Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Fractional calculus

From Wikipedia, the free encyclopedia
Branch of mathematical analysis
For the associated operator, seedifferintegral.
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Fractional calculus is a branch ofmathematical analysis that studies the several different possibilities of definingreal number powers orcomplex number powers of thedifferentiationoperatorD{\displaystyle D}Df(x)=ddxf(x),{\displaystyle Df(x)={\frac {d}{dx}}f(x)\,,}

and of theintegration operatorJ{\displaystyle J}[Note 1]Jf(x)=0xf(s)ds,{\displaystyle Jf(x)=\int _{0}^{x}f(s)\,ds\,,}

and developing acalculus for such operators generalizing the classical one.

In this context, the termpowers refers to iterative application of alinear operatorD{\displaystyle D} to afunctionf{\displaystyle f}, that is, repeatedlycomposingD{\displaystyle D} with itself, as inDn(f)=(DDDDn)(f)=D(D(D(Dn(f)))).{\displaystyle {\begin{aligned}D^{n}(f)&=(\underbrace {D\circ D\circ D\circ \cdots \circ D} _{n})(f)\\&=\underbrace {D(D(D(\cdots D} _{n}(f)\cdots ))).\end{aligned}}}

For example, one may ask for a meaningful interpretation ofD=D12{\displaystyle {\sqrt {D}}=D^{\scriptstyle {\frac {1}{2}}}}

as an analogue of thefunctional square root for the differentiation operator, that is, an expression for some linear operator that, when appliedtwice to any function, will have the same effect asdifferentiation. More generally, one can look at the question of defining a linear operatorDa{\displaystyle D^{a}}

for every real numbera{\displaystyle a} in such a way that, whena{\displaystyle a} takes aninteger valuenZ{\displaystyle n\in \mathbb {Z} }, it coincides with the usualn{\displaystyle n}-fold differentiationD{\displaystyle D} ifn>0{\displaystyle n>0}, and with then{\displaystyle n}-th power ofJ{\displaystyle J} whenn<0{\displaystyle n<0}.

One of the motivations behind the introduction and study of these sorts of extensions of the differentiation operatorD{\displaystyle D} is that thesets of operator powers{DaaR}{\displaystyle \{D^{a}\mid a\in \mathbb {R} \}} defined in this way arecontinuoussemigroups with parametera{\displaystyle a}, of which the originaldiscrete semigroup of{DnnZ}{\displaystyle \{D^{n}\mid n\in \mathbb {Z} \}} for integern{\displaystyle n} is adenumerable subgroup: since continuous semigroups have a well developed mathematical theory, they can be applied to other branches of mathematics.

Fractionaldifferential equations, also known as extraordinary differential equations,[1] are a generalization of differential equations through the application of fractional calculus.

Historical notes

[edit]

Inapplied mathematics and mathematical analysis, afractional derivative is a derivative of any arbitrary order, real or complex. Its first appearance is in a letter written toGuillaume de l'Hôpital byGottfried Wilhelm Leibniz in 1695.[2] Around the same time, Leibniz wrote toJohann Bernoulli about derivatives of "general order".[3] In the correspondence between Leibniz andJohn Wallis in 1697, Wallis's infinite product forπ/2{\displaystyle \pi /2} is discussed. Leibniz suggested using differential calculus to achieve this result. Leibniz further used the notationd1/2y{\displaystyle {d}^{1/2}{y}} to denote the derivative of order1/2.[3]

Fractional calculus was introduced in one ofNiels Henrik Abel's early papers[4] where all the elements can be found: the idea of fractional-order integration and differentiation, the mutually inverse relationship between them, the understanding that fractional-order differentiation and integration can be considered as the same generalized operation, and the unified notation for differentiation and integration of arbitrary real order.[5]Independently, the foundations of the subject were laid byLiouville in a paper from 1832.[6][7][8]Oliver Heaviside introduced the practical use offractional differential operators in electrical transmission line analysis circa 1890.[9] The theory and applications of fractional calculus expanded greatly over the 19th and 20th centuries, and numerous contributors have given different definitions for fractional derivatives and integrals.[10]

Computing the fractional integral

[edit]

Letf(x){\displaystyle f(x)} be a function defined forx>0{\displaystyle x>0}. Form the definite integral from 0 tox{\displaystyle x}. Call this(Jf)(x)=0xf(t)dt.{\displaystyle (Jf)(x)=\int _{0}^{x}f(t)\,dt\,.}

Repeating this process gives(J2f)(x)=0x(Jf)(t)dt=0x(0tf(s)ds)dt,{\displaystyle {\begin{aligned}\left(J^{2}f\right)(x)&=\int _{0}^{x}(Jf)(t)\,dt\\&=\int _{0}^{x}\left(\int _{0}^{t}f(s)\,ds\right)dt\,,\end{aligned}}}

and this can be extended arbitrarily.

TheCauchy formula for repeated integration, namely(Jnf)(x)=1(n1)!0x(xt)n1f(t)dt,{\displaystyle \left(J^{n}f\right)(x)={\frac {1}{(n-1)!}}\int _{0}^{x}\left(x-t\right)^{n-1}f(t)\,dt\,,}leads in a straightforward way to a generalization for realn: using thegamma function to remove the discrete nature of the factorial function gives us a natural candidate for applications of the fractional integral operator as(Jαf)(x)=1Γ(α)0x(xt)α1f(t)dt.{\displaystyle \left(J^{\alpha }f\right)(x)={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}\left(x-t\right)^{\alpha -1}f(t)\,dt\,.}

This is in fact a well-defined operator.

It is straightforward to show that theJ operator satisfies(Jα)(Jβf)(x)=(Jβ)(Jαf)(x)=(Jα+βf)(x)=1Γ(α+β)0x(xt)α+β1f(t)dt.{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&=\left(J^{\beta }\right)\left(J^{\alpha }f\right)(x)\\&=\left(J^{\alpha +\beta }f\right)(x)\\&={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-t\right)^{\alpha +\beta -1}f(t)\,dt\,.\end{aligned}}}

Proof of this identity

(Jα)(Jβf)(x)=1Γ(α)0x(xt)α1(Jβf)(t)dt=1Γ(α)Γ(β)0x0t(xt)α1(ts)β1f(s)dsdt=1Γ(α)Γ(β)0xf(s)(sx(xt)α1(ts)β1dt)ds{\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&={\frac {1}{\Gamma (\alpha )}}\int _{0}^{x}(x-t)^{\alpha -1}\left(J^{\beta }f\right)(t)\,dt\\&={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\int _{0}^{t}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}f(s)\,ds\,dt\\&={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}f(s)\left(\int _{s}^{x}\left(x-t\right)^{\alpha -1}\left(t-s\right)^{\beta -1}\,dt\right)\,ds\end{aligned}}}

where in the last step we exchanged the order of integration and pulled out thef(s) factor from thet integration.

Changing variables tor defined byt =s + (xs)r,(Jα)(Jβf)(x)=1Γ(α)Γ(β)0x(xs)α+β1f(s)(01(1r)α1rβ1dr)ds{\displaystyle \left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)={\frac {1}{\Gamma (\alpha )\Gamma (\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\left(\int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr\right)\,ds}

The inner integral is thebeta function which satisfies the following property:01(1r)α1rβ1dr=B(α,β)=Γ(α)Γ(β)Γ(α+β){\displaystyle \int _{0}^{1}\left(1-r\right)^{\alpha -1}r^{\beta -1}\,dr=B(\alpha ,\beta )={\frac {\Gamma (\alpha )\,\Gamma (\beta )}{\Gamma (\alpha +\beta )}}}

Substituting back into the equation:(Jα)(Jβf)(x)=1Γ(α+β)0x(xs)α+β1f(s)ds=(Jα+βf)(x){\displaystyle {\begin{aligned}\left(J^{\alpha }\right)\left(J^{\beta }f\right)(x)&={\frac {1}{\Gamma (\alpha +\beta )}}\int _{0}^{x}\left(x-s\right)^{\alpha +\beta -1}f(s)\,ds\\&=\left(J^{\alpha +\beta }f\right)(x)\end{aligned}}}

Interchangingα andβ shows that the order in which theJ operator is applied is irrelevant and completes the proof.

This relationship is called the semigroup property of fractionaldifferintegral operators.

Riemann–Liouville fractional integral

[edit]

The classical form of fractional calculus is given by theRiemann–Liouville integral, which is essentially what has been described above. The theory of fractional integration forperiodic functions (therefore including the "boundary condition" of repeating after a period) is given by theWeyl integral. It is defined onFourier series, and requires the constant Fourier coefficient to vanish (thus, it applies to functions on theunit circle whose integrals evaluate to zero). The Riemann–Liouville integral exists in two forms, upper and lower. Considering the interval[a,b], the integrals are defined asDaDtαf(t)=IaItαf(t)=1Γ(α)at(tτ)α1f(τ)dτDtDbαf(t)=ItIbαf(t)=1Γ(α)tb(τt)α1f(τ)dτ{\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{-\alpha }}Df(t)&=\sideset {_{a}}{_{t}^{\alpha }}If(t)\\&={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau \\\sideset {_{t}}{_{b}^{-\alpha }}Df(t)&=\sideset {_{t}}{_{b}^{\alpha }}If(t)\\&={\frac {1}{\Gamma (\alpha )}}\int _{t}^{b}\left(\tau -t\right)^{\alpha -1}f(\tau )\,d\tau \end{aligned}}}

Where the former is valid fort >a and the latter is valid fort <b.[11]

It has been suggested[12] that the integral on the positive real axis (i.e.a=0{\displaystyle a=0}) would be more appropriately named the Abel–Riemann integral, on the basis of history of discovery and use, and in the same vein the integral over the entire real line be named Liouville–Weyl integral.

By contrast theGrünwald–Letnikov derivative starts with the derivative instead of the integral.

Hadamard fractional integral

[edit]

TheHadamard fractional integral was introduced byJacques Hadamard[13] and is given by the following formula,DaDtαf(t)=1Γ(α)at(logtτ)α1f(τ)dττ,t>a.{\displaystyle \sideset {_{a}}{_{t}^{-\alpha }}{\mathbf {D} }f(t)={\frac {1}{\Gamma (\alpha )}}\int _{a}^{t}\left(\log {\frac {t}{\tau }}\right)^{\alpha -1}f(\tau ){\frac {d\tau }{\tau }},\qquad t>a\,.}

Atangana–Baleanu fractional integral (AB fractional integral)

[edit]

The Atangana–Baleanu fractional integral of a continuous function is defined as:IAaABItαf(t)=1αAB(α)f(t)+αAB(α)Γ(α)at(tτ)α1f(τ)dτ{\displaystyle \sideset {_{{\hphantom {A}}a}^{\operatorname {AB} }}{_{t}^{\alpha }}If(t)={\frac {1-\alpha }{\operatorname {AB} (\alpha )}}f(t)+{\frac {\alpha }{\operatorname {AB} (\alpha )\Gamma (\alpha )}}\int _{a}^{t}\left(t-\tau \right)^{\alpha -1}f(\tau )\,d\tau }

Fractional derivatives

[edit]
Not to be confused withFractal derivative.

Unfortunately, the comparable process for the derivative operatorD is significantly more complex, but it can be shown thatD is neithercommutative noradditive in general.[14]

Unlike classical Newtonian derivatives, fractional derivatives can be defined in a variety of different ways that often do not all lead to the same result even for smooth functions. Some of these are defined via a fractional integral. Because of the incompatibility of definitions, it is frequently necessary to be explicit about which definition is used.

Fractional derivatives of a Gaussian, interpolating continuously between the function and its first derivative

Riemann–Liouville fractional derivative

[edit]

The corresponding derivative is calculated using Lagrange's rule for differential operators. To find theαth order derivative, thenth order derivative of the integral of order(nα) is computed, wheren is the smallest integer greater thanα (that is,n =α). The Riemann–Liouville fractional derivative and integral has multiple applications, such as in case of solutions to the equation in the case of multiple systems such as the tokamak systems, and variable order fractional parameter.[15][16] Similar to the definitions for the Riemann–Liouville integral, the derivative has upper and lower variants.[17]DaDtαf(t)=dndtnDaDt(nα)f(t)=dndtnIaItnαf(t)DtDbαf(t)=dndtnDtDb(nα)f(t)=dndtnItIbnαf(t){\displaystyle {\begin{aligned}\sideset {_{a}}{_{t}^{\alpha }}Df(t)&={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{-(n-\alpha )}}Df(t)\\&={\frac {d^{n}}{dt^{n}}}\sideset {_{a}}{_{t}^{n-\alpha }}If(t)\\\sideset {_{t}}{_{b}^{\alpha }}Df(t)&={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{-(n-\alpha )}}Df(t)\\&={\frac {d^{n}}{dt^{n}}}\sideset {_{t}}{_{b}^{n-\alpha }}If(t)\end{aligned}}}

Caputo fractional derivative

[edit]
Main article:Caputo fractional derivative

Another option for computing fractional derivatives is theCaputo fractional derivative. It was introduced byMichele Caputo in his 1967 paper.[18] In contrast to the Riemann–Liouville fractional derivative, when solving differential equations using Caputo's definition, it is not necessary to define the fractional order initial conditions. Caputo's definition is illustrated as follows, where againn = ⌈α:DCDtαf(t)=1Γ(nα)0tf(n)(τ)(tτ)α+1ndτ.{\displaystyle \sideset {^{C}}{_{t}^{\alpha }}Df(t)={\frac {1}{\Gamma (n-\alpha )}}\int _{0}^{t}{\frac {f^{(n)}(\tau )}{\left(t-\tau \right)^{\alpha +1-n}}}\,d\tau .}

There is the Caputo fractional derivative defined as:Dνf(t)=1Γ(nν)0t(tu)(nν1)f(n)(u)du(n1)<ν<n{\displaystyle D^{\nu }f(t)={\frac {1}{\Gamma (n-\nu )}}\int _{0}^{t}(t-u)^{(n-\nu -1)}f^{(n)}(u)\,du\qquad (n-1)<\nu <n}which has the advantage that it is zero whenf(t) is constant and its Laplace Transform is expressed by means of the initial values of the function and its derivative. Moreover, there is the Caputo fractional derivative of distributed order defined asDabDnuf(t)=abϕ(ν)[D(ν)f(t)]dν=ab[ϕ(ν)Γ(1ν)0t(tu)νf(u)du]dν{\displaystyle {\begin{aligned}\sideset {_{a}^{b}}{^{n}u}Df(t)&=\int _{a}^{b}\phi (\nu )\left[D^{(\nu )}f(t)\right]\,d\nu \\&=\int _{a}^{b}\left[{\frac {\phi (\nu )}{\Gamma (1-\nu )}}\int _{0}^{t}\left(t-u\right)^{-\nu }f'(u)\,du\right]\,d\nu \end{aligned}}}

whereϕ(ν) is a weight function and which is used to represent mathematically the presence of multiple memory formalisms.

Caputo–Fabrizio fractional derivative

[edit]

In a paper of 2015, M. Caputo and M. Fabrizio presented a definition of fractional derivative with a non singular kernel, for a functionf(t){\displaystyle f(t)} ofC1{\displaystyle C^{1}} given by:DCaCFDtαf(t)=11αatf(τ) e(αtτ1α) dτ,{\displaystyle \sideset {_{{\hphantom {C}}a}^{\text{CF}}}{_{t}^{\alpha }}Df(t)={\frac {1}{1-\alpha }}\int _{a}^{t}f'(\tau )\ e^{\left(-\alpha {\frac {t-\tau }{1-\alpha }}\right)}\ d\tau ,}

wherea<0,α(0,1]{\displaystyle a<0,\alpha \in (0,1]}.[19]

Atangana–Baleanu fractional derivative

[edit]

In 2016, Atangana and Baleanu suggested differential operators based on the generalizedMittag-Leffler functionEα{\displaystyle E_{\alpha }}. The aim was to introduce fractional differential operators with non-singular nonlocal kernel. Their fractional differential operators are given below in Riemann–Liouville sense and Caputo sense respectively. For a functionf(t){\displaystyle f(t)} ofC1{\displaystyle C^{1}} given by[20][21]DABaABCDtαf(t)=AB(α)1αatf(τ)Eα(α(tτ)α1α)dτ,{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}\int _{a}^{t}f'(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}

If the function is continuous, the Atangana–Baleanu derivative in Riemann–Liouville sense is given by:DABaABCDtαf(t)=AB(α)1αddtatf(τ)Eα(α(tτ)α1α)dτ,{\displaystyle \sideset {_{{\hphantom {AB}}a}^{\text{ABC}}}{_{t}^{\alpha }}Df(t)={\frac {\operatorname {AB} (\alpha )}{1-\alpha }}{\frac {d}{dt}}\int _{a}^{t}f(\tau )E_{\alpha }\left(-\alpha {\frac {(t-\tau )^{\alpha }}{1-\alpha }}\right)d\tau ,}

The kernel used in Atangana–Baleanu fractional derivative has some properties of a cumulative distribution function. For example, for allα(0,1]{\displaystyle \alpha \in (0,1]}, the functionEα{\displaystyle E_{\alpha }} is increasing on the real line, converges to0{\displaystyle 0} in{\displaystyle -\infty }, andEα(0)=1{\displaystyle E_{\alpha }(0)=1}. Therefore, we have that, the functionx1Eα(xα){\displaystyle x\mapsto 1-E_{\alpha }(-x^{\alpha })} is the cumulative distribution function of a probability measure on the positive real numbers. The distribution is therefore defined, and any of its multiples is called aMittag-Leffler distribution of orderα{\displaystyle \alpha }. It is also well-known that all these probability distributions areabsolutely continuous. In particular, the Mittag-Leffler function has a particular caseE1{\displaystyle E_{1}}, which is the exponential function, the Mittag-Leffler distribution of order1{\displaystyle 1} is therefore anexponential distribution. However, forα(0,1){\displaystyle \alpha \in (0,1)}, the Mittag-Leffler distributions areheavy-tailed. Their Laplace transform is given by:E(eλXα)=11+λα,{\displaystyle \mathbb {E} (e^{-\lambda X_{\alpha }})={\frac {1}{1+\lambda ^{\alpha }}},}

This directly implies that, forα(0,1){\displaystyle \alpha \in (0,1)}, the expectation is infinite. In addition, these distributions aregeometric stable distributions.

Riesz derivative

[edit]

The Riesz derivative is defined asF{αu|x|α}(k)=|k|αF{u}(k),{\displaystyle {\mathcal {F}}\left\{{\frac {\partial ^{\alpha }u}{\partial \left|x\right|^{\alpha }}}\right\}(k)=-\left|k\right|^{\alpha }{\mathcal {F}}\{u\}(k),}

whereF{\displaystyle {\mathcal {F}}} denotes theFourier transform.[22][23]

Conformable fractional derivative

[edit]

The conformable fractional derivative of a functionf{\displaystyle f} of orderα{\displaystyle \alpha } is given byTα(f)(t)=limϵ0f(t+ϵt1α)f(t)ϵ{\displaystyle T_{\alpha }(f)(t)=\lim _{\epsilon \rightarrow 0}{\frac {f\left(t+\epsilon t^{1-\alpha }\right)-f(t)}{\epsilon }}}Unlike other definitions of the fractional derivative, the conformable fractional derivative obeys theproduct andquotient rule has analogs toRolle's theorem and themean value theorem.[24][25] However, this fractional derivative produces significantly different results compared to the Riemann-Liouville and Caputo fractional derivative. In 2020, Feng Gao and Chunmei Chi defined the improved Caputo-type conformable fractional derivative, which more closely approximates the behavior of the Caputo fractional derivative:[25]aCT~α(f)(t)=limϵ0[(1α)(f(t)f(a))+αf(t+ϵ(ta)1α)f(t)ϵ]{\displaystyle _{a}^{C}{\widetilde {T}}_{\alpha }(f)(t)=\lim _{\epsilon \rightarrow 0}\left[(1-\alpha )(f(t)-f(a))+\alpha {\frac {f\left(t+\epsilon (t-a)^{1-\alpha }\right)-f(t)}{\epsilon }}\right]}wherea{\displaystyle a} andt{\displaystyle t} arereal numbers anda<t{\displaystyle a<t}. They also defined the improved Riemann-Liouville-type conformable fractional derivative to similarly approximate the Riemann-Liouville fractional derivative:[25]

aRLT~α(f)(t)=limϵ0[(1α)f(t)+αf(t+ϵ(ta)1α)f(t)ϵ]{\displaystyle _{a}^{RL}{\widetilde {T}}_{\alpha }(f)(t)=\lim _{\epsilon \rightarrow 0}\left[(1-\alpha )f(t)+\alpha {\frac {f\left(t+\epsilon (t-a)^{1-\alpha }\right)-f(t)}{\epsilon }}\right]}wherea{\displaystyle a} andt{\displaystyle t} arereal numbers anda<t{\displaystyle a<t}. Both improved conformable fractional derivatives have analogs to Rolle's theorem and theinterior extremum theorem.[26]

Other types

[edit]

Classical fractional derivatives include:

New fractional derivatives include:

Novel fractional derivatives with nonsingular kernels, namely the Caputo-Fabrizio and Atangana–Baleanu derivatives, are subject to controversy in applied mathematics literature.[35][36] Criticism is leveled against the validity and applications of these derivatives, with critics arguing these derivatives to be simple realizations of either integer derivatives or standard Caputo fractional derivatives, or incompatible with the fundamental theorem of fractional calculus.[37][38][39]

Coimbra derivative

[edit]

TheCoimbra derivative is used for physical modeling:[40] A number of applications in both mechanics and optics can be found in the works by Coimbra and collaborators,[41][42][43][44][45][46][47] as well as additional applications to physical problems and numerical implementations studied in a number of works by other authors[48][49][50][51]

Forq(t)<1{\displaystyle q(t)<1}aCDq(t)f(t)=1Γ[1q(t)]0+t(tτ)q(t)df(τ)dτdτ+(f(0+)f(0))tq(t)Γ(1q(t)),{\displaystyle {\begin{aligned}^{\mathbb {C} }_{a}\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [1-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{-q(t)}{\frac {d\,f(\tau )}{d\tau }}d\tau \,+\,{\frac {(f(0^{+})-f(0^{-}))\,t^{-q(t)}}{\Gamma (1-q(t))}},\end{aligned}}}where the lower limita{\displaystyle a} can be taken as either0{\displaystyle 0^{-}} or{\displaystyle -\infty } as long asf(t){\displaystyle f(t)} is identically zero from or{\displaystyle -\infty } to0{\displaystyle 0^{-}}. Note that this operator returns the correct fractional derivatives for all values oft{\displaystyle t} and can be applied to either the dependent function itselff(t){\displaystyle f(t)} with a variable order of the formq(f(t)){\displaystyle q(f(t))} or to the independent variable with a variable order of the formq(t){\displaystyle q(t)}.[1]{\displaystyle ^{[1]}}

The Coimbra derivative can be generalized to any order,[52] leading to the Coimbra Generalized Order Differintegration Operator (GODO)[53]Forq(t)<m{\displaystyle q(t)<m}CDq(t)f(t)=1Γ[mq(t)]0+t(tτ)m1q(t)dmf(τ)dτmdτ+n=0m1(dnf(t)dtn|0+dnf(t)dtn|0)tnq(t)Γ[n+1q(t)],{\displaystyle {\begin{aligned}^{\mathbb {\quad C} }_{\,\,-\infty }\mathbb {D} ^{q(t)}f(t)={\frac {1}{\Gamma [m-q(t)]}}\int _{0^{+}}^{t}(t-\tau )^{m-1-q(t)}{\frac {d^{m}f(\tau )}{d\tau ^{m}}}d\tau \,+\,\sum _{n=0}^{m-1}{\frac {({\frac {d^{n}f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}f(t)}{dt^{n}}}|_{0^{-}})\,t^{n-q(t)}}{\Gamma [n+1-q(t)]}},\end{aligned}}}wherem{\displaystyle m} is an integer larger than the larger value ofq(t){\displaystyle q(t)} for all values oft{\displaystyle t}. Note that the second (summation) term on the right side of the definition above can be expressed as

1Γ[mq(t)]n=0m1{[dnf(t)dtn|0+dnf(t)dtn|0]tnq(t)j=n+1m1[jq(t)]}{\displaystyle {\begin{aligned}{\frac {1}{\Gamma [m-q(t)]}}\sum _{n=0}^{m-1}\{[{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{+}}-{\frac {d^{n}\!f(t)}{dt^{n}}}|_{0^{-}}]\,t^{n-q(t)}\prod _{j=n+1}^{m-1}[j-q(t)]\}\end{aligned}}}so to keep the denominator on the positive branch of the Gamma (Γ{\displaystyle \Gamma }) function and for ease of numerical calculation.

Nature of the fractional derivative

[edit]

Thea{\displaystyle a}-th derivative of a functionf{\displaystyle f} at a pointx{\displaystyle x} is alocal property only whena{\displaystyle a} is an integer; this is not the case for non-integer power derivatives. In other words, a non-integer fractional derivative off{\displaystyle f} atx=c{\displaystyle x=c} depends on all values off{\displaystyle f}, even those far away fromc{\displaystyle c}. Therefore, it is expected that the fractional derivative operation involves some sort ofboundary conditions, involving information on the function further out.[54]

The fractional derivative of a function of ordera{\displaystyle a} is nowadays often defined by means of theFourier orMellin integral transforms.[55][citation needed]

Generalizations

[edit]

Erdélyi–Kober operator

[edit]

TheErdélyi–Kober operator is an integral operator introduced byArthur Erdélyi (1940).[56] andHermann Kober (1940)[57] and is given byxνα+1Γ(α)0x(tx)α1tανf(t)dt,{\displaystyle {\frac {x^{-\nu -\alpha +1}}{\Gamma (\alpha )}}\int _{0}^{x}\left(t-x\right)^{\alpha -1}t^{-\alpha -\nu }f(t)\,dt\,,}

which generalizes theRiemann–Liouville fractional integral and the Weyl integral.

Functional calculus

[edit]

In the context offunctional analysis, functionsf(D) more general than powers are studied in thefunctional calculus ofspectral theory. The theory ofpseudo-differential operators also allows one to consider powers ofD. The operators arising are examples ofsingular integral operators; and the generalisation of the classical theory to higher dimensions is called the theory ofRiesz potentials. So there are a number of contemporary theories available, within whichfractional calculus can be discussed.(See alsoErdélyi–Kober operator, important inspecial function theory.)[58]

Applications

[edit]

Fractional conservation of mass

[edit]

As described by Wheatcraft and Meerschaert (2008),[59] a fractional conservation of mass equation is needed to model fluid flow when thecontrol volume is not large enough compared to the scale ofheterogeneity and when the flux within the control volume is non-linear. In the referenced paper, the fractional conservation of mass equation for fluid flow is:ρ(αu)=Γ(α+1)Δx1αρ(βs+ϕβw)pt{\displaystyle -\rho \left(\nabla ^{\alpha }\cdot {\vec {u}}\right)=\Gamma (\alpha +1)\Delta x^{1-\alpha }\rho \left(\beta _{s}+\phi \beta _{w}\right){\frac {\partial p}{\partial t}}}

Electrochemical analysis

[edit]
See also:Neopolarogram

When studying the redox behavior of a substrate in solution, a voltage is applied at an electrode surface to force electron transfer between electrode and substrate. The resulting electron transfer is measured as a current. The current depends upon the concentration of substrate at the electrode surface. As substrate is consumed, fresh substrate diffuses to the electrode as described byFick's laws of diffusion. Taking the Laplace transform of Fick's second law yields an ordinary second-order differential equation (here in dimensionless form):d2dx2C(x,s)=sC(x,s){\displaystyle {\frac {d^{2}}{dx^{2}}}C(x,s)=sC(x,s)}

whose solutionC(x,s) contains a one-half power dependence ons. Taking the derivative ofC(x,s) and then the inverse Laplace transform yields the following relationship:ddxC(x,t)=d12dt12C(x,t){\displaystyle {\frac {d}{dx}}C(x,t)={\frac {d^{\scriptstyle {\frac {1}{2}}}}{dt^{\scriptstyle {\frac {1}{2}}}}}C(x,t)}

which relates the concentration of substrate at the electrode surface to the current.[60] This relationship is applied in electrochemical kinetics to elucidate mechanistic behavior. For example, it has been used to study the rate of dimerization of substrates upon electrochemical reduction.[61]

Groundwater flow problem

[edit]

In 2013–2014 Atangana et al. described some groundwater flow problems using the concept of a derivative with fractional order.[62][63] In these works, the classicalDarcy law is generalized by regarding the water flow as a function of a non-integer order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow.

Fractional advection dispersion equation

[edit]

This equation[clarification needed] has been shown useful for modeling contaminant flow in heterogenous porous media.[64][65][66]

Atangana and Kilicman extended the fractional advection dispersion equation to a variable order equation. In their work, the hydrodynamic dispersion equation was generalized using the concept of avariational order derivative. The modified equation was numerically solved via theCrank–Nicolson method. The stability and convergence in numerical simulations showed that the modified equation is more reliable in predicting the movement of pollution in deformable aquifers than equations with constant fractional and integer derivatives[67]

Time-space fractional diffusion equation models

[edit]

Anomalous diffusion processes in complex media can be well characterized by using fractional-order diffusion equation models.[68][69] The time derivative term corresponds to long-time heavy tail decay and the spatial derivative for diffusion nonlocality. The time-space fractional diffusion governing equation can be written asαutα=K(Δ)βu.{\displaystyle {\frac {\partial ^{\alpha }u}{\partial t^{\alpha }}}=-K(-\Delta )^{\beta }u.}

A simple extension of the fractional derivative is the variable-order fractional derivative,α andβ are changed intoα(x,t) andβ(x,t). Its applications in anomalous diffusion modeling can be found in the reference.[67][70][71]

Structural damping models

[edit]

Fractional derivatives are used to modelviscoelasticdamping in certain types of materials like polymers.[12]

PID controllers

[edit]

GeneralizingPID controllers to use fractional orders can increase their degree of freedom. The new equation relating thecontrol variableu(t) in terms of a measurederror valuee(t) can be written asu(t)=Kpe(t)+KiDtαe(t)+KdDtβe(t){\displaystyle u(t)=K_{\mathrm {p} }e(t)+K_{\mathrm {i} }D_{t}^{-\alpha }e(t)+K_{\mathrm {d} }D_{t}^{\beta }e(t)}

whereα andβ are positive fractional orders andKp,Ki, andKd, all non-negative, denote the coefficients for theproportional,integral, andderivative terms, respectively (sometimes denotedP,I, andD).[72]

Acoustic wave equations for complex media

[edit]

The propagation of acoustical waves in complex media, such as in biological tissue, commonly implies attenuation obeying a frequency power-law. This kind of phenomenon may be described using a causal wave equation which incorporates fractional time derivatives:2u1c022ut2+τσααtα2uτϵβc02β+2utβ+2=0.{\displaystyle \nabla ^{2}u-{\dfrac {1}{c_{0}^{2}}}{\frac {\partial ^{2}u}{\partial t^{2}}}+\tau _{\sigma }^{\alpha }{\dfrac {\partial ^{\alpha }}{\partial t^{\alpha }}}\nabla ^{2}u-{\dfrac {\tau _{\epsilon }^{\beta }}{c_{0}^{2}}}{\dfrac {\partial ^{\beta +2}u}{\partial t^{\beta +2}}}=0\,.}

See also Holm & Näsholm (2011)[73] and the references therein. Such models are linked to the commonly recognized hypothesis that multiple relaxation phenomena give rise to the attenuation measured in complex media. This link is further described in Näsholm & Holm (2011b)[74] and in the survey paper,[75] as well as theAcoustic attenuation article. See Holm & Nasholm (2013)[76] for a paper which compares fractional wave equations which model power-law attenuation. This book on power-law attenuation also covers the topic in more detail.[77]

Pandey and Holm gave a physical meaning to fractional differential equations by deriving them from physical principles and interpreting the fractional-order in terms of the parameters of the acoustical media, example in fluid-saturated granular unconsolidated marine sediments.[78] Interestingly, Pandey and Holm derivedLomnitz's law inseismology and Nutting's law innon-Newtonian rheology using the framework of fractional calculus.[79] Nutting's law was used to model the wave propagation in marine sediments using fractional derivatives.[78]

Fractional Schrödinger equation in quantum theory

[edit]

Thefractional Schrödinger equation, a fundamental equation offractional quantum mechanics, has the following form:[80][81]iψ(r,t)t=Dα(2Δ)α2ψ(r,t)+V(r,t)ψ(r,t).{\displaystyle i\hbar {\frac {\partial \psi (\mathbf {r} ,t)}{\partial t}}=D_{\alpha }\left(-\hbar ^{2}\Delta \right)^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t)\,.}

where the solution of the equation is thewavefunctionψ(r,t) – the quantum mechanicalprobability amplitude for the particle to have a givenposition vectorr at any given timet, andħ is thereduced Planck constant. Thepotential energy functionV(r,t) depends on the system.

Further,Δ=2r2{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}} is theLaplace operator, andDα is a scale constant with physicaldimension[Dα] = J1 −α·mα·sα = kg1 −α·m2 −α·sα − 2, (atα = 2,D2=12m{\textstyle D_{2}={\frac {1}{2m}}} for a particle of massm), and the operator(−ħ2Δ)α/2 is the 3-dimensional fractional quantum Riesz derivative defined by(2Δ)α2ψ(r,t)=1(2π)3d3peipr|p|αφ(p,t).{\displaystyle (-\hbar ^{2}\Delta )^{\frac {\alpha }{2}}\psi (\mathbf {r} ,t)={\frac {1}{(2\pi \hbar )^{3}}}\int d^{3}pe^{{\frac {i}{\hbar }}\mathbf {p} \cdot \mathbf {r} }|\mathbf {p} |^{\alpha }\varphi (\mathbf {p} ,t)\,.}

The indexα in the fractional Schrödinger equation is the Lévy index,1 <α ≤ 2.

Variable-order fractional Schrödinger equation

[edit]

As a natural generalization of thefractional Schrödinger equation, the variable-order fractional Schrödinger equation has been exploited to study fractional quantum phenomena:[82]iψα(r)(r,t)tα(r)=(2Δ)β(t)2ψ(r,t)+V(r,t)ψ(r,t),{\displaystyle i\hbar {\frac {\partial \psi ^{\alpha (\mathbf {r} )}(\mathbf {r} ,t)}{\partial t^{\alpha (\mathbf {r} )}}}=\left(-\hbar ^{2}\Delta \right)^{\frac {\beta (t)}{2}}\psi (\mathbf {r} ,t)+V(\mathbf {r} ,t)\psi (\mathbf {r} ,t),}

whereΔ=2r2{\textstyle \Delta ={\frac {\partial ^{2}}{\partial \mathbf {r} ^{2}}}} is theLaplace operator and the operator(−ħ2Δ)β(t)/2 is the variable-order fractional quantum Riesz derivative.

See also

[edit]

Other fractional theories

[edit]

Notes

[edit]
  1. ^The symbolJ{\displaystyle J} is commonly used instead of the intuitiveI{\displaystyle I} in order to avoid confusion with other concepts identified by similarI{\displaystyle I}–likeglyphs, such asidentities.

References

[edit]
  1. ^Daniel Zwillinger (12 May 2014).Handbook of Differential Equations. Elsevier Science.ISBN 978-1-4832-2096-3.
  2. ^Katugampola, Udita N. (15 October 2014)."A New Approach To Generalized Fractional Derivatives"(PDF).Bulletin of Mathematical Analysis and Applications.6 (4):1–15.arXiv:1106.0965.
  3. ^abMiller, Kenneth S.; Ross, Bertram (1993).An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley. pp. 1–2.ISBN 978-0-471-58884-9.
  4. ^Niels Henrik Abel (1823)."Oplösning af et Par Opgaver ved Hjelp af bestemte Integraler (Solution de quelques problèmes à l'aide d'intégrales définies, Solution of a couple of problems by means of definite integrals)"(PDF).Magazin for Naturvidenskaberne. Kristiania (Oslo):55–68.
  5. ^Podlubny, Igor; Magin, Richard L.; Trymorush, Irina (2017). "Niels Henrik Abel and the birth of fractional calculus".Fractional Calculus and Applied Analysis.20 (5):1068–1075.arXiv:1802.05441.doi:10.1515/fca-2017-0057.S2CID 119664694.
  6. ^Liouville, Joseph (1832),"Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions",Journal de l'École Polytechnique,13, Paris:1–69.
  7. ^Liouville, Joseph (1832),"Mémoire sur le calcul des différentielles à indices quelconques",Journal de l'École Polytechnique,13, Paris:71–162.
  8. ^For the history of the subject, see the thesis (in French): Stéphane Dugowson,Les différentielles métaphysiques (histoire et philosophie de la généralisation de l'ordre de dérivation), Thèse, Université Paris Nord (1994)
  9. ^For a historical review of the subject up to the beginning of the 20th century, see:Bertram Ross (1977). "The development of fractional calculus 1695–1900".Historia Mathematica.4:75–89.doi:10.1016/0315-0860(77)90039-8.S2CID 122146887.
  10. ^Valério, Duarte; Machado, José;Kiryakova, Virginia (2014-01-01). "Some pioneers of the applications of fractional calculus".Fractional Calculus and Applied Analysis.17 (2):552–578.doi:10.2478/s13540-014-0185-1.hdl:10400.22/5491.ISSN 1314-2224.S2CID 121482200.
  11. ^Hermann, Richard (2014).Fractional Calculus: An Introduction for Physicists (2nd ed.). New Jersey: World Scientific Publishing. p. 46.Bibcode:2014fcip.book.....H.doi:10.1142/8934.ISBN 978-981-4551-07-6.
  12. ^abMainardi, Francesco (May 2010).Fractional Calculus and Waves in Linear Viscoelasticity.Imperial College Press.doi:10.1142/p614.ISBN 978-1-84816-329-4.S2CID 118719247.
  13. ^Hadamard, J. (1892)."Essai sur l'étude des fonctions données par leur développement de Taylor"(PDF).Journal de Mathématiques Pures et Appliquées.4 (8):101–186.
  14. ^Kilbas, A. Anatolii Aleksandrovich; Srivastava, Hari Mohan; Trujillo, Juan J. (2006).Theory And Applications of Fractional Differential Equations. Elsevier. p. 75 (Property 2.4).ISBN 978-0-444-51832-3.
  15. ^Mostafanejad, Mohammad (2021)."Fractional paradigms in quantum chemistry".International Journal of Quantum Chemistry.121 (20) e26762.doi:10.1002/qua.26762.
  16. ^Al-Raeei, Marwan (2021)."Applying fractional quantum mechanics to systems with electrical screening effects".Chaos, Solitons & Fractals.150 (September) 111209.Bibcode:2021CSF...15011209A.doi:10.1016/j.chaos.2021.111209.
  17. ^Herrmann, Richard, ed. (2014).Fractional Calculus: An Introduction for Physicists (2nd ed.). New Jersey: World Scientific Publishing Co. p. 54[verification needed].Bibcode:2014fcip.book.....H.doi:10.1142/8934.ISBN 978-981-4551-07-6.
  18. ^Caputo, Michele (1967)."Linear model of dissipation whoseQ is almost frequency independent. II".Geophysical Journal International.13 (5):529–539.Bibcode:1967GeoJ...13..529C.doi:10.1111/j.1365-246x.1967.tb02303.x..
  19. ^Caputo, Michele; Fabrizio, Mauro (2015)."A new Definition of Fractional Derivative without Singular Kernel".Progress in Fractional Differentiation and Applications.1 (2):73–85. Retrieved7 August 2020.
  20. ^abcAlgahtani, Obaid Jefain Julaighim (2016-08-01)."Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model".Chaos, Solitons & Fractals. Nonlinear Dynamics and Complexity.89:552–559.Bibcode:2016CSF....89..552A.doi:10.1016/j.chaos.2016.03.026.ISSN 0960-0779.
  21. ^abAtangana, Abdon; Baleanu, Dumitru (2016)."New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model".Thermal Science.20 (2):763–769.arXiv:1602.03408.doi:10.2298/TSCI160111018A.ISSN 0354-9836.
  22. ^Chen, YangQuan; Li, Changpin; Ding, Hengfei (22 May 2014)."High-Order Algorithms for Riesz Derivative and Their Applications".Abstract and Applied Analysis.2014:1–17.doi:10.1155/2014/653797.
  23. ^Bayın, Selçuk Ş. (5 December 2016). "Definition of the Riesz derivative and its application to space fractional quantum mechanics".Journal of Mathematical Physics.57 (12) 123501.arXiv:1612.03046.Bibcode:2016JMP....57l3501B.doi:10.1063/1.4968819.S2CID 119099201.
  24. ^Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. (2014-07-01)."A new definition of fractional derivative".Journal of Computational and Applied Mathematics.264:65–70.doi:10.1016/j.cam.2014.01.002.ISSN 0377-0427.
  25. ^abcGao, Feng; Chi, Chunmei (2020)."Improvement on Conformable Fractional Derivative and Its Applications in Fractional Differential Equations".Journal of Function Spaces.2020 (1) 5852414.doi:10.1155/2020/5852414.ISSN 2314-8888.
  26. ^Hasanah, Dahliatul (2022-10-31)."On continuity properties of the improved conformable fractional derivatives".Jurnal Fourier.11 (2):88–96.doi:10.14421/fourier.2022.112.88-96.ISSN 2541-5239.
  27. ^abcdefghijklde Oliveira, Edmundo Capelas; Tenreiro Machado, José António (2014-06-10)."A Review of Definitions for Fractional Derivatives and Integral".Mathematical Problems in Engineering.2014 238459:1–6.doi:10.1155/2014/238459.hdl:10400.22/5497.
  28. ^abcAslan, İsmail (2015-01-15). "An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation".Mathematical Methods in the Applied Sciences.38 (1):27–36.Bibcode:2015MMAS...38...27A.doi:10.1002/mma.3047.hdl:11147/5562.S2CID 120881978.
  29. ^Ma, Li; Li, Changpin (2017-05-11). "On hadamard fractional calculus".Fractals.25 (3):1750033–2980.Bibcode:2017Fract..2550033M.doi:10.1142/S0218348X17500335.ISSN 0218-348X.
  30. ^Miller, Kenneth S. (1975). "The Weyl fractional calculus". In Ross, Bertram (ed.).Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, June 1974. Lecture Notes in Mathematics. Vol. 457. Springer. pp. 80–89.doi:10.1007/bfb0067098.ISBN 978-3-540-69975-0.
  31. ^Ferrari, Fausto (January 2018)."Weyl and Marchaud Derivatives: A Forgotten History".Mathematics.6 (1): 6.arXiv:1711.08070.doi:10.3390/math6010006.
  32. ^Khalili Golmankhaneh, Alireza (2022).Fractal Calculus and its Applications. Singapore: World Scientific Pub Co Inc. p. 328.doi:10.1142/12988.ISBN 978-981-126-110-7.S2CID 248575991.
  33. ^Anderson, Douglas R.; Ulness, Darin J. (2015-06-01). "Properties of the Katugampola fractional derivative with potential application in quantum mechanics".Journal of Mathematical Physics.56 (6): 063502.Bibcode:2015JMP....56f3502A.doi:10.1063/1.4922018.ISSN 0022-2488.
  34. ^Caputo, Michele; Fabrizio, Mauro (2016-01-01). "Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels".Progress in Fractional Differentiation and Applications.2 (1):1–11.doi:10.18576/pfda/020101.ISSN 2356-9336.
  35. ^Diethelm, Kai; Kiryakova, Virginia; Luchko, Yuri; Tenreiro Machado, J. A.; Tarasov, Vasily E. (2020). "Trends, directions for further research, and some open problems of fractional calculus".Nonlinear Dynamics.107:3245–3270.doi:10.1007/s11071-021-07158-9.
  36. ^Luchko, Yuri (ed.).Fractional Integrals and Derivatives: “True” versus “False”.MDPI.ISBN 978-3-0365-0495-7.
  37. ^Giusti, Andrea (2018). "A comment on some new definitions of fractional derivative".Nonlinear Dynamics.93:1757–1763.doi:10.1007/s11071-018-4289-8.
  38. ^Diethelm, Kai; Garrappa, Roberto; Giusti, Andrea; Stynes, Martin (2020). "Why Fractional derivatives with nonsingular kernels should not be used".Fractional Calculus and Applied Analysis.23:610–634.doi:10.1515/fca-2020-0032.
  39. ^Hanyga, Andrzej (2020). "A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel".Fractional Calculus and Applied Analysis.23:211–223.doi:10.1515/fca-2020-0008.
  40. ^ C. F. M. Coimbra (2003) "Mechanics with Variable Order Differential Equations," Annalen der Physik (12), No. 11-12, pp. 692-703.
  41. ^L. E. S. Ramirez, and C. F. M. Coimbra (2007) "A Variable Order Constitutive Relation for Viscoelasticity"– Annalen der Physik (16) 7-8, pp. 543-552.
  42. ^H. T. C. Pedro, M. H. Kobayashi, J. M. C. Pereira, and C. F. M. Coimbra (2008) "Variable Order Modeling of Diffusive-Convective Effects on the Oscillatory Flow Past a Sphere" – Journal of Vibration and Control, (14) 9-10, pp. 1569-1672.
  43. ^G. Diaz, and C. F. M. Coimbra (2009) "Nonlinear Dynamics and Control of a Variable Order Oscillator with Application to the van der Pol Equation" – Nonlinear Dynamics, 56, pp. 145—157.
  44. ^L. E. S. Ramirez, and C. F. M. Coimbra (2010) "On the Selection and Meaning of Variable Order Operators for Dynamic Modeling"– International Journal of Differential Equations Vol. 2010, Article ID 846107.
  45. ^ L. E. S. Ramirez and C. F. M. Coimbra (2011) "On the Variable Order Dynamics of the Nonlinear Wake Caused by a Sedimenting Particle," Physica D (240) 13, pp. 1111-1118.
  46. ^E. A. Lim, M. H. Kobayashi and C. F. M. Coimbra (2014) "Fractional Dynamics of Tethered Particles in Oscillatory Stokes Flows," Journal of Fluid Mechanics (746) pp. 606-625.
  47. ^J. Orosco and C. F. M. Coimbra (2016) "On the Control and Stability of Variable Order Mechanical Systems" Nonlinear Dynamics, (86:1), pp. 695–710.
  48. ^E. C. de Oliveira, J. A. Tenreiro Machado (2014), "A Review of Definitions for Fractional Derivatives and Integral", Mathematical Problems in Engineering, vol. 2014, Article ID 238459.
  49. ^S. Shen, F. Liu, J. Chen, I. Turner, and V. Anh (2012) "Numerical techniques for the variable order time fractional diffusion equation" Applied Mathematics and ComputationVolume 218, Issue 22, pp. 10861-10870.
  50. ^H. Zhang and S. Shen, "The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equation," Numer. Math. Theor. Meth. Appl. Vol. 6, No. 4, pp. 571-585.
  51. ^H. Zhang, F. Liu, M. S. Phanikumar, and M. M. Meerschaert (2013) "A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model," Computers & Mathematics with Applications, 66, issue 5, pp. 693–701.
  52. ^ C. F. M. Coimbra "Methods of using generalized orderdifferentiation and integration of input variables to forecasttrends," U.S. Patent Application 13,641,083 (2013).
  53. ^J. Orosco and C. F. M. Coimbra (2018) "Variable-order Modeling of Nonlocal Emergence in Many-body Systems: Application to Radiative Dispersion," Physical Review E (98), 032208.
  54. ^"Fractional Calculus".MathPages.com.
  55. ^Závada, P. Operator of Fractional Derivative in the Complex Plane. Comm Math Phys 192, 261–285 (1998).https://doi.org/10.1007/s002200050299
  56. ^Erdélyi, Arthur (1950–1951). "On some functional transformations".Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino.10:217–234.MR 0047818.
  57. ^Kober, Hermann (1940). "On fractional integrals and derivatives".The Quarterly Journal of Mathematics. os-11 (1):193–211.Bibcode:1940QJMat..11..193K.doi:10.1093/qmath/os-11.1.193.
  58. ^Kober (1940);Erdélyi (1950–1951).
  59. ^Wheatcraft, Stephen W.; Meerschaert, Mark M. (October 2008)."Fractional conservation of mass"(PDF).Advances in Water Resources.31 (10):1377–1381.Bibcode:2008AdWR...31.1377W.doi:10.1016/j.advwatres.2008.07.004.ISSN 0309-1708.
  60. ^Oldham, K. B.Analytical Chemistry 44(1)1972 196-198.
  61. ^Pospíšil, L. et al.Electrochimica Acta 3002019 284-289.
  62. ^Atangana, Abdon; Bildik, Necdet (2013)."The Use of Fractional Order Derivative to Predict the Groundwater Flow".Mathematical Problems in Engineering.2013:1–9.doi:10.1155/2013/543026.
  63. ^Atangana, Abdon; Vermeulen, P. D. (2014)."Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation".Abstract and Applied Analysis.2014:1–11.doi:10.1155/2014/381753.
  64. ^Benson, D.; Wheatcraft, S.; Meerschaert, M. (2000). "Application of a fractional advection-dispersion equation".Water Resources Research.36 (6):1403–1412.Bibcode:2000WRR....36.1403B.CiteSeerX 10.1.1.1.4838.doi:10.1029/2000wr900031.S2CID 7669161.
  65. ^Benson, D.; Wheatcraft, S.; Meerschaert, M. (2000)."The fractional-order governing equation of Lévy motion".Water Resources Research.36 (6):1413–1423.Bibcode:2000WRR....36.1413B.doi:10.1029/2000wr900032.S2CID 16579630.
  66. ^Wheatcraft, Stephen W.; Meerschaert, Mark M.; Schumer, Rina; Benson, David A. (2001-01-01). "Fractional Dispersion, Lévy Motion, and the MADE Tracer Tests".Transport in Porous Media.42 (1–2):211–240.Bibcode:2001TPMed..42..211B.CiteSeerX 10.1.1.58.2062.doi:10.1023/A:1006733002131.ISSN 1573-1634.S2CID 189899853.
  67. ^abAtangana, Abdon; Kilicman, Adem (2014)."On the Generalized Mass Transport Equation to the Concept of Variable Fractional Derivative".Mathematical Problems in Engineering.2014 542809: 9.doi:10.1155/2014/542809.
  68. ^Metzler, R.; Klafter, J. (2000). "The random walk's guide to anomalous diffusion: a fractional dynamics approach".Phys. Rep.339 (1):1–77.Bibcode:2000PhR...339....1M.doi:10.1016/s0370-1573(00)00070-3.
  69. ^Mainardi, F.;Luchko, Y.; Pagnini, G. (2001). "The fundamental solution of the space-time fractional diffusion equation".Fractional Calculus and Applied Analysis.4 (2):153–192.arXiv:cond-mat/0702419.Bibcode:2007cond.mat..2419M.
  70. ^Gorenflo, Rudolf; Mainardi, Francesco (2007). "Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk". In Rangarajan, G.; Ding, M. (eds.).Processes with Long-Range Correlations. Lecture Notes in Physics. Vol. 621. pp. 148–166.arXiv:0709.3990.Bibcode:2003LNP...621..148G.doi:10.1007/3-540-44832-2_8.ISBN 978-3-540-40129-2.S2CID 14946568.
  71. ^Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan (2017)."Scaling laws of passive-scalar diffusion in the interstellar medium".Monthly Notices of the Royal Astronomical Society.467 (2):2421–2429.arXiv:1610.06590.Bibcode:2017MNRAS.467.2421C.doi:10.1093/mnras/stx261.S2CID 20203131.
  72. ^Tenreiro Machado, J. A.; Silva, Manuel F.; Barbosa, Ramiro S.; Jesus, Isabel S.; Reis, Cecília M.; Marcos, Maria G.; Galhano, Alexandra F. (2010)."Some Applications of Fractional Calculus in Engineering".Mathematical Problems in Engineering.2010 639801:1–34.doi:10.1155/2010/639801.hdl:10400.22/13143.
  73. ^Holm, S.; Näsholm, S. P. (2011). "A causal and fractional all-frequency wave equation for lossy media".Journal of the Acoustical Society of America.130 (4):2195–2201.Bibcode:2011ASAJ..130.2195H.doi:10.1121/1.3631626.hdl:10852/103311.PMID 21973374.S2CID 7804006.
  74. ^Näsholm, S. P.; Holm, S. (2011). "Linking multiple relaxation, power-law attenuation, and fractional wave equations".Journal of the Acoustical Society of America.130 (5):3038–3045.Bibcode:2011ASAJ..130.3038N.doi:10.1121/1.3641457.hdl:10852/103312.PMID 22087931.S2CID 10376751.
  75. ^Näsholm, S. P.; Holm, S. (2012). "On a Fractional Zener Elastic Wave Equation".Fract. Calc. Appl. Anal.16:26–50.arXiv:1212.4024.doi:10.2478/s13540-013-0003-1.S2CID 120348311.
  76. ^Holm, S.; Näsholm, S. P. (2013). "Comparison of fractional wave equations for power law attenuation in ultrasound and elastography".Ultrasound in Medicine & Biology.40 (4):695–703.arXiv:1306.6507.CiteSeerX 10.1.1.765.120.doi:10.1016/j.ultrasmedbio.2013.09.033.PMID 24433745.S2CID 11983716.
  77. ^Holm, S. (2019).Waves with Power-Law Attenuation. Springer and Acoustical Society of America Press.Bibcode:2019wpla.book.....H.doi:10.1007/978-3-030-14927-7.ISBN 978-3-030-14926-0.S2CID 145880744.
  78. ^abPandey, Vikash; Holm, Sverre (2016-12-01). "Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations".The Journal of the Acoustical Society of America.140 (6):4225–4236.arXiv:1612.05557.Bibcode:2016ASAJ..140.4225P.doi:10.1121/1.4971289.ISSN 0001-4966.PMID 28039990.S2CID 29552742.
  79. ^Pandey, Vikash; Holm, Sverre (2016-09-23)."Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity".Physical Review E.94 (3) 032606.Bibcode:2016PhRvE..94c2606P.doi:10.1103/PhysRevE.94.032606.hdl:10852/53091.PMID 27739858.
  80. ^Laskin, N. (2002). "Fractional Schrodinger equation".Phys. Rev. E.66 (5) 056108.arXiv:quant-ph/0206098.Bibcode:2002PhRvE..66e6108L.CiteSeerX 10.1.1.252.6732.doi:10.1103/PhysRevE.66.056108.PMID 12513557.S2CID 7520956.
  81. ^Laskin, Nick (2018).Fractional Quantum Mechanics.CiteSeerX 10.1.1.247.5449.doi:10.1142/10541.ISBN 978-981-322-379-0.
  82. ^Bhrawy, A.H.; Zaky, M.A. (2017). "An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations".Applied Numerical Mathematics.111:197–218.doi:10.1016/j.apnum.2016.09.009.

Further reading

[edit]

Articles regarding the history of fractional calculus

[edit]

Books

[edit]

External links

[edit]
Classification
Operations
Attributes of variables
Relation to processes
Solutions
Existence/uniqueness
Solution topics
Solution methods
Examples
Mathematicians
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fractional_calculus&oldid=1324392978"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp