Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Finite element method

From Wikipedia, the free encyclopedia
(Redirected fromFinite element)
Numerical method for solving physical or engineering problems
"Finite element" redirects here. For the elements of aposet, seecompact element.
Visualization of how a car deforms in an asymmetrical crash using finite element analysis
Differential equations
Scope
Classification
Solution
People

Finite element method (FEM) is a popular method for numerically solvingdifferential equations arising in engineering andmathematical modeling. Typical problem areas of interest include the traditional fields ofstructural analysis,heat transfer,fluid flow, mass transport, andelectromagnetic potential. Computers are usually used to perform the calculations required. With high-speedsupercomputers, better solutions can be achieved and are often required to solve the largest and most complex problems.

FEM is a generalnumerical method for solvingpartial differential equations in two- or three-space variables (i.e., someboundary value problems). There are also studies about using FEM to solve high-dimensional problems.[1] To solve a problem, FEM subdivides a large system into smaller, simpler parts calledfinite elements. This is achieved by a particular spacediscretization in the space dimensions, which is implemented by the construction of amesh of the object: the numerical domain for the solution that has a finite number of points. FEM formulation of a boundary value problem finally results in a system ofalgebraic equations. The method approximates the unknown function over the domain.[2] The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. FEM then approximates a solution by minimizing an associated error function via thecalculus of variations.

Studying oranalyzing a phenomenon with FEM is often referred to as finite element analysis (FEA).

Basic concepts

[edit]
Example of 2D mesh
FEMmesh created by an analyst before finding a solution to amagnetic problem using FEM software. Colors indicate that the analyst has set material properties for each zone, in this case, aconducting wire coil in orange; aferromagnetic component (perhapsiron) in light blue; and air in grey. Although the geometry may seem simple, it would be very challenging to calculate the magnetic field for this setup without FEM software usingequations alone.
FEM_example_of_2D_solution
FEM solution to the problem at left, involving acylindrically shapedmagnetic shield. Theferromagnetic cylindrical part shields the area inside the cylinder by diverting the magnetic fieldcreated by the coil (rectangular area on the right). The color represents theamplitude of themagnetic flux density, as indicated by the scale in the inset legend, red being high amplitude. The area inside the cylinder is low amplitude (dark blue, with widely spaced lines of magnetic flux), which suggests that the shield is performing as it was designed to.

The subdivision of a whole domain into simpler parts has several advantages:[3]

  • Accurate representation of complex geometry;
  • Inclusion of dissimilar material properties;
  • Easy representation of the total solution; and
  • Capture of local effects.

A typical approach using the method involves the following steps:

  1. Dividing the domain of the problem into a collection of subdomains, with each subdomain represented by a set of element equations for the original problem.
  2. Systematically recombining all sets of element equations into a global system of equations for the final calculation.

The global system of equations uses known solution techniques and can be calculated from theinitial values of the original problem to obtain a numerical answer.

In the first step above, the element equations are simple equations that locally approximate the original complex equations to be studied, where the original equations are oftenpartial differential equations (PDEs). To explain the approximation of this process, FEM is commonly introduced as a special case of theGalerkin method. The process, in mathematical language, is to construct an integral of theinner product of the residual and theweight functions; then, set the integral to zero. In simple terms, it is a procedure that minimizes the approximation error by fitting trial functions into the PDE. The residual is the error caused by the trial functions, and the weight functions arepolynomial approximation functions that project the residual. The process eliminates all the spatial derivatives from the PDE, thus approximating the PDE locally using the following:

These equation sets are element equations. They arelinear if the underlying PDE is linear and vice versa. Algebraic equation sets that arise in the steady-state problems are solved usingnumerical linear algebraic methods. In contrast,ordinary differential equation sets that occur in the transient problems are solved by numerical integrations using standard techniques such asEuler's method or theRungeKutta method.

In the second step above, a global system of equations is generated from the element equations by transforming coordinates from the subdomains' local nodes to the domain's global nodes. This spatial transformation includes appropriateorientation adjustments as applied in relation to the referencecoordinate system. The process is often carried out using FEM software withcoordinate data generated from the subdomains.

The practical application of FEM is known as finite element analysis (FEA). FEA, as applied inengineering, is a computational tool for performingengineering analysis. It includes the use ofmesh generation techniques for dividing acomplex problem into smaller elements, as well as the use of software coded with a FEM algorithm. When applying FEA, the complex problem is usually a physical system with the underlyingphysics, such as theEuler–Bernoulli beam equation, theheat equation, or theNavierStokes equations, expressed in either PDEs orintegral equations, while the divided, smaller elements of the complex problem represent different areas in the physical system.

FEA may be used for analyzing problems over complicated domains (e.g., cars and oil pipelines) when the domain changes (e.g., during a solid-state reaction with a moving boundary), when the desired precision varies over the entire domain, or when the solution lacks smoothness. FEA simulations provide a valuable resource, as they remove multiple instances of creating and testing complex prototypes for various high-fidelity situations.[citation needed] For example, in a frontal crash simulation, it is possible to increase prediction accuracy in important areas, like the front of the car, and reduce it in the rear of the car, thus reducing the cost of the simulation. Another example would be innumerical weather prediction, where it is more important to have accurate predictions over developing highly nonlinear phenomena, such astropical cyclones in the atmosphere oreddies in the ocean, rather than relatively calm areas.

A clear, detailed, and practical presentation of this approach can be found in the textbookThe Finite Element Method for Engineers.[4]

History

[edit]

While it is difficult to quote the date of the invention of FEM, the method originated from the need to solve complexelasticity andstructural analysis problems incivil andaeronautical engineering.[5] Its development can be traced back to work byAlexander Hrennikoff[6] andRichard Courant[7] in the early 1940s. Another pioneer wasIoannis Argyris. In the USSR, the introduction of the practical application of FEM is usually connected withLeonard Oganesyan.[8] It was also independently rediscovered in China byFeng Kang in the late 1950s and early 1960s, based on the computations of dam constructions, where it was called the "finite difference method" based on variation principles. Although the approaches used by these pioneers are different, they share one essential characteristic: themeshdiscretization of a continuous domain into a set of discrete sub-domains, usually called elements.

Hrennikoff's work discretizes the domain by using alattice analogy, while Courant's approach divides the domain into finite triangular sub-regions to solvesecond-orderelliptic partial differential equations that arise from the problem of thetorsion of acylinder. Courant's contribution was evolutionary, drawing on a large body of earlier results for PDEs developed byLord Rayleigh,Walther Ritz, andBoris Galerkin.

The application of FEM gained momentum in the 1960s and 1970s due to the developments ofJ. H. Argyris and his co-workers at theUniversity of Stuttgart;R. W. Clough and his co-workers atUniversity of California Berkeley;O. C. Zienkiewicz and his co-workersErnest Hinton,Bruce Irons,[9] and others atSwansea University;Philippe G. Ciarlet at the University ofParis 6; andRichard Gallagher and his co-workers atCornell University. During this period, additional impetus was provided by the available open-source FEM programs. NASA sponsored the original version ofNASTRAN. University of California Berkeley made the finite element programs SAP IV[10] and, later,OpenSees widely available. In Norway, the ship classification society Det Norske Veritas (nowDNV GL) developedSesam in 1969 for use in the analysis of ships.[11] A rigorous mathematical basis for FEM was provided in 1973 with a publication byGilbert Strang andGeorge Fix.[12] The method has since been generalized for thenumerical modeling of physical systems in a wide variety ofengineering disciplines, such aselectromagnetism,heat transfer, andfluid dynamics.[13][14]

Technical discussion

[edit]

The structure of finite element methods

[edit]

A finite element method is characterized by avariational formulation, a discretization strategy, one or more solution algorithms, and post-processing procedures.

Examples of the variational formulation are theGalerkin method, the discontinuous Galerkin method, mixed methods, etc.

A discretization strategy is understood to mean a clearly defined set of procedures that cover (a) the creation of finite element meshes, (b) the definition of basis function on reference elements (also called shape functions), and (c) the mapping of reference elements onto the elements of the mesh. Examples of discretization strategies are the h-version,p-version,hp-version,x-FEM,isogeometric analysis, etc. Each discretization strategy has certain advantages and disadvantages. A reasonable criterion in selecting a discretization strategy is to realize nearly optimal performance for the broadest set of mathematical models in a particular model class.

Various numerical solution algorithms can be classified into two broad categories; direct and iterative solvers. These algorithms are designed to exploit the sparsity of matrices that depend on the variational formulation and discretization strategy choices.

Post-processing procedures are designed to extract the data of interest from a finite element solution. To meet the requirements of solution verification, postprocessors need to provide fora posteriori error estimation in terms of the quantities of interest. When the errors of approximation are larger than what is considered acceptable, then the discretization has to be changed either by an automated adaptive process or by the action of the analyst. Some very efficient postprocessors provide for the realization ofsuperconvergence.

Illustrative problems P1 and P2

[edit]

The following two problems demonstrate the finite element method.

P1 is a one-dimensional problem P1 :{u(x)=f(x) in (0,1),u(0)=u(1)=0,{\displaystyle {\text{ P1 }}:{\begin{cases}u''(x)=f(x){\text{ in }}(0,1),\\u(0)=u(1)=0,\end{cases}}}wheref{\displaystyle f} is given,u{\displaystyle u} is an unknown function ofx{\displaystyle x}, andu{\displaystyle u''} is the second derivative ofu{\displaystyle u} with respect tox{\displaystyle x}.

P2 is a two-dimensional problem (Dirichlet problem)P2 :{uxx(x,y)+uyy(x,y)=f(x,y) in Ω,u=0 on Ω,{\displaystyle {\text{P2 }}:{\begin{cases}u_{xx}(x,y)+u_{yy}(x,y)=f(x,y)&{\text{ in }}\Omega ,\\u=0&{\text{ on }}\partial \Omega ,\end{cases}}}

whereΩ{\displaystyle \Omega } is a connected open region in the(x,y){\displaystyle (x,y)} plane whose boundaryΩ{\displaystyle \partial \Omega } is nice (e.g., asmooth manifold or apolygon), anduxx{\displaystyle u_{xx}} anduyy{\displaystyle u_{yy}} denote the second derivatives with respect tox{\displaystyle x} andy{\displaystyle y}, respectively.

The problem P1 can be solved directly by computingantiderivatives. However, this method of solving theboundary value problem (BVP) works only when there is one spatial dimension. It does not generalize to higher-dimensional problems or problems likeu+V=f{\displaystyle u+V''=f}. For this reason, we will develop the finite element method for P1 and outline its generalization to P2.

Our explanation will proceed in two steps, which mirror two essential steps one must take to solve a boundary value problem (BVP) using the FEM.

  • In the first step, one rephrases the original BVP in its weak form. Little to no computation is usually required for this step. The transformation is done by hand on paper.
  • The second step is discretization, where the weak form is discretized in a finite-dimensional space.

After this second step, we have concrete formulae for a large but finite-dimensional linear problem whose solution will approximately solve the original BVP. This finite-dimensional problem is then implemented on acomputer.

Weak formulation

[edit]

The first step is to convert P1 and P2 into their equivalentweak formulations.

The weak form of P1

[edit]

Ifu{\displaystyle u} solves P1, then for any smooth functionv{\displaystyle v} that satisfies the displacement boundary conditions, i.e.v=0{\displaystyle v=0} atx=0{\displaystyle x=0} andx=1{\displaystyle x=1}, we have

01f(x)v(x)dx=01u(x)v(x)dx.{\displaystyle \int _{0}^{1}f(x)v(x)\,dx=\int _{0}^{1}u''(x)v(x)\,dx.}1

Conversely, ifu{\displaystyle u} withu(0)=u(1)=0{\displaystyle u(0)=u(1)=0} satisfies (1) for every smooth functionv(x){\displaystyle v(x)} then one may show that thisu{\displaystyle u} will solve P1. The proof is easier for twice continuously differentiableu{\displaystyle u} (mean value theorem) but may be proved in adistributional sense as well.

We define a new operator or mapϕ(u,v){\displaystyle \phi (u,v)} by usingintegration by parts on the right-hand-side of (1):

01f(x)v(x)dx=01u(x)v(x)dx=u(x)v(x)|0101u(x)v(x)dx=01u(x)v(x)dxϕ(u,v),{\displaystyle {\begin{aligned}\int _{0}^{1}f(x)v(x)\,dx&=\int _{0}^{1}u''(x)v(x)\,dx\\&=u'(x)v(x)|_{0}^{1}-\int _{0}^{1}u'(x)v'(x)\,dx\\&=-\int _{0}^{1}u'(x)v'(x)\,dx\equiv -\phi (u,v),\end{aligned}}}2

where we have used the assumption thatv(0)=v(1)=0{\displaystyle v(0)=v(1)=0}.

The weak form of P2

[edit]

If we integrate by parts using a form ofGreen's identities, we see that ifu{\displaystyle u} solves P2, then we may defineϕ(u,v){\displaystyle \phi (u,v)} for anyv{\displaystyle v} byΩfvds=Ωuvdsϕ(u,v),{\displaystyle \int _{\Omega }fv\,ds=-\int _{\Omega }\nabla u\cdot \nabla v\,ds\equiv -\phi (u,v),}

where{\displaystyle \nabla } denotes thegradient and{\displaystyle \cdot } denotes thedot product in the two-dimensional plane. Once moreϕ{\displaystyle \,\!\phi } can be turned into an inner product on a suitable spaceH01(Ω){\displaystyle H_{0}^{1}(\Omega )} of once differentiable functions ofΩ{\displaystyle \Omega } that are zero onΩ{\displaystyle \partial \Omega }. We have also assumed thatvH01(Ω){\displaystyle v\in H_{0}^{1}(\Omega )} (seeSobolev spaces). The existence and uniqueness of the solution can also be shown.

A proof outline of the existence and uniqueness of the solution

[edit]

We can loosely think ofH01(0,1){\displaystyle H_{0}^{1}(0,1)} to be theabsolutely continuous functions of(0,1){\displaystyle (0,1)} that are0{\displaystyle 0} atx=0{\displaystyle x=0} andx=1{\displaystyle x=1} (seeSobolev spaces). Such functions are (weakly) once differentiable, and it turns out that the symmetricbilinear mapϕ{\displaystyle \!\,\phi } then defines aninner product which turnsH01(0,1){\displaystyle H_{0}^{1}(0,1)} into aHilbert space (a detailed proof is nontrivial). On the other hand, the left-hand-side01f(x)v(x)dx{\displaystyle \int _{0}^{1}f(x)v(x)dx} is also an inner product, this time on theLp spaceL2(0,1){\displaystyle L^{2}(0,1)}. An application of theRiesz representation theorem for Hilbert spaces shows that there is a uniqueu{\displaystyle u} solving (2) and, therefore, P1. This solution is a-priori only a member ofH01(0,1){\displaystyle H_{0}^{1}(0,1)}, but usingelliptic regularity, will be smooth iff{\displaystyle f} is.

Discretization

[edit]
A function inH01,{\displaystyle H_{0}^{1},} with zero values at the endpoints (blue) and a piecewise linear approximation (red)

P1 and P2 are ready to be discretized, which leads to a common sub-problem (3). The basic idea is to replace the infinite-dimensional linear problem:

FinduH01{\displaystyle u\in H_{0}^{1}} such that
vH01,ϕ(u,v)=fv{\displaystyle \forall v\in H_{0}^{1},\;-\phi (u,v)=\int fv}

with a finite-dimensional version:

FinduV{\displaystyle u\in V} such that
vV,ϕ(u,v)=fv{\displaystyle \forall v\in V,\;-\phi (u,v)=\int fv}
3

whereV{\displaystyle V} is a finite-dimensionalsubspace ofH01{\displaystyle H_{0}^{1}}. There are many possible choices forV{\displaystyle V} (one possibility leads to thespectral method). However, we takeV{\displaystyle V} as a space of piecewise polynomial functions for the finite element method.

For problem P1

[edit]

We take the interval(0,1){\displaystyle (0,1)}, choosen{\displaystyle n} values ofx{\displaystyle x} with0=x0<x1<<xn<xn+1=1{\displaystyle 0=x_{0}<x_{1}<\cdots <x_{n}<x_{n+1}=1} and we defineV{\displaystyle V} by:V={v:[0,1]R:v is continuous, v|[xk,xk+1] is linear for k=0,,n, and v(0)=v(1)=0}{\displaystyle V=\{v:[0,1]\to \mathbb {R} \;:v{\text{ is continuous, }}v|_{[x_{k},x_{k+1}]}{\text{ is linear for }}k=0,\dots ,n{\text{, and }}v(0)=v(1)=0\}}

where we definex0=0{\displaystyle x_{0}=0} andxn+1=1{\displaystyle x_{n+1}=1}. Observe that functions inV{\displaystyle V} are not differentiable according to the elementary definition of calculus. Indeed, ifvV{\displaystyle v\in V} then the derivative is typically not defined at anyx=xk{\displaystyle x=x_{k}},k=1,,n{\displaystyle k=1,\ldots ,n}. However, the derivative exists at every other value ofx{\displaystyle x}, and one can use this derivative forintegration by parts.

A piecewise linear function in two dimensions

For problem P2

[edit]

We needV{\displaystyle V} to be a set of functions ofΩ{\displaystyle \Omega }. In the figure on the right, we have illustrated atriangulation of a 15-sidedpolygonal regionΩ{\displaystyle \Omega } in the plane (below), and apiecewise linear function (above, in color) of this polygon which is linear on each triangle of the triangulation; the spaceV{\displaystyle V} would consist of functions that are linear on each triangle of the chosen triangulation.

One hopes that as the underlying triangular mesh becomes finer and finer, the solution of the discrete problem (3) will, in some sense, converge to the solution of the original boundary value problem P2. To measure this mesh fineness, the triangulation is indexed by a real-valued parameterh>0{\displaystyle h>0} which one takes to be very small. This parameter will be related to the largest or average triangle size in the triangulation. As we refine the triangulation, the space of piecewise linear functionsV{\displaystyle V} must also change withh{\displaystyle h}. For this reason, one often readsVh{\displaystyle V_{h}} instead ofV{\displaystyle V} in the literature. Since we do not perform such an analysis, we will not use this notation.

Choosing a basis

[edit]
Interpolation of aBessel function
Sixteen triangular basis functions used to reconstruct J0
16 scaled and shifted triangular basis functions (colors) used to reconstruct a zeroeth order Bessel functionJ0 (black)
Summation of basis functions
The linear combination of basis functions (yellow) reproducesJ0 (black) to any desired accuracy.

To complete the discretization, we must select abasis ofV{\displaystyle V}. In the one-dimensional case, for each control pointxk{\displaystyle x_{k}} we will choose the piecewise linear functionvk{\displaystyle v_{k}} inV{\displaystyle V} whose value is1{\displaystyle 1} atxk{\displaystyle x_{k}} and zero at everyxj,jk{\displaystyle x_{j},\;j\neq k}, i.e.,vk(x)={xxk1xkxk1 if x[xk1,xk],xk+1xxk+1xk if x[xk,xk+1],0 otherwise,{\displaystyle v_{k}(x)={\begin{cases}{x-x_{k-1} \over x_{k}\,-x_{k-1}}&{\text{ if }}x\in [x_{k-1},x_{k}],\\{x_{k+1}\,-x \over x_{k+1}\,-x_{k}}&{\text{ if }}x\in [x_{k},x_{k+1}],\\0&{\text{ otherwise}},\end{cases}}}

fork=1,,n{\displaystyle k=1,\dots ,n}; this basis is a shifted and scaledtent function. For the two-dimensional case, we choose again one basis functionvk{\displaystyle v_{k}} per vertexxk{\displaystyle x_{k}} of the triangulation of the planar regionΩ{\displaystyle \Omega }. The functionvk{\displaystyle v_{k}} is the unique function ofV{\displaystyle V} whose value is1{\displaystyle 1} atxk{\displaystyle x_{k}} and zero at everyxj,jk{\displaystyle x_{j},\;j\neq k}.

Depending on the author, the word "element" in the "finite element method" refers to the domain's triangles, the piecewise linear basis function, or both. So, for instance, an author interested in curved domains might replace the triangles with curved primitives and so might describe the elements as being curvilinear. On the other hand, some authors replace "piecewise linear" with "piecewise quadratic" or even "piecewise polynomial". The author might then say "higher order element" instead of "higher degree polynomial". The finite element method is not restricted to triangles (tetrahedra in 3-d or higher-order simplexes in multidimensional spaces). Still, it can be defined on quadrilateral subdomains (hexahedra, prisms, or pyramids in 3-d, and so on). Higher-order shapes (curvilinear elements) can be defined with polynomial and even non-polynomial shapes (e.g., ellipse or circle).

Examples of methods that use higher degree piecewise polynomial basis functions are thehp-FEM andspectral FEM.

More advanced implementations (adaptive finite element methods) utilize a method to assess the quality of the results (based on error estimation theory) and modify the mesh during the solution aiming to achieve an approximate solution within some bounds from the exact solution of the continuum problem. Mesh adaptivity may utilize various techniques; the most popular are:

  • moving nodes (r-adaptivity)
  • refining (and unrefined) elements (h-adaptivity)
  • changing order of base functions (p-adaptivity)
  • combinations of the above (hp-adaptivity).

Small support of the basis

[edit]
Solving the two-dimensional problemuxx+uyy=4{\displaystyle u_{xx}+u_{yy}=-4} in the disk centered at the origin and radius 1, with zero boundary conditions.
(a) The triangulation.
(b) Thesparse matrixL of the discretized linear system
(c) The computed solution,u(x,y)=1x2y2{\displaystyle u(x,y)=1-x^{2}-y^{2}}

The primary advantage of this choice of basis is that the inner productsvj,vk=01vjvkdx{\displaystyle \langle v_{j},v_{k}\rangle =\int _{0}^{1}v_{j}v_{k}\,dx}andϕ(vj,vk)=01vjvkdx{\displaystyle \phi (v_{j},v_{k})=\int _{0}^{1}v_{j}'v_{k}'\,dx}will be zero for almost allj,k{\displaystyle j,k}.(The matrix containingvj,vk{\displaystyle \langle v_{j},v_{k}\rangle } in the(j,k){\displaystyle (j,k)} location is known as theGramian matrix.)In the one dimensional case, thesupport ofvk{\displaystyle v_{k}} is the interval[xk1,xk+1]{\displaystyle [x_{k-1},x_{k+1}]}. Hence, the integrands ofvj,vk{\displaystyle \langle v_{j},v_{k}\rangle } andϕ(vj,vk){\displaystyle \phi (v_{j},v_{k})} are identically zero whenever|jk|>1{\displaystyle |j-k|>1}.

Similarly, in the planar case, ifxj{\displaystyle x_{j}} andxk{\displaystyle x_{k}} do not share an edge of the triangulation, then the integralsΩvjvkds{\displaystyle \int _{\Omega }v_{j}v_{k}\,ds}andΩvjvkds{\displaystyle \int _{\Omega }\nabla v_{j}\cdot \nabla v_{k}\,ds}are both zero.

Matrix form of the problem

[edit]

If we writeu(x)=k=1nukvk(x){\displaystyle u(x)=\sum _{k=1}^{n}u_{k}v_{k}(x)} andf(x)=k=1nfkvk(x){\displaystyle f(x)=\sum _{k=1}^{n}f_{k}v_{k}(x)} then problem (3), takingv(x)=vj(x){\displaystyle v(x)=v_{j}(x)} forj=1,,n{\displaystyle j=1,\dots ,n}, becomes

k=1nukϕ(vk,vj)=k=1nfkvkvjdx{\displaystyle -\sum _{k=1}^{n}u_{k}\phi (v_{k},v_{j})=\sum _{k=1}^{n}f_{k}\int v_{k}v_{j}dx} forj=1,,n.{\displaystyle j=1,\dots ,n.}4

If we denote byu{\displaystyle \mathbf {u} } andf{\displaystyle \mathbf {f} } the column vectors(u1,,un)t{\displaystyle (u_{1},\dots ,u_{n})^{t}} and(f1,,fn)t{\displaystyle (f_{1},\dots ,f_{n})^{t}}, and if we letL=(Lij){\displaystyle L=(L_{ij})}andM=(Mij){\displaystyle M=(M_{ij})}be matrices whose entries areLij=ϕ(vi,vj){\displaystyle L_{ij}=\phi (v_{i},v_{j})}andMij=vivjdx{\displaystyle M_{ij}=\int v_{i}v_{j}dx}then we may rephrase (4) as

Lu=Mf.{\displaystyle -L\mathbf {u} =M\mathbf {f} .}5

It is not necessary to assumef(x)=k=1nfkvk(x){\displaystyle f(x)=\sum _{k=1}^{n}f_{k}v_{k}(x)}. For a general functionf(x){\displaystyle f(x)}, problem (3) withv(x)=vj(x){\displaystyle v(x)=v_{j}(x)} forj=1,,n{\displaystyle j=1,\dots ,n} becomes actually simpler, since no matrixM{\displaystyle M} is used,

Lu=b,{\displaystyle -L\mathbf {u} =\mathbf {b} ,}6

whereb=(b1,,bn)t{\displaystyle \mathbf {b} =(b_{1},\dots ,b_{n})^{t}} andbj=fvjdx{\displaystyle b_{j}=\int fv_{j}dx} forj=1,,n{\displaystyle j=1,\dots ,n}.

As we have discussed before, most of the entries ofL{\displaystyle L} andM{\displaystyle M} are zero because the basis functionsvk{\displaystyle v_{k}} have small support. So we now have to solve a linear system in the unknownu{\displaystyle \mathbf {u} } where most of the entries of the matrixL{\displaystyle L}, which we need to invert, are zero.

Such matrices are known assparse matrices, and there are efficient solvers for such problems (much more efficient than actually inverting the matrix.) In addition,L{\displaystyle L} is symmetric and positive definite, so a technique such as theconjugate gradient method is favored. For problems that are not too large, sparseLU decompositions andCholesky decompositions still work well. For instance,MATLAB's backslash operator (which uses sparse LU, sparse Cholesky, and other factorization methods) can be sufficient for meshes with a hundred thousand vertices.

The matrixL{\displaystyle L} is usually referred to as thestiffness matrix, while the matrixM{\displaystyle M} is dubbed themass matrix.

General form of the finite element method

[edit]

In general, the finite element method is characterized by the following process.

  • One chooses a grid forΩ{\displaystyle \Omega }. In the preceding treatment, the grid consisted of triangles, but one can also use squares or curvilinear polygons.
  • Then, one chooses basis functions. We used piecewise linear basis functions in our discussion, but it is common to use piecewise polynomial basis functions.

Separate consideration is the smoothness of the basis functions. For second-orderelliptic boundary value problems, piecewise polynomial basis function that is merely continuous suffice (i.e., the derivatives are discontinuous.) For higher-order partial differential equations, one must use smoother basis functions. For instance, for a fourth-order problem such asuxxxx+uyyyy=f{\displaystyle u_{xxxx}+u_{yyyy}=f}, one may use piecewise quadratic basis functions that areC1{\displaystyle C^{1}}.

Another consideration is the relation of the finite-dimensional spaceV{\displaystyle V} to its infinite-dimensional counterpart in the examples aboveH01{\displaystyle H_{0}^{1}}. Aconforming element method is one in which spaceV{\displaystyle V} is a subspace of the element space for the continuous problem. The example above is such a method. If this condition is not satisfied, we obtain anonconforming element method, an example of which is the space of piecewise linear functions over the mesh, which are continuous at each edge midpoint. Since these functions are generally discontinuous along the edges, this finite-dimensional space is not a subspace of the originalH01{\displaystyle H_{0}^{1}}.

Typically, one has an algorithm for subdividing a given mesh. If the primary method for increasing precision is to subdivide the mesh, one has anh-method (h is customarily the diameter of the largest element in the mesh.) In this manner, if one shows that the error with a gridh{\displaystyle h} is bounded above byChp{\displaystyle Ch^{p}}, for someC<{\displaystyle C<\infty } andp>0{\displaystyle p>0}, then one has an orderp method. Under specific hypotheses (for instance, if the domain is convex), a piecewise polynomial of orderd{\displaystyle d} method will have an error of orderp=d+1{\displaystyle p=d+1}.

If instead of makingh smaller, one increases the degree of the polynomials used in the basis function, one has ap-method. If one combines these two refinement types, one obtains anhp-method (hp-FEM). In the hp-FEM, the polynomial degrees can vary from element to element. High-order methods with large uniformp are called spectral finite element methods (SFEM). These are not to be confused withspectral methods.

For vector partial differential equations, the basis functions may take values inRn{\displaystyle \mathbb {R} ^{n}}.

Various types of finite element methods

[edit]

AEM

[edit]

The Applied Element Method or AEM combines features of both FEM andDiscrete element method or (DEM).

Main article:Applied element method

A-FEM

[edit]

Yang and Lui introduced the Augmented-Finite Element Method, whose goal was to model the weak and strong discontinuities without needing extra DoFs, as PuM stated.

CutFEM

[edit]

The Cut Finite Element Approach was developed in 2014.[15] The approach is "to make the discretization as independent as possible of the geometric description and minimize the complexity of mesh generation, while retaining the accuracy and robustness of a standard finite element method."[16]

Generalized finite element method

[edit]

The generalized finite element method (GFEM) uses local spaces consisting of functions, not necessarily polynomials, that reflect the available information on the unknown solution and thus ensure good local approximation. Then apartition of unity is used to “bond” these spaces together to form the approximating subspace. The effectiveness of GFEM has been shown when applied to problems with domains having complicated boundaries, problems with micro-scales, and problems with boundary layers.[17]

Mixed finite element method

[edit]
Main article:Mixed finite element method

The mixed finite element method is a type of finite element method in which extra independent variables are introduced as nodal variables during the discretization of a partial differential equation problem.

Variable – polynomial

[edit]

Thehp-FEM combines adaptively elements with variable sizeh and polynomial degreep to achieve exceptionally fast, exponential convergence rates.[18]

hpk-FEM

[edit]

Thehpk-FEM combines adaptively elements with variable sizeh, polynomial degree of the local approximationsp, and global differentiability of the local approximations (k-1) to achieve the best convergence rates.

XFEM

[edit]
Main article:Extended finite element method

Theextended finite element method (XFEM) is a numerical technique based on the generalized finite element method (GFEM) and the partition of unity method (PUM). It extends the classical finite element method by enriching the solution space for solutions to differential equations with discontinuous functions. Extended finite element methods enrich the approximation space to naturally reproduce the challenging feature associated with the problem of interest: the discontinuity, singularity, boundary layer, etc. It was shown that for some problems, such an embedding of the problem's feature into the approximation space can significantly improve convergence rates and accuracy. Moreover, treating problems with discontinuities with XFEMs suppresses the need to mesh and re-mesh the discontinuity surfaces, thus alleviating the computational costs and projection errors associated with conventional finite element methods at the cost of restricting the discontinuities to mesh edges.

Several research codes implement this technique to various degrees:

  1. GetFEM++
  2. xfem++
  3. openxfem++

XFEM has also been implemented in codes like Altair Radios, ASTER, Morfeo, and Abaqus. It is increasingly being adopted by other commercial finite element software, with a few plugins and actual core implementations available (ANSYS, SAMCEF, OOFELIE, etc.).

Scaled boundary finite element method (SBFEM)

[edit]

The introduction of the scaled boundary finite element method (SBFEM) came from Song and Wolf (1997).[19] The SBFEM has been one of the most profitable contributions in the area of numerical analysis of fracture mechanics problems. It is a semi-analytical fundamental-solutionless method combining the advantages of finite element formulations and procedures and boundary element discretization. However, unlike the boundary element method, no fundamental differential solution is required.

S-FEM

[edit]
Main article:Smoothed finite element method

The S-FEM, Smoothed Finite Element Methods, is a particular class of numerical simulation algorithms for the simulation of physical phenomena. It was developed by combining mesh-free methods with the finite element method.

Spectral element method

[edit]
Main article:Spectral element method

Spectral element methods combine the geometric flexibility of finite elements and the acute accuracy of spectral methods. Spectral methods are the approximate solution of weak-form partial equations based on high-order Lagrangian interpolants and used only with certain quadrature rules.[20]

Meshfree methods

[edit]
Main article:Meshfree methods

Discontinuous Galerkin methods

[edit]
Main article:Discontinuous Galerkin method

Finite element limit analysis

[edit]
Main article:Finite element limit analysis

Stretched grid method

[edit]
Main article:Stretched grid method

Loubignac iteration

[edit]

Loubignac iteration is an iterative method in finite element methods.

Crystal plasticity finite element method (CPFEM)

[edit]

The crystal plasticity finite element method (CPFEM) is an advanced numerical tool developed by Franz Roters. Metals can be regarded as crystal aggregates, which behave anisotropy under deformation, such as abnormal stress and strain localization. CPFEM, based on the slip (shear strain rate), can calculate dislocation, crystal orientation, and other texture information to consider crystal anisotropy during the routine. It has been applied in the numerical study of material deformation, surface roughness, fractures, etc.

Virtual element method (VEM)

[edit]

The virtual element method (VEM), introduced by Beirão da Veiga et al. (2013)[21] as an extension ofmimeticfinite difference (MFD) methods, is a generalization of the standard finite element method for arbitrary element geometries. This allows admission of general polygons (orpolyhedra in 3D) that are highly irregular and non-convex in shape. The namevirtual derives from the fact that knowledge of the local shape function basis is not required and is, in fact, never explicitly calculated.

Link with the gradient discretization method

[edit]

Some types of finite element methods (conforming, nonconforming, mixed finite element methods) are particular cases of thegradient discretization method (GDM). Hence the convergence properties of the GDM, which are established for a series of problems (linear and nonlinear elliptic problems, linear, nonlinear, and degenerate parabolic problems), hold as well for these particular FEMs.

Comparison to the finite difference method

[edit]

Thefinite difference method (FDM) is an alternative way of approximating solutions of PDEs. The differences between FEM and FDM are:

  • The most attractive feature of the FEM is its ability to handle complicated geometries (and boundaries) with relative ease. While FDM in its basic form is restricted to handle rectangular shapes and simple alterations thereof, the handling of geometries in FEM is theoretically straightforward.[3][22]
  • FDM is not usually used for irregular CAD geometries but more often for rectangular or block-shaped models.[23]
  • FEM generally allows for more flexible mesh adaptivity than FDM.[22]
  • The most attractive feature of finite differences is that it is straightforward to implement.[22]
  • One could consider the FDM a particular case of the FEM approach in several ways. E.g., first-order FEM is identical to FDM forPoisson's equation if the problem isdiscretized by a regular rectangular mesh with each rectangle divided into two triangles.
  • There are reasons to consider the mathematical foundation of the finite element approximation more sound, for instance, because the quality of the approximation between grid points is poor in FDM.
  • The quality of a FEM approximation is often higher than in the corresponding FDM approach, but this is highly problem-dependent, and several examples to the contrary can be provided.

Generally, FEM is the method of choice in all types of analysis in structural mechanics (i.e., solving for deformation and stresses in solid bodies or dynamics of structures). In contrast,computational fluid dynamics (CFD) tend to use FDM or other methods likefinite volume method (FVM). CFD problems usually require discretization of the problem into a large number of cells/gridpoints (millions and more). Therefore the cost of the solution favors simpler, lower-order approximation within each cell. This is especially true for 'external flow' problems, like airflow around the car, airplane, or weather simulation.

Finite element and fast fourier transform (FFT) methods

[edit]

Another method used for approximating solutions to a partial differential equation is theFast Fourier Transform (FFT), where the solution is approximated by a fourier series computed using the FFT. For approximating the mechanical response of materials under stress, FFT is often much faster,[24] but FEM may be more accurate.[25] One example of the respective advantages of the two methods is in simulation ofrolling a sheet ofaluminum (an FCC metal), anddrawing a wire oftungsten (a BCC metal). This simulation did not have a sophisticated shape update algorithm for the FFT method. In both cases, the FFT method was more than 10 times as fast as FEM, but in the wire drawing simulation, where there were large deformations ingrains, the FEM method was much more accurate. In the sheet rolling simulation, the results of the two methods were similar.[25] FFT has a larger speed advantage in cases where the boundary conditions are given in the materialsstrain, and loses some of its efficiency in cases where thestress is used to apply the boundary conditions, as more iterations of the method are needed.[26]

The FE and FFT methods can also be combined in avoxel based method (2) to simulate deformation in materials, where the FE method is used for the macroscale stress and deformation, and the FFT method is used on the microscale to deal with the effects of microscale on the mechanical response.[27] Unlike FEM, FFT methods’ similarities to image processing methods means that an actual image of the microstructure from a microscope can be input to the solver to get a more accurate stress response. Using a real image with FFT avoids meshing the microstructure, which would be required if using FEM simulation of the microstructure, and might be difficult. Because fourier approximations are inherently periodic, FFT can only be used in cases of periodic microstructure, but this is common in real materials.[27] FFT can also be combined with FEM methods by using fourier components as the variational basis for approximating the fields inside an element, which can take advantage of the speed of FFT based solvers.[28]

Application

[edit]
3D pollution transport model - concentration field on ground level
3D pollution transport model - concentration field on perpendicular surface

Various specializations under the umbrella of the mechanical engineering discipline (such as aeronautical, biomechanical, and automotive industries) commonly use integrated FEM in the design and development of their products. Several modern FEM packages include specific components such as thermal, electromagnetic, fluid, and structural working environments. In a structural simulation, FEM helps tremendously in producing stiffness and strength visualizations and minimizing weight, materials, and costs.[29]

FEM allows detailed visualization of where structures bend or twist, indicating the distribution of stresses and displacements. FEM software provides a wide range of simulation options for controlling the complexity of modeling and system analysis. Similarly, the desired level of accuracy required and associated computational time requirements can be managed simultaneously to address most engineering applications. FEM allows entire designs to be constructed, refined, and optimized before the design is manufactured. The mesh is an integral part of the model and must be controlled carefully to give the best results. Generally, the higher the number of elements in a mesh, the more accurate the solution of the discretized problem. However, there is a value at which the results converge, and further mesh refinement does not increase accuracy.[30]

Finite Element Model of a human knee joint[31]

This powerful design tool has significantly improved both the standard of engineering designs and the design process methodology in many industrial applications.[32] The introduction of FEM has substantially decreased the time to take products from concept to the production line.[32] Testing and development have been accelerated primarily through improved initial prototype designs using FEM.[33] In summary, benefits of FEM include increased accuracy, enhanced design and better insight into critical design parameters, virtual prototyping, fewer hardware prototypes, a faster and less expensive design cycle, increased productivity, and increased revenue.[32]

In the 1990s FEM was proposed for use in stochastic modeling for numerically solving probability models[34] and later for reliability assessment.[35]

FEM is widely applied for approximating differential equations that describe physical systems. This method is very popular in the community ofComputational fluid dynamics, and there are many applications for solvingNavier–Stokes equations with FEM.[36][37][38] Recently, the application of FEM has been increasing in the researches of computational plasma. Promising numerical results using FEM forMagnetohydrodynamics,Vlasov equation, andSchrödinger equation have been proposed.[39][40]

See also

[edit]
*Applied element method

References

[edit]
  1. ^Hoang, Viet Ha; Schwab, Christoph (2005). "High-dimensional finite elements for elliptic problems with multiple scales".Multiscale Modeling & Simulation.3 (1). SIAM:168–194.doi:10.1137/040606041 (inactive 2024-11-02).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  2. ^Daryl L. Logan (2011).A first course in the finite element method. Cengage Learning.ISBN 9780495668275.
  3. ^abReddy, J. N. (2006).An Introduction to the Finite Element Method (Third ed.). McGraw-Hill.ISBN 9780071267618.
  4. ^Huebner, Kenneth H. (2001).The Finite Element Method for Engineers. Wiley.ISBN 978-0-471-37078-9.
  5. ^Liu, Wing Kam; Li, Shaofan; Park, Harold S. (2022)."Eighty Years of the Finite Element Method: Birth, Evolution, and Future".Archives of Computational Methods in Engineering.29 (6):4431–4453.arXiv:2107.04960.doi:10.1007/s11831-022-09740-9.ISSN 1134-3060.S2CID 235794921.
  6. ^Hrennikoff, Alexander (1941). "Solution of problems of elasticity by the framework method".Journal of Applied Mechanics.8 (4):169–175.Bibcode:1941JAM.....8A.169H.doi:10.1115/1.4009129.
  7. ^Courant, R. (1943)."Variational methods for the solution of problems of equilibrium and vibrations".Bulletin of the American Mathematical Society.49:1–23.doi:10.1090/s0002-9904-1943-07818-4.
  8. ^"СПб ЭМИ РАН".emi.nw.ru. Archived fromthe original on 30 September 2015. Retrieved17 March 2018.
  9. ^Hinton, Ernest; Irons, Bruce (July 1968). "Least squares smoothing of experimental data using finite elements".Strain.4 (3):24–27.doi:10.1111/j.1475-1305.1968.tb01368.x.
  10. ^"SAP-IV Software and Manuals". NISEE e-Library, The Earthquake Engineering Online Archive.Archived from the original on 2013-03-09. Retrieved2013-01-24.
  11. ^Gard Paulsen; Håkon With Andersen; John Petter Collett; Iver Tangen Stensrud (2014).Building Trust, The history of DNV 1864-2014. Lysaker, Norway: Dinamo Forlag A/S. pp. 121, 436.ISBN 978-82-8071-256-1.
  12. ^Strang, Gilbert;Fix, George (1973).An Analysis of The Finite Element Method. Prentice Hall.ISBN 978-0-13-032946-2.
  13. ^Olek C Zienkiewicz; Robert L Taylor; J.Z. Zhu (31 August 2013).The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann.ISBN 978-0-08-095135-5.
  14. ^Bathe, K.J. (2006).Finite Element Procedures. Cambridge, MA: Klaus-Jürgen Bathe.ISBN 978-0979004902.
  15. ^celledoni (2023-02-27)."CutFEM: Discretizing Partial Differential Equations and Geometry".ECMI. Retrieved2023-10-13.
  16. ^Burman, Erik; Claus, Susanne; Hansbo, Peter; Larson, Mats G.; Massing, André (2015-11-16)."CutFEM: Discretizing geometry and partial differential equations".International Journal for Numerical Methods in Engineering.104 (7):472–501.Bibcode:2015IJNME.104..472B.doi:10.1002/nme.4823.ISSN 0029-5981.
  17. ^Babuška, Ivo; Banerjee, Uday;Osborn, John E. (June 2004). "Generalized Finite Element Methods: Main Ideas, Results, and Perspective".International Journal of Computational Methods.1 (1):67–103.doi:10.1142/S0219876204000083.
  18. ^P. Solin, K. Segeth, I. Dolezel: Higher-Order Finite Element Methods, Chapman & Hall/CRC Press, 2003
  19. ^Song, Chongmin; Wolf, John P. (5 August 1997). "The scaled boundary finite-element method – alias consistent infinitesimal finite-element cell method – for elastodynamics".Computer Methods in Applied Mechanics and Engineering.147 (3–4):329–355.Bibcode:1997CMAME.147..329S.doi:10.1016/S0045-7825(97)00021-2.
  20. ^"Spectral Element Methods".State Key Laboratory of Scientific and Engineering Computing. Archived fromthe original on 2017-08-10. Retrieved2017-07-28.
  21. ^Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A. (2013). "Basic principles of Virtual Element Methods".Mathematical Models and Methods in Applied Sciences.23 (1):199–214.doi:10.1142/S0218202512500492.
  22. ^abcTopper, Jürgen (January 2005)."Option pricing with finite elements".Wilmott.2005 (1):84–90.doi:10.1002/wilm.42820050119 (inactive 3 December 2024).ISSN 1540-6962.{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)
  23. ^"What's The Difference Between FEM, FDM, and FVM?".Machine Design. 2016-04-18.Archived from the original on 2017-07-28. Retrieved2017-07-28.
  24. ^Ma, X; Parvathaneni, K; Lomov, S; Vasiukov, D; Shakoor, M; Park, C (December 2019)."Quantitative comparison between fast fourier transform and finite element method for micromechanical modeling of composite".FiBreMoD Conference.
  25. ^abPrakash, A; Lebensohn, R A (2009-09-01)."Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms".Modelling and Simulation in Materials Science and Engineering.17 (6): 064010.Bibcode:2009MSMSE..17f4010P.doi:10.1088/0965-0393/17/6/064010.ISSN 0965-0393.
  26. ^Cruzado, A; Segurado, J; Hartl, D J; Benzerga, A A (2021-06-01)."A variational fast Fourier transform method for phase-transforming materials".Modelling and Simulation in Materials Science and Engineering.29 (4): 045001.Bibcode:2021MSMSE..29d5001C.doi:10.1088/1361-651X/abe4c7.ISSN 0965-0393.
  27. ^abGierden, Christian; Kochmann, Julian; Waimann, Johanna; Svendsen, Bob; Reese, Stefanie (2022-10-01)."A Review of FE-FFT-Based Two-Scale Methods for Computational Modeling of Microstructure Evolution and Macroscopic Material Behavior".Archives of Computational Methods in Engineering.29 (6):4115–4135.doi:10.1007/s11831-022-09735-6.ISSN 1886-1784.
  28. ^Zeman, J.; de Geus, T. W. J.; Vondřejc, J.; Peerlings, R. H. J.; Geers, M. G. D. (2017-09-07)."A finite element perspective on nonlinear FFT-based micromechanical simulations: A FINITE ELEMENT PERSPECTIVE ON NONLINEAR FFT-BASED SIMULATIONS".International Journal for Numerical Methods in Engineering.111 (10):903–926.arXiv:1601.05970.doi:10.1002/nme.5481.
  29. ^Kiritsis, D.; Eemmanouilidis, Ch.; Koronios, A.; Mathew, J. (2009). "Engineering Asset Management".Proceedings of the 4th World Congress on Engineering Asset Management (WCEAM):591–592.
  30. ^"Finite Element Analysis: How to create a great model".Coventive Composites. 2019-03-18. Retrieved2019-04-05.[permanent dead link]
  31. ^Naghibi Beidokhti, Hamid; Janssen, Dennis; Khoshgoftar, Mehdi; Sprengers, Andre; Perdahcioglu, Emin Semih; Boogaard, Ton Van den; Verdonschot, Nico (2016)."A comparison between dynamic implicit and explicit finite element simulations of the native knee joint"(PDF).Medical Engineering & Physics.38 (10):1123–1130.doi:10.1016/j.medengphy.2016.06.001.PMID 27349493.Archived(PDF) from the original on 2018-07-19. Retrieved2019-09-19.
  32. ^abcHastings, J. K., Juds, M. A., Brauer, J. R.,Accuracy and Economy of Finite Element Magnetic Analysis, 33rd Annual National Relay Conference, April 1985.
  33. ^McLaren-Mercedes (2006)."McLaren Mercedes: Feature - Stress to impress". Archived fromthe original on 2006-10-30. Retrieved2006-10-03.
  34. ^Peng Long; Wang Jinliang; Zhu Qiding (19 May 1995). "Methods with high accuracy for finite element probability computing".Journal of Computational and Applied Mathematics.59 (2):181–189.doi:10.1016/0377-0427(94)00027-X.
  35. ^Haldar, Achintya; Mahadevan, Sankaran (2000).Reliability Assessment Using Stochastic Finite Element Analysis. John Wiley & Sons.ISBN 978-0471369615.
  36. ^Girault, Vivette; Raviart, Pierre-Arnaud (1979).Finite Element Approximation of the Navier-Stokes Equations. Vol. 749. Springer Berlin.ISBN 978-3-540-09557-6.
  37. ^Cuvelier, Cornelis; Segal, August; Van Steenhoven, Anton A (1986).Finite Element Methods and Navier-Stokes Equations. Vol. 22. Springer Science & Business Media.ISBN 978-1-4020-0309-7.
  38. ^Girault, Vivette; Raviart, Pierre-Arnaud (2012).Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Vol. 5. Springer Science & Business Media.ISBN 978-3-642-64888-5.
  39. ^Karakashian, Ohannes; Makridakis, Charalambos (1999). "A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method".SIAM Journal on Numerical Analysis.36 (6). SIAM:1779–1807.doi:10.1016/0377-0427(94)00027-X.
  40. ^Sovinec, Carl R.; Glasser, A.H.; Gianakon, T.A.; Barnes, D.C.; Nebel, R.A.; Kruger, S.E.; Schnack, D.D.; Plimpton, S.J.; Tarditi, A.; Chu, M.S. (2004). "Nonlinear Magnetohydrodynamics Simulation Using High-Order Finite Elements".Journal of Computational Physics.195 (1). Elsevier:355–386.Bibcode:2004JCoPh.195..355S.doi:10.1016/j.jcp.2003.10.004.

Further reading

[edit]
Wikimedia Commons has media related toFinite element modelling.
Finite difference
Parabolic
Hyperbolic
Others
Finite volume
Finite element
Meshless/Meshfree
Domain decomposition
Others
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Finite_element_method&oldid=1282833112"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp