OldsmobileDMAX
InlineM51Duramax
Detroit 606H
4JTD
RAFamily Z
ECircle L
Family IIFamily B
A
MDE
Type1980s1990s2000s2010s2020s
Legend
Retrieved from "https://en.wikipedia.org/w/index.php?title=General_Motors_LS-based_small-block_engine&oldid=1284707953"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp