Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Fock space

From Wikipedia, the free encyclopedia

Multi particle state space

TheFock space is analgebraic construction used inquantum mechanics to construct thequantum states space of a variable or unknown number of identicalparticles from a single particleHilbert spaceH. It is named afterV. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung" ("Configuration space andsecond quantization").[1][2]

Informally, a Fock space is the sum of a set of Hilbert spaces representing zero particle states, one particle states, two particle states, and so on. If the identical particles arebosons, then-particle states are vectors in asymmetrizedtensor product ofn single-particle Hilbert spacesH. If the identical particles arefermions, then-particle states are vectors in anantisymmetrized tensor product ofn single-particle Hilbert spacesH (seesymmetric algebra andexterior algebra respectively). A general state in Fock space is alinear combination ofn-particle states, one for eachn.

Technically, the Fock space is (theHilbert spacecompletion of) thedirect sum of the symmetric or antisymmetric tensors in thetensor powers of a single-particle Hilbert spaceH,Fν(H)=n=0SνHn¯ .{\displaystyle F_{\nu }(H)={\overline {\bigoplus _{n=0}^{\infty }S_{\nu }H^{\otimes n}}}~.}

HereSν{\displaystyle S_{\nu }} is theoperator that symmetrizes orantisymmetrizes a tensor, depending on whether the Hilbert space describes particles obeyingbosonic(ν=+){\displaystyle (\nu =+)} orfermionic(ν=){\displaystyle (\nu =-)} statistics, and the overline represents the completion of the space. The bosonic (resp. fermionic) Fock space can alternatively be constructed as (the Hilbert space completion of) thesymmetric tensorsF+(H)=SH¯{\displaystyle F_{+}(H)={\overline {S^{*}H}}} (resp.alternating tensorsF(H)=H¯{\textstyle F_{-}(H)={\overline {{\bigwedge }^{*}H}}}). For every basis forH there is a natural basis of the Fock space, theFock states.

Definition

[edit]

The Fock space is the (Hilbert)direct sum oftensor products of copies of a single-particle Hilbert spaceH{\displaystyle H}

Fν(H)=n=0SνHn=CH(Sν(HH))(Sν(HHH)){\displaystyle F_{\nu }(H)=\bigoplus _{n=0}^{\infty }S_{\nu }H^{\otimes n}=\mathbb {C} \oplus H\oplus \left(S_{\nu }\left(H\otimes H\right)\right)\oplus \left(S_{\nu }\left(H\otimes H\otimes H\right)\right)\oplus \cdots }

HereC{\displaystyle \mathbb {C} }, thecomplex scalars, consists of the states corresponding to no particles,H{\displaystyle H} the states of one particle,Sν(HH){\displaystyle S_{\nu }(H\otimes H)} the states of two identical particles etc.

A general state inFν(H){\displaystyle F_{\nu }(H)} is given by

|Ψν=|Ψ0ν|Ψ1ν|Ψ2ν=a|0iai|ψiijaij|ψi,ψjν{\displaystyle |\Psi \rangle _{\nu }=|\Psi _{0}\rangle _{\nu }\oplus |\Psi _{1}\rangle _{\nu }\oplus |\Psi _{2}\rangle _{\nu }\oplus \cdots =a|0\rangle \oplus \sum _{i}a_{i}|\psi _{i}\rangle \oplus \sum _{ij}a_{ij}|\psi _{i},\psi _{j}\rangle _{\nu }\oplus \cdots }where

The convergence of this infinite sum is important ifFν(H){\displaystyle F_{\nu }(H)} is to be a Hilbert space. Technically we requireFν(H){\displaystyle F_{\nu }(H)} to be the Hilbert space completion of the algebraic direct sum. It consists of all infinitetuples|Ψν=(|Ψ0ν,|Ψ1ν,|Ψ2ν,){\displaystyle |\Psi \rangle _{\nu }=(|\Psi _{0}\rangle _{\nu },|\Psi _{1}\rangle _{\nu },|\Psi _{2}\rangle _{\nu },\ldots )} such that thenorm, defined by the inner product is finite|Ψνν2=n=0Ψn|Ψnν<{\displaystyle \||\Psi \rangle _{\nu }\|_{\nu }^{2}=\sum _{n=0}^{\infty }\langle \Psi _{n}|\Psi _{n}\rangle _{\nu }<\infty }where then{\displaystyle n} particle norm is defined byΨn|Ψnν=i1,inj1,jnai1,,inaj1,,jnψi1|ψj1ψin|ψjn{\displaystyle \langle \Psi _{n}|\Psi _{n}\rangle _{\nu }=\sum _{i_{1},\ldots i_{n}}\sum _{j_{1},\ldots j_{n}}a_{i_{1},\ldots ,i_{n}}^{*}a_{j_{1},\ldots ,j_{n}}\langle \psi _{i_{1}}|\psi _{j_{1}}\rangle \cdots \langle \psi _{i_{n}}|\psi _{j_{n}}\rangle }i.e., the restriction of thenorm on the tensor productHn{\displaystyle H^{\otimes n}}

For two general states|Ψν=|Ψ0ν|Ψ1ν|Ψ2ν=a|0iai|ψiijaij|ψi,ψjν,{\displaystyle |\Psi \rangle _{\nu }=|\Psi _{0}\rangle _{\nu }\oplus |\Psi _{1}\rangle _{\nu }\oplus |\Psi _{2}\rangle _{\nu }\oplus \cdots =a|0\rangle \oplus \sum _{i}a_{i}|\psi _{i}\rangle \oplus \sum _{ij}a_{ij}|\psi _{i},\psi _{j}\rangle _{\nu }\oplus \cdots ,} and|Φν=|Φ0ν|Φ1ν|Φ2ν=b|0ibi|ϕiijbij|ϕi,ϕjν{\displaystyle |\Phi \rangle _{\nu }=|\Phi _{0}\rangle _{\nu }\oplus |\Phi _{1}\rangle _{\nu }\oplus |\Phi _{2}\rangle _{\nu }\oplus \cdots =b|0\rangle \oplus \sum _{i}b_{i}|\phi _{i}\rangle \oplus \sum _{ij}b_{ij}|\phi _{i},\phi _{j}\rangle _{\nu }\oplus \cdots }theinner product onFν(H){\displaystyle F_{\nu }(H)} is then defined asΨ|Φν:=nΨn|Φnν=ab+ijaibjψi|ϕj+ijklaijbklψi|ϕkψj|ϕlν+{\displaystyle \langle \Psi |\Phi \rangle _{\nu }:=\sum _{n}\langle \Psi _{n}|\Phi _{n}\rangle _{\nu }=a^{*}b+\sum _{ij}a_{i}^{*}b_{j}\langle \psi _{i}|\phi _{j}\rangle +\sum _{ijkl}a_{ij}^{*}b_{kl}\langle \psi _{i}|\phi _{k}\rangle \langle \psi _{j}|\phi _{l}\rangle _{\nu }+\cdots }where we use the inner products on each of then{\displaystyle n}-particle Hilbert spaces. Note that, in particular then{\displaystyle n} particle subspaces are orthogonal for differentn{\displaystyle n}.

Product states, indistinguishable particles, and a useful basis for Fock space

[edit]

Aproduct state of the Fock space is a state of the form

|Ψν=|ϕ1,ϕ2,,ϕnν=|ϕ1|ϕ2|ϕn{\displaystyle |\Psi \rangle _{\nu }=|\phi _{1},\phi _{2},\cdots ,\phi _{n}\rangle _{\nu }=|\phi _{1}\rangle \otimes |\phi _{2}\rangle \otimes \cdots \otimes |\phi _{n}\rangle }

which describes a collection ofn{\displaystyle n} particles, one of which has quantum stateϕ1{\displaystyle \phi _{1}}, anotherϕ2{\displaystyle \phi _{2}} and so on up to then{\displaystyle n}th particle, where eachϕi{\displaystyle \phi _{i}} isany state from the single particle Hilbert spaceH{\displaystyle H}. Here juxtaposition (writing the single particle kets side by side, without the{\displaystyle \otimes }) is symmetric (resp. antisymmetric) multiplication in the symmetric (antisymmetric)tensor algebra. The general state in a Fock space is a linear combination of product states. A state that cannot be written as a convex sum of product states is called anentangled state.

When we speak ofone particle in stateϕi{\displaystyle \phi _{i}}, we must bear in mind that in quantum mechanics identical particles areindistinguishable. In the same Fock space, all particles are identical. (To describe many species of particles, we take the tensor product of as many different Fock spaces as there are species of particles under consideration). It is one of the most powerful features of this formalism that states are implicitly properly symmetrized. For instance, if the above state|Ψ{\displaystyle |\Psi \rangle _{-}} is fermionic, it will be 0 if two (or more) of theϕi{\displaystyle \phi _{i}} are equal because the antisymmetric(exterior) product|ϕi|ϕi=0{\displaystyle |\phi _{i}\rangle |\phi _{i}\rangle =0}. This is a mathematical formulation of thePauli exclusion principle that no two (or more) fermions can be in the same quantum state. In fact, whenever the terms in a formal product are linearly dependent; the product will be zero for antisymmetric tensors. Also, the product of orthonormal states is properly orthonormal by construction (although possibly 0 in the Fermi case when two states are equal).

A useful and convenient basis for a Fock space is theoccupancy number basis. Given a basis{|ψi}i=0,1,2,{\displaystyle \{|\psi _{i}\rangle \}_{i=0,1,2,\dots }} ofH{\displaystyle H}, we can denote the state withn0{\displaystyle n_{0}} particles in state|ψ0{\displaystyle |\psi _{0}\rangle },n1{\displaystyle n_{1}} particles in state|ψ1{\displaystyle |\psi _{1}\rangle }, ...,nk{\displaystyle n_{k}} particles in state|ψk{\displaystyle |\psi _{k}\rangle }, and no particles in the remaining states, by defining

|n0,n1,,nkν=|ψ0n0|ψ1n1|ψknk,{\displaystyle |n_{0},n_{1},\ldots ,n_{k}\rangle _{\nu }=|\psi _{0}\rangle ^{n_{0}}|\psi _{1}\rangle ^{n_{1}}\cdots |\psi _{k}\rangle ^{n_{k}},}

where eachni{\displaystyle n_{i}} takes the value 0 or 1 for fermionic particles and 0, 1, 2, ... for bosonic particles. Note that trailing zeroes may be dropped without changing the state. Such a state is called aFock state. When the|ψi{\displaystyle |\psi _{i}\rangle } are understood as the steady states of a free field, the Fock states describe an assembly of non-interacting particles in definite numbers. The most general Fock state is a linear superposition of pure states.

Two operators of great importance are thecreation and annihilation operators, which upon acting on a Fock state add or respectively remove a particle in the ascribed quantum state. They are denoteda(ϕ){\displaystyle a^{\dagger }(\phi )\,} for creation anda(ϕ){\displaystyle a(\phi )}for annihilation respectively. To create ("add") a particle, the quantum state|ϕ{\displaystyle |\phi \rangle } is symmetric or exterior- multiplied with|ϕ{\displaystyle |\phi \rangle }; and respectively to annihilate ("remove") a particle, an (even or odd)interior product is taken withϕ|{\displaystyle \langle \phi |}, which is the adjoint ofa(ϕ){\displaystyle a^{\dagger }(\phi )}. It is often convenient to work with states of the basis ofH{\displaystyle H} so that these operators remove and add exactly one particle in the given basis state. These operators also serve as generators for more general operators acting on the Fock space, for instance thenumber operator giving the number of particles in a specific state|ϕi{\displaystyle |\phi _{i}\rangle } isa(ϕi)a(ϕi){\displaystyle a^{\dagger }(\phi _{i})a(\phi _{i})}.

Wave function interpretation

[edit]

Often the one particle spaceH{\displaystyle H} is given asL2(X,μ){\displaystyle L_{2}(X,\mu )}, the space ofsquare-integrable functions on a spaceX{\displaystyle X} withmeasureμ{\displaystyle \mu } (strictly speaking, theequivalence classes of square integrable functions where functions are equivalent if they differ on aset of measure zero). The typical example is thefree particle withH=L2(R3,d3x){\displaystyle H=L_{2}(\mathbb {R} ^{3},d^{3}x)} the space of square integrable functions on three-dimensional space. The Fock spaces then have a natural interpretation as symmetric or anti-symmetric square integrable functions as follows.

LetX0={}{\displaystyle X^{0}=\{*\}} andX1=X{\displaystyle X^{1}=X},X2=X×X{\displaystyle X^{2}=X\times X},X3=X×X×X{\displaystyle X^{3}=X\times X\times X}, etc.Consider the space of tuples of points which is thedisjoint union

X=X0⨿X1⨿X2⨿X3⨿.{\displaystyle X^{*}=X^{0}\amalg X^{1}\amalg X^{2}\amalg X^{3}\amalg \cdots .}

It has a natural measureμ{\displaystyle \mu ^{*}} such thatμ(X0)=1{\displaystyle \mu ^{*}(X^{0})=1} and the restriction ofμ{\displaystyle \mu ^{*}} toXn{\displaystyle X^{n}} isμn{\displaystyle \mu ^{n}}.The even Fock spaceF+(L2(X,μ)){\displaystyle F_{+}(L_{2}(X,\mu ))} can then be identified with the space of symmetric functions inL2(X,μ){\displaystyle L_{2}(X^{*},\mu ^{*})} whereas the odd Fock spaceF(L2(X,μ)){\displaystyle F_{-}(L_{2}(X,\mu ))} can be identified with the space of anti-symmetric functions. The identification follows directly from theisometric mappingL2(X,μ)nL2(Xn,μn){\displaystyle L_{2}(X,\mu )^{\otimes n}\to L_{2}(X^{n},\mu ^{n})}ψ1(x)ψn(x)ψ1(x1)ψn(xn){\displaystyle \psi _{1}(x)\otimes \cdots \otimes \psi _{n}(x)\mapsto \psi _{1}(x_{1})\cdots \psi _{n}(x_{n})}.

Given wave functionsψ1=ψ1(x),,ψn=ψn(x){\displaystyle \psi _{1}=\psi _{1}(x),\ldots ,\psi _{n}=\psi _{n}(x)}, theSlater determinant

Ψ(x1,xn)=1n!|ψ1(x1)ψn(x1)ψ1(xn)ψn(xn)|{\displaystyle \Psi (x_{1},\ldots x_{n})={\frac {1}{\sqrt {n!}}}{\begin{vmatrix}\psi _{1}(x_{1})&\cdots &\psi _{n}(x_{1})\\\vdots &\ddots &\vdots \\\psi _{1}(x_{n})&\cdots &\psi _{n}(x_{n})\\\end{vmatrix}}}is an antisymmetric function onXn{\displaystyle X^{n}}. It can thus be naturally interpreted as an element of then{\displaystyle n}-particle sector of the odd Fock space. The normalization is chosen such thatΨ=1{\displaystyle \|\Psi \|=1} if the functionsψ1,,ψn{\displaystyle \psi _{1},\ldots ,\psi _{n}} are orthonormal. There is a similar "Slater permanent" with the determinant replaced with thepermanent which gives elements ofn{\displaystyle n}-sector of the even Fock space.

Relation to the Segal–Bargmann space

[edit]

Define theSegal–Bargmann spaceBN{\displaystyle B_{N}}[3] of complexholomorphic functions square-integrable with respect to aGaussian measure:

F2(CN)={f:CNCfF2(CN)<},{\displaystyle {\mathcal {F}}^{2}\left(\mathbb {C} ^{N}\right)=\left\{f\colon \mathbb {C} ^{N}\to \mathbb {C} \mid \Vert f\Vert _{{\mathcal {F}}^{2}(\mathbb {C} ^{N})}<\infty \right\},}wherefF2(CN):=CN|f(z)|2eπ|z|2dz.{\displaystyle \Vert f\Vert _{{\mathcal {F}}^{2}(\mathbb {C} ^{N})}:=\int _{\mathbb {C} ^{N}}\vert f(\mathbf {z} )\vert ^{2}e^{-\pi \vert \mathbf {z} \vert ^{2}}\,d\mathbf {z} .}Then defining a spaceB{\displaystyle B_{\infty }} as the nested union of the spacesBN{\displaystyle B_{N}} over the integersN0{\displaystyle N\geq 0}, Segal[4] and Bargmann showed[5][6] thatB{\displaystyle B_{\infty }} is isomorphic to a bosonic Fock space. The monomialx1n1...xknk{\displaystyle x_{1}^{n_{1}}...x_{k}^{n_{k}}}corresponds to the Fock state|n0,n1,,nkν=|ψ0n0|ψ1n1|ψknk.{\displaystyle |n_{0},n_{1},\ldots ,n_{k}\rangle _{\nu }=|\psi _{0}\rangle ^{n_{0}}|\psi _{1}\rangle ^{n_{1}}\cdots |\psi _{k}\rangle ^{n_{k}}.}

See also

[edit]

References

[edit]
  1. ^Fock, V. (1932). "Konfigurationsraum und zweite Quantelung".Zeitschrift für Physik (in German).75 (9–10). Springer Science and Business Media LLC:622–647.Bibcode:1932ZPhy...75..622F.doi:10.1007/bf01344458.ISSN 1434-6001.S2CID 186238995.
  2. ^M.C. Reed,B. Simon, "Methods of Modern Mathematical Physics, Volume II", Academic Press 1975. Page 328.
  3. ^Bargmann, V. (1961). "On a Hilbert space of analytic functions and associated integral transform I".Communications on Pure and Applied Mathematics.14:187–214.doi:10.1002/cpa.3160140303.hdl:10338.dmlcz/143587.
  4. ^Segal, I. E. (1963). "Mathematical problems of relativistic physics".Proceedings of the Summer Seminar, Boulder, Colorado, 1960, Vol. II. Chap. VI.
  5. ^Bargmann, V (1962)."Remarks on a Hilbert space of analytic functions".Proc. Natl. Acad. Sci.48 (2):199–204.Bibcode:1962PNAS...48..199B.doi:10.1073/pnas.48.2.199.PMC 220756.PMID 16590920.
  6. ^Stochel, Jerzy B. (1997)."Representation of generalized annihilation and creation operators in Fock space"(PDF).Universitatis Iagellonicae Acta Mathematica.34:135–148. Retrieved13 December 2012.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Fock_space&oldid=1269960020"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp