Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Fractional Fourier transform

From Wikipedia, the free encyclopedia
Mathematical operation

Inmathematics, in the area ofharmonic analysis, thefractional Fourier transform (FRFT) is a family oflinear transformations generalizing theFourier transform. It can be thought of as the Fourier transform to then-th power, wheren need not be aninteger — thus, it can transform a function to anyintermediate domain between time andfrequency. Its applications range fromfilter design andsignal analysis tophase retrieval andpattern recognition.

The FRFT can be used to define fractionalconvolution,correlation, and other operations, and can also be further generalized into thelinear canonical transformation (LCT). An early definition of the FRFT was introduced byCondon,[1] by solving for theGreen's function for phase-space rotations, and also by Namias,[2] generalizing work ofWiener[3] onHermite polynomials.

However, it was not widely recognized in signal processing until it was independently reintroduced around 1993 by several groups.[4] Since then, there has been a surge of interest in extending Shannon's sampling theorem[5][6] for signals which are band-limited in the Fractional Fourier domain.

A completely different meaning for "fractional Fourier transform" was introduced by Bailey and Swartztrauber[7] as essentially another name for az-transform, and in particular for the case that corresponds to adiscrete Fourier transform shifted by a fractional amount in frequency space (multiplying the input by a linearchirp) and evaluating at a fractional set of frequency points (e.g. considering only a small portion of the spectrum). (Such transforms can be evaluated efficiently byBluestein's FFT algorithm.) This terminology has fallen out of use in most of the technical literature, however, in preference to the FRFT. The remainder of this article describes the FRFT.

Introduction

[edit]

The continuousFourier transformF{\displaystyle {\mathcal {F}}} of a functionf:RC{\displaystyle f:\mathbb {R} \mapsto \mathbb {C} } is aunitary operator ofL2{\displaystyle L^{2}} space that maps the functionf{\displaystyle f} to its frequential versionf^{\displaystyle {\hat {f}}} (all expressions are taken in theL2{\displaystyle L^{2}} sense, rather than pointwise):

f^(ξ)=f(x) e2πixξdx{\displaystyle {\hat {f}}(\xi )=\int _{-\infty }^{\infty }f(x)\ e^{-2\pi ix\xi }\,\mathrm {d} x}

andf{\displaystyle f} is determined byf^{\displaystyle {\hat {f}}} via the inverse transformF1,{\displaystyle {\mathcal {F}}^{-1}\,,}

f(x)=f^(ξ) e2πiξxdξ.{\displaystyle f(x)=\int _{-\infty }^{\infty }{\hat {f}}(\xi )\ e^{2\pi i\xi x}\,\mathrm {d} \xi \,.}

Let us study itsn-th iteratedFn{\displaystyle {\mathcal {F}}^{n}} defined byFn[f]=F[Fn1[f]]{\displaystyle {\mathcal {F}}^{n}[f]={\mathcal {F}}[{\mathcal {F}}^{n-1}[f]]} andFn=(F1)n{\displaystyle {\mathcal {F}}^{-n}=({\mathcal {F}}^{-1})^{n}} whenn is a non-negative integer, andF0[f]=f{\displaystyle {\mathcal {F}}^{0}[f]=f}. Their sequence is finite sinceF{\displaystyle {\mathcal {F}}} is a 4-periodicautomorphism: for every functionf{\displaystyle f},F4[f]=f{\displaystyle {\mathcal {F}}^{4}[f]=f}.

More precisely, let us introduce theparity operatorP{\displaystyle {\mathcal {P}}} that invertsx{\displaystyle x},P[f]:xf(x){\displaystyle {\mathcal {P}}[f]\colon x\mapsto f(-x)}. Then the following properties hold:F0=Id,F1=F,F2=P,F4=Id{\displaystyle {\mathcal {F}}^{0}=\mathrm {Id} ,\qquad {\mathcal {F}}^{1}={\mathcal {F}},\qquad {\mathcal {F}}^{2}={\mathcal {P}},\qquad {\mathcal {F}}^{4}=\mathrm {Id} }F3=F1=PF=FP.{\displaystyle {\mathcal {F}}^{3}={\mathcal {F}}^{-1}={\mathcal {P}}\circ {\mathcal {F}}={\mathcal {F}}\circ {\mathcal {P}}.}

The FRFT provides a family of linear transforms that further extends this definition to handle non-integer powersn=2α/π{\displaystyle n=2\alpha /\pi } of the FT.

Definition

[edit]

Note: some authors write the transform in terms of the "ordera" instead of the "angleα", in which case theα is usuallya timesπ/2. Although these two forms are equivalent, one must be careful about which definition the author uses.

For anyrealα, theα-angle fractional Fourier transform of a function ƒ is denoted byFα(u){\displaystyle {\mathcal {F}}_{\alpha }(u)} and defined by:[8][9][10]

Fα[f](u)=1icot(α)eiπcot(α)u2e2πi(csc(α)uxcot(α)2x2)f(x)dx{\displaystyle {\mathcal {F}}_{\alpha }[f](u)={\sqrt {1-i\cot(\alpha )}}e^{i\pi \cot(\alpha )u^{2}}\int _{-\infty }^{\infty }e^{-2\pi i\left(\csc(\alpha )ux-{\frac {\cot(\alpha )}{2}}x^{2}\right)}f(x)\,\mathrm {d} x}

Forα =π/2, this becomes precisely the definition of the continuous Fourier transform, and forα = −π/2 it is the definition of the inverse continuous Fourier transform.

The FRFT argumentu is neither a spatial onex nor a frequencyξ. We will see why it can be interpreted as linear combination of both coordinates(x,ξ). When we want to distinguish theα-angular fractional domain, we will letxa{\displaystyle x_{a}} denote the argument ofFα{\displaystyle {\mathcal {F}}_{\alpha }}.

Remark: with the angular frequency ω convention instead of the frequency one, the FRFT formula is theMehler kernel,Fα(f)(ω)=1icot(α)2πeicot(α)ω2/2eicsc(α)ωt+icot(α)t2/2f(t)dt .{\displaystyle {\mathcal {F}}_{\alpha }(f)(\omega )={\sqrt {\frac {1-i\cot(\alpha )}{2\pi }}}e^{i\cot(\alpha )\omega ^{2}/2}\int _{-\infty }^{\infty }e^{-i\csc(\alpha )\omega t+i\cot(\alpha )t^{2}/2}f(t)\,dt~.}

Properties

[edit]

Theα-th order fractional Fourier transform operator,Fα{\displaystyle {\mathcal {F}}_{\alpha }}, has the properties:

Additivity

[edit]

For any real anglesα, β,Fα+β=FαFβ=FβFα.{\displaystyle {\mathcal {F}}_{\alpha +\beta }={\mathcal {F}}_{\alpha }\circ {\mathcal {F}}_{\beta }={\mathcal {F}}_{\beta }\circ {\mathcal {F}}_{\alpha }.}

Linearity

[edit]

Fα[kbkfk(u)]=kbkFα[fk(u)]{\displaystyle {\mathcal {F}}_{\alpha }\left[\sum \nolimits _{k}b_{k}f_{k}(u)\right]=\sum \nolimits _{k}b_{k}{\mathcal {F}}_{\alpha }\left[f_{k}(u)\right]}

Integer Orders

[edit]

Ifα is an integer multiple ofπ/2{\displaystyle \pi /2}, then:Fα=Fkπ/2=Fk=(F)k{\displaystyle {\mathcal {F}}_{\alpha }={\mathcal {F}}_{k\pi /2}={\mathcal {F}}^{k}=({\mathcal {F}})^{k}}

Moreover, it has following relation

F2=PP[f(u)]=f(u)F3=F1=(F)1F4=F0=IFi=Fjijmod4{\displaystyle {\begin{aligned}{\mathcal {F}}^{2}&={\mathcal {P}}&&{\mathcal {P}}[f(u)]=f(-u)\\{\mathcal {F}}^{3}&={\mathcal {F}}^{-1}=({\mathcal {F}})^{-1}\\{\mathcal {F}}^{4}&={\mathcal {F}}^{0}={\mathcal {I}}\\{\mathcal {F}}^{i}&={\mathcal {F}}^{j}&&i\equiv j\mod 4\end{aligned}}}

Inverse

[edit]

(Fα)1=Fα{\displaystyle ({\mathcal {F}}_{\alpha })^{-1}={\mathcal {F}}_{-\alpha }}

Commutativity

[edit]

Fα1Fα2=Fα2Fα1{\displaystyle {\mathcal {F}}_{\alpha _{1}}{\mathcal {F}}_{\alpha _{2}}={\mathcal {F}}_{\alpha _{2}}{\mathcal {F}}_{\alpha _{1}}}

Associativity

[edit]

(Fα1Fα2)Fα3=Fα1(Fα2Fα3){\displaystyle \left({\mathcal {F}}_{\alpha _{1}}{\mathcal {F}}_{\alpha _{2}}\right){\mathcal {F}}_{\alpha _{3}}={\mathcal {F}}_{\alpha _{1}}\left({\mathcal {F}}_{\alpha _{2}}{\mathcal {F}}_{\alpha _{3}}\right)}

Unitarity

[edit]

f(t)g(t)dt=fα(u)gα(u)du{\displaystyle \int f(t)g^{*}(t)dt=\int f_{\alpha }(u)g_{\alpha }^{*}(u)du}

Time Reversal

[edit]

FαP=PFα{\displaystyle {\mathcal {F}}_{\alpha }{\mathcal {P}}={\mathcal {P}}{\mathcal {F}}_{\alpha }}Fα[f(u)]=fα(u){\displaystyle {\mathcal {F}}_{\alpha }[f(-u)]=f_{\alpha }(-u)}

Transform of a shifted function

[edit]
See also:Generalizations of Pauli matrices § Construction: The clock and shift matrices

Define the shift and the phase shift operators as follows:

SH(u0)[f(u)]=f(u+u0)PH(v0)[f(u)]=ej2πv0uf(u){\displaystyle {\begin{aligned}{\mathcal {SH}}(u_{0})[f(u)]&=f(u+u_{0})\\{\mathcal {PH}}(v_{0})[f(u)]&=e^{j2\pi v_{0}u}f(u)\end{aligned}}}

ThenFαSH(u0)=ejπu02sinαcosαPH(u0sinα)SH(u0cosα)Fα,{\displaystyle {\begin{aligned}{\mathcal {F}}_{\alpha }{\mathcal {SH}}(u_{0})&=e^{j\pi u_{0}^{2}\sin \alpha \cos \alpha }{\mathcal {PH}}(u_{0}\sin \alpha ){\mathcal {SH}}(u_{0}\cos \alpha ){\mathcal {F}}_{\alpha },\end{aligned}}}

that is,

Fα[f(u+u0)]=ejπu02sinαcosαej2πuu0sinαfα(u+u0cosα){\displaystyle {\begin{aligned}{\mathcal {F}}_{\alpha }[f(u+u_{0})]&=e^{j\pi u_{0}^{2}\sin \alpha \cos \alpha }e^{j2\pi uu_{0}\sin \alpha }f_{\alpha }(u+u_{0}\cos \alpha )\end{aligned}}}

Transform of a scaled function

[edit]

Define the scaling and chirp multiplication operators as follows:M(M)[f(u)]=|M|12f(uM)Q(q)[f(u)]=ejπqu2f(u){\displaystyle {\begin{aligned}M(M)[f(u)]&=|M|^{-{\frac {1}{2}}}f\left({\tfrac {u}{M}}\right)\\Q(q)[f(u)]&=e^{-j\pi qu^{2}}f(u)\end{aligned}}}

Then,FαM(M)=Q(cot(1cos2αcos2αα))×M(sinαMsinα)FαFα[|M|12f(uM)]=1jcotα1jM2cotαejπu2cot(1cos2αcos2αα)×fa(Musinαsinα){\displaystyle {\begin{aligned}{\mathcal {F}}_{\alpha }M(M)&=Q\left(-\cot \left({\frac {1-\cos ^{2}\alpha '}{\cos ^{2}\alpha }}\alpha \right)\right)\times M\left({\frac {\sin \alpha }{M\sin \alpha '}}\right){\mathcal {F}}_{\alpha '}\\[6pt]{\mathcal {F}}_{\alpha }\left[|M|^{-{\frac {1}{2}}}f\left({\tfrac {u}{M}}\right)\right]&={\sqrt {\frac {1-j\cot \alpha }{1-jM^{2}\cot \alpha }}}e^{j\pi u^{2}\cot \left({\frac {1-\cos ^{2}\alpha '}{\cos ^{2}\alpha }}\alpha \right)}\times f_{a}\left({\frac {Mu\sin \alpha '}{\sin \alpha }}\right)\end{aligned}}}

Notice that the fractional Fourier transform off(u/M){\displaystyle f(u/M)} cannot be expressed as a scaled version offα(u){\displaystyle f_{\alpha }(u)}. Rather, the fractional Fourier transform off(u/M){\displaystyle f(u/M)} turns out to be a scaled and chirp modulated version offα(u){\displaystyle f_{\alpha '}(u)} whereαα{\displaystyle \alpha \neq \alpha '} is a different order.[11]

Fractional kernel

[edit]

The FRFT is anintegral transformFαf(u)=Kα(u,x)f(x)dx{\displaystyle {\mathcal {F}}_{\alpha }f(u)=\int K_{\alpha }(u,x)f(x)\,\mathrm {d} x}where the α-angle kernel isKα(u,x)={1icot(α)exp(iπ(cot(α)(x2+u2)2csc(α)ux))if α is not a multiple of π,δ(ux)if α is a multiple of 2π,δ(u+x)if α+π is a multiple of 2π,{\displaystyle K_{\alpha }(u,x)={\begin{cases}{\sqrt {1-i\cot(\alpha )}}\exp \left(i\pi (\cot(\alpha )(x^{2}+u^{2})-2\csc(\alpha )ux)\right)&{\mbox{if }}\alpha {\mbox{ is not a multiple of }}\pi ,\\\delta (u-x)&{\mbox{if }}\alpha {\mbox{ is a multiple of }}2\pi ,\\\delta (u+x)&{\mbox{if }}\alpha +\pi {\mbox{ is a multiple of }}2\pi ,\\\end{cases}}}

Here again the special cases are consistent with the limit behavior whenα approaches a multiple ofπ.

The FRFT has the same properties as its kernels :

Related transforms

[edit]

There also exist related fractional generalizations of similar transforms such as thediscrete Fourier transform.

Generalizations

[edit]

The Fourier transform is essentiallybosonic; it works because it is consistent with the superposition principle and related interference patterns. There is also afermionic Fourier transform.[16] These have been generalized into asupersymmetric FRFT, and a supersymmetricRadon transform.[16] There is also a fractional Radon transform, asymplectic FRFT, and a symplecticwavelet transform.[17] Becausequantum circuits are based onunitary operations, they are useful for computingintegral transforms as the latter are unitary operators on afunction space. A quantum circuit has been designed which implements the FRFT.[18]

Interpretation

[edit]

Time-frequency analysis

[edit]
Further information:Linear canonical transformation
A rect function turns into a sinc function as the order of the fractional Fourier transform becomes 1

The usual interpretation of the Fourier transform is as a transformation of a time domain signal into a frequency domain signal. On the other hand, the interpretation of the inverse Fourier transform is as a transformation of a frequency domain signal into a time domain signal. Fractional Fourier transforms transform a signal (either in the time domain or frequency domain) into the domain between time and frequency: it is a rotation in thetime–frequency domain. This perspective is generalized by thelinear canonical transformation, which generalizes the fractional Fourier transform and allows linear transforms of the time–frequency domain other than rotation.

Take the figure below as an example. If the signal in the time domain is rectangular (as below), it becomes asinc function in the frequency domain. But if one applies the fractional Fourier transform to the rectangular signal, the transformation output will be in the domain between time and frequency.

Fractional Fourier transform

The fractional Fourier transform is a rotation operation on atime–frequency distribution. From the definition above, forα = 0, there will be no change after applying the fractional Fourier transform, while forα = π/2, the fractional Fourier transform becomes a plain Fourier transform, which rotates the time–frequency distribution with π/2. For other value of α, the fractional Fourier transform rotates the time–frequency distribution according to α. The following figure shows the results of the fractional Fourier transform with different values of α.

Time/frequency distribution of fractional Fourier transform
See also:Time–frequency analysis

Fresnel and Fraunhofer diffraction

[edit]

The diffraction of light can be calculated using integral transforms. TheFresnel diffraction integral is used to find the near field diffraction pattern. In the far-field limit this equation becomes a Fourier transform to give the equation forFraunhofer diffraction. The fractional Fourier transform is equivalent to the Fresnel diffraction equation.[19][20] When the angleα{\displaystyle \alpha } becomesπ/2{\displaystyle \pi /2}, the fractional Fourier transform is the standard Fourier transform and gives the far-field diffraction pattern. The near-field diffraction maps to values ofα{\displaystyle \alpha } between 0 andπ/2{\displaystyle \pi /2}.

Application

[edit]

Fractional Fourier transform can be used in time frequency analysis andDSP.[21] It is useful to filter noise, but with the condition that it does not overlap with the desired signal in the time–frequency domain. Consider the following example. We cannot apply a filter directly to eliminate the noise, but with the help of the fractional Fourier transform, we can rotate the signal (including the desired signal and noise) first. We then apply a specific filter, which will allow only the desired signal to pass. Thus the noise will be removed completely. Then we use the fractional Fourier transform again to rotate the signal back and we can get the desired signal.

Fractional Fourier transform in DSP

Thus, using just truncation in the time domain, or equivalentlylow-pass filters in the frequency domain, one can cut out anyconvex set in time–frequency space. In contrast, using time domain or frequency domain tools without a fractional Fourier transform would only allow cutting out rectangles parallel to the axes.

Fractional Fourier transforms also have applications in quantum physics. For example, they are used to formulate entropic uncertainty relations,[22] in high-dimensional quantum key distribution schemes with single photons,[23] and in observing spatial entanglement of photon pairs.[24]

They are also useful in the design of optical systems and for optimizing holographic storage efficiency.[25]

See also

[edit]

Other time–frequency transforms:

References

[edit]
  1. ^Condon, Edward U. (1937)."Immersion of the Fourier transform in a continuous group of functional transformations".Proc. Natl. Acad. Sci. USA.23 (3):158–164.Bibcode:1937PNAS...23..158C.doi:10.1073/pnas.23.3.158.PMC 1076889.PMID 16588141.
  2. ^Namias, V. (1980). "The fractional order Fourier transform and its application to quantum mechanics".IMA Journal of Applied Mathematics.25 (3):241–265.doi:10.1093/imamat/25.3.241.
  3. ^Wiener, N. (April 1929). "Hermitian Polynomials and Fourier Analysis".Journal of Mathematics and Physics.8 (1–4):70–73.doi:10.1002/sapm19298170.
  4. ^Almeida, Luís B. (1994). "The fractional Fourier transform and time–frequency representations".IEEE Trans. Signal Process.42 (11):3084–3091.Bibcode:1994ITSP...42.3084A.doi:10.1109/78.330368.S2CID 29757211.
  5. ^Tao, Ran; Deng, Bing; Zhang, Wei-Qiang; Wang, Yue (2008). "Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain".IEEE Transactions on Signal Processing.56 (1):158–171.Bibcode:2008ITSP...56..158T.doi:10.1109/TSP.2007.901666.S2CID 7001222.
  6. ^Bhandari, A.; Marziliano, P. (2010). "Sampling and reconstruction of sparse signals in fractional Fourier domain".IEEE Signal Processing Letters.17 (3):221–224.Bibcode:2010ISPL...17..221B.doi:10.1109/LSP.2009.2035242.hdl:10356/92280.S2CID 11959415.
  7. ^Bailey, D. H.; Swarztrauber, P. N. (1991). "The fractional Fourier transform and applications".SIAM Review.33 (3):389–404.doi:10.1137/1033097. (Note that this article refers to the chirp-z transform variant, not the FRFT.)
  8. ^Formally, this formula is only valid when the input function is in a sufficiently nice space (such as orSchwartz space), and is defined via a density argument in the general case.
  9. ^Missbauer, Andreas (2012).Gabor Frames and the Fractional Fourier Transform(PDF) (MSc).University of Vienna. Archived fromthe original(PDF) on 3 November 2018. Retrieved3 November 2018.
  10. ^Ifα is an integer multiple ofπ, then thecotangent andcosecant functions above diverge. This apparent divergence can be handled by taking thelimit in the sense oftempered distributions, and leads to aDirac delta function in the integrand. This approach is consistent with the intuition that, sinceF2(f)=f(t) ,  Fα (f){\displaystyle {\mathcal {F}}^{2}(f)=f(-t)~,~~{\mathcal {F}}_{\alpha }~(f)} must be simplyf(t) orf(−t) forα aneven or odd multiple ofπ respectively.
  11. ^An elementary recipe, using the contangent function, and its (multi-valued) inverse, forα{\displaystyle \alpha '} in terms ofα{\displaystyle \alpha } andM{\displaystyle M} exists.
  12. ^Candan, Kutay & Ozaktas 2000.
  13. ^Ozaktas, Zalevsky & Kutay 2001, Chapter 6.
  14. ^Somma, Rolando D. (2016). "Quantum simulations of one dimensional quantum systems".Quantum Information and Computation.16:1125–1168.arXiv:1503.06319v2.
  15. ^Shi, Jun; Zhang, NaiTong; Liu, Xiaoping (June 2012). "A novel fractional wavelet transform and its applications".Sci. China Inf. Sci.55 (6):1270–1279.doi:10.1007/s11432-011-4320-x.S2CID 3772011.
  16. ^abDe Bie, Hendrik (1 September 2008). "Fourier transform and related integral transforms in superspace".Journal of Mathematical Analysis and Applications.345 (1):147–164.arXiv:0805.1918.Bibcode:2008JMAA..345..147D.doi:10.1016/j.jmaa.2008.03.047.S2CID 17066592.
  17. ^Fan, Hong-yi; Hu, Li-yun (2009). "Optical transformation from chirplet to fractional Fourier transformation kernel".Journal of Modern Optics.56 (11):1227–1229.arXiv:0902.1800.Bibcode:2009JMOp...56.1227F.doi:10.1080/09500340903033690.S2CID 118463188.
  18. ^Klappenecker, Andreas; Roetteler, Martin (January 2002). "Engineering Functional Quantum Algorithms".Physical Review A.67 (1) 010302.arXiv:quant-ph/0208130.doi:10.1103/PhysRevA.67.010302.S2CID 14501861.
  19. ^Pellat-Finet, Pierre (15 September 1994). "Fresnel diffraction and the fractional-order Fourier transform".Optics Letters.19 (18):1388–1390.Bibcode:1994OptL...19.1388P.doi:10.1364/OL.19.001388.PMID 19855528.
  20. ^Pellat-Finet, Pierre; Bonnet, Georges (15 September 1994). "Fractional order Fourier transform and Fourier optics".Optics Communications.111 (1–2): 141.Bibcode:1994OptCo.111..141P.doi:10.1016/0030-4018(94)90154-6.
  21. ^Sejdić, Ervin; Djurović, Igor; Stanković, LJubiša (June 2011). "Fractional Fourier transform as a signal processing tool: An overview of recent developments".Signal Processing.91 (6):1351–1369.Bibcode:2011SigPr..91.1351S.doi:10.1016/j.sigpro.2010.10.008.S2CID 14203403.
  22. ^Huang, Yichen (24 May 2011). "Entropic uncertainty relations in multidimensional position and momentum spaces".Physical Review A.83 (5) 052124.arXiv:1101.2944.Bibcode:2011PhRvA..83e2124H.doi:10.1103/PhysRevA.83.052124.S2CID 119243096.
  23. ^Walborn, SP; Lemelle, DS; Tasca, DS; Souto Ribeiro, PH (13 June 2008). "Schemes for quantum key distribution with higher-order alphabets using single-photon fractional Fourier optics".Physical Review A.77 (6) 062323.Bibcode:2008PhRvA..77f2323W.doi:10.1103/PhysRevA.77.062323.
  24. ^Tasca, DS; Walborn, SP; Souto Ribeiro, PH; Toscano, F (8 July 2008). "Detection of transverse entanglement in phase space".Physical Review A.78 (1): 010304(R).arXiv:0806.3044.Bibcode:2008PhRvA..78a0304T.doi:10.1103/PhysRevA.78.010304.S2CID 118607762.
  25. ^Pégard, Nicolas C.; Fleischer, Jason W. (2011)."Optimizing holographic data storage using a fractional Fourier transform".Optics Letters.36 (13):2551–2553.Bibcode:2011OptL...36.2551P.doi:10.1364/OL.36.002551.PMID 21725476.

Bibliography

[edit]

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fractional_Fourier_transform&oldid=1313792842"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp