Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Field-reversed configuration

From Wikipedia, the free encyclopedia
Magnetic confinement fusion reactor
Field-reversed configuration: a toroidal electric current is induced inside a cylindrical plasma, making a poloidal magnetic field, reversed in respect to the direction of an externally applied magnetic field. The resultant high-beta axisymmetric compact toroid is self-confined.

Afield-reversed configuration (FRC) is a type ofplasma device studied as a means of producingnuclear fusion. It confines a plasma on closed magneticfield lines without a central penetration.[1][2] In an FRC, the plasma has the form of a self-stable torus, similar to asmoke ring.

FRCs are closely related to another self-stablemagnetic confinement fusion device, thespheromak. Both are considered part of thecompact toroid class of fusion devices. FRCs normally have a plasma that is more elongated than spheromaks, having the overall shape of a hollowed out sausage rather than the roughly spherical spheromak.

FRCs were a major area of research in the 1960s and into the 1970s, but had problems scaling up into practicalfusion triple products (target combinations of density, temperature and confinement time). Interest returned in the 1990s and as of 2019[update], FRCs were an active research area.

History

[edit]

The FRC was first observed in laboratories in the late 1950s duringtheta pinch experiments with a reversed background magnetic field.[3] The original idea was attributed to the Greek scientist and engineerNicholas C. Christofilos who developed the concept of E-layers for theAstron fusion reactor.[4]

The first studies were at theUnited States Naval Research Laboratory (NRL) in the 1960s. Considerable data were collected, with over 600 published papers.[5] Almost all research was conducted duringProject Sherwood atLos Alamos National Laboratory (LANL) from 1975 to 1990,[6] and during 18 years at the Redmond Plasma Physics Laboratory of theUniversity of Washington,[7] with the larges experiment (LSX).[8]

Later research was at theAir Force Research Laboratory (AFRL),[9] the Fusion Technology Institute (FTI) of theUniversity of Wisconsin-Madison,[10]Princeton Plasma Physics Laboratory,[11] and theUniversity of California, Irvine.[12]

Private companies now study FRCs for electricity generation, includingGeneral Fusion,TAE Technologies, andHelion Energy.[13]

The Electrodeless Lorentz Force Thruster (ELF) developed by MSNW was an attempt to design a space propulsion device.[14] ELF was a candidate inNASA's NextSTEP advanced electric propulsion program, along with the X-3 Nested-Channel Hall Thruster andVASIMR[15] before MSNW dissolved.

Applications

[edit]

The primary application is for fusion power generation.

The FRC is also considered fordeep space exploration, not only as a possible nuclear energy source, but as means of accelerating a propellant to high levels ofspecific impulse (Isp) forelectrically powered spaceships andfusion rockets, with interest expressed byNASA.[16][17][18][19][20]

Comparisons

[edit]
The Difference Between an FRC and a Spheromak
Main article:Magnetic confinement fusion

Producing fusion power by confining the plasma with magnetic fields is most effective if the field lines do not penetrate solid surfaces but close on themselves into circles or toroidal surfaces. The mainline confinement concepts oftokamak andstellarator do this in a toroidal chamber, which allows a great deal of control over the magnetic configuration, but requires a very complex construction. The field-reversed configuration offers an alternative in that the field lines are closed, providing good confinement, but the chamber is cylindrical, allowing simpler, easier construction and maintenance.[21]

Field-reversed configurations andspheromaks are together known ascompact toroids.Spheromaks and FRC differ in that a spheromak has an extra toroidal field. This toroidal field can run along the same or opposite direction as the spinning plasma.[22] In the spheromak the strength of thetoroidal magnetic field is similar to that of thepoloidal field. By contrast, the FRC has little to no toroidal field component and is confined solely by a poloidal field. The lack of a toroidal field means that the FRC has nomagnetic helicity and that it has ahigh beta. The high beta makes the FRC attractive as afusion reactor and well-suited toaneutronic fuels because of the low required magnetic field. Spheromaks haveβ ≈ 0.1 whereas a typical FRC hasβ ≈ 1.[23][24]

Formation

[edit]
The Dimensions of an FRC, including the S-parameter

In modern FRC experiments, the plasma current that reverses the magnetic field can be induced in a variety of ways.

When a field-reversed configuration is formed using thetheta-pinch (or inductive electric field) method, a cylindrical coil first produces an axial magnetic field. Then the gas is pre-ionized, which "freezes in" the bias field from amagnetohydrodynamic standpoint, finally the axial field is reversed, hence "field-reversed configuration." At the ends, reconnection of the bias field and the main field occurs, producing closed field lines. The main field is raised further, compressing and heating the plasma and providing a vacuum field between the plasma and the wall.[25]

Neutral beams are known to drive current inTokamaks[26] by directly injecting charged particles. FRCs can also be formed, sustained, and heated by application of neutral beams.[24][27] In such experiments, as above, a cylindrical coil produces a uniform axial magnetic field and gas is introduced and ionized, creating a background plasma. Neutral particles are then injected into the plasma. They ionize and the heavier, positively-charged particles form a current ring which reverses the magnetic field.

Spheromaks are FRC-like configurations with finite toroidal magnetic field. FRCs have been formed through the merging of spheromaks of opposite and canceling toroidal field.[28]

Rotating magnetic fields have also been used to drive current.[29] In such experiments, as above, gas is ionized and an axial magnetic field is produced. A rotating magnetic field is produced by external magnetic coils perpendicular to the axis of the machine, and the direction of this field is rotated about the axis. When the rotation frequency is between the ion and electron gyro-frequencies, the electrons in the plasma co-rotate with the magnetic field (are "dragged"), producing current and reversing the magnetic field. More recently, so-called odd parity rotating magnetic fields[30][31] have been used to preserve the closed topology of the FRC. It was analytically shown that at a very high critical threshold magnitude of 'odd parity' rotating magnetic field, the axisymmetric equilibrium magnetic field lines loses closure and fundamentally changes field topology.[31]

Single particle orbits

[edit]
FRC particle trajectory in which a particle starts with cyclotron motion inside the null, transitions to betatron motion, and ends as cyclotron motion outside the null. This motion is in the midplane of the machine. Coils are above and below the figure.

FRCs contain an important and uncommon feature: a "magnetic null," or circular line on which the magnetic field is zero. This is necessarily the case, as inside the null the magnetic field points one direction and outside the null the magnetic field points the opposite direction. Particles far from the null trace closed cyclotron orbits as in other magnetic fusion geometries. Particles which cross the null, however, trace notcyclotron or circular orbits butbetatron or figure-eight-like orbits,[32] as the orbit's curvature changes direction when it crosses the magnetic null.

Because the particle's orbits are not cyclotron, models of plasma behavior based on cyclotron motion likemagnetohydrodynamics (MHD) are inapplicable in the region around the null. The size of this region is related to the s-parameter,[33] or the ratio of the distance between the null and separatrix, and the thermal ion gyroradius. At high-s, most particles do not cross the null and this effect is negligible. At low-s, ~2, this effect dominates and the FRC is said to be "kinetic" rather than "MHD."

Plasma stability

[edit]

At low s-parameter, most ions inside an FRC follow largebetatronorbits (their averagegyroradius is about half the size of the plasma) which are typical inaccelerator physics rather thanplasma physics. These FRCs are very stable because the plasma is not dominated by usual small gyroradius particles like otherthermodynamic equilibrium ornonthermal plasmas. Its behavior is not described by classicalmagnetohydrodynamics, hence there are noAlfvén waves and almost noMHD instabilities despite their theoretical prediction,[citation needed] and it avoids the typical "anomalous transport", i.e. processes in which excess loss ofparticles orenergy occurs.[34][35][36]

As of 2000[update], several remaining instabilities are being studied:

  • Thetilt and shift modes. Those instabilities can be mitigated by either including a passive stabilizing conductor, or by forming veryoblate plasmas (i.e. very elongated plasmas),[37] or by creating a self-generated toroidal field.[38] The tilt mode has also been stabilized in FRC experiments by increasing the ion gyroradii.[33]
  • Themagnetorotational instability. This mode causes a rotating elliptical distortion of the plasma boundary, and can destroy the FRC when the distorted plasma comes in contact with the confinement chamber.[39] Successful stabilization methods include the use of a quadrupole stabilizing field,[40][41] and the effects of a rotating magnetic field (RMF).[42][43]

Experiments

[edit]
Selected field reverse experiments, pre-1988[5]
YearDeviceLocationDevice length
(meter)
Device diameter
(meter)
B-field
(tesla)
Fill pressure
(pascal)
Confinement
(seconds)
Studied
1959-NRL0.100.0610.0013.332.E-06Annihilation
1961Scylla ILANL0.110.055.5011.333.E-06Annihilation
1962Scylla IIILANL0.190.0812.5011.334.E-06Rotation
1962ThetatronCulham0.210.058.6013.333.E-06Contraction
1962Julich[clarification needed]0.100.046.0030.661.E-06Formation, tearing
1963Culham0.300.105.006.676.E-06Contraction
19640-PIIGarching[clarification needed]0.300.055.3013.331.E-06Tearing, contraction
1965PharosNRL1.800.173.008.003.E-05Confinement, rotation
1967CentaurCulham0.500.192.102.672.E-05Confinement, rotation
1967JuliettaJulich1.280.112.706.672.E-05Tearing
1971E-GGarching0.700.112.806.673.E-05Tearing, rotation
1975BNKurchatov0.900.210.450.27 - 1.075.E-05Formation
1979TORKurchatov1.500.301.000.27 - 0.671.E-04Formation
1979FRX-ALASL1.000.250.600.53 - 0.933.E-05Confinement
1981FRX-BLANL1.000.251.301.20 - 6.536.E-05Confinement
1982STP-LNagoya1.500.121.001.203.E-05Rotation
1982NUCTENihon2.000.161.006.E-05Confinement, rotation
1982PIACEOsaka1.000.151.406.E-05Rotation
1983FRX-CLANL2.000.500.800.67 - 2.673.E-04Confinement
1984TRX-1MSNW1.000.251.000.67 -2.002.E-04Formation, confinement
1984CTTXPenn S U0.500.120.4013.334.E-05Confinement
1985HBQMU Wash3.000.220.500.53 - 0.933.E-05Formation
1986OCTOsaka0.600.221.001.E-04Confinement
1986TRX-2STI1.000.241.300.40 - 2.671.E-04Formation, confinement
1987CSSU Wash1.000.450.301.33 - 8.006.E-05Slow formation
1988FRXC/LSMLANL2.000.700.600.27 - 1.335.E-04Formation, confinement
1990LSXSTI/MSNW5.000.900.800.27 - 0.67Stability, confinement
Selected field reverse configurations, 1988 - 2011[44]
DeviceInstitutionDevice typeElectron densityMax ion or electronFRC diameterLength/diameter
1020 / Meter3Temperature [eV][Meter]
Spheromak-3Tokyo UniversityMerging spheromak5.0 – 10.020 – 1000.401.0
Spheromak-4Tokyo UniversityMerging spheromak10 – 401.20 - 1.400.5 – 0.7
Compact Torus Exp-IIINihon UniversityTheta-pinch5.0 – 400.0200 – 3000.10 - 0.405.0 – 10.0
Field-Reversed Exp LinerLos AlamosTheta-pinch1,500.0 – 2,500.0200 – 7000.03 - 0.057.0 – 10.0
FRC Injection ExpOsaka UniversityTranslation trapping3.0 – 5.0200 – 3000.30 - 0.407.0 – 15.0
Swarthmore Spheromak ExpSwarthmoreMerging spheromak10020 – 400.401.5
Magnetic Reconnection ExpPrinceton (PPPL)Merging spheromak5.0 – 20.0301.000.3 – 0.7
Princeton field-reversed configuration experiment (PFRC)Princeton (PPPL)Rotating B-field0.05 – 0.3200 – 3000.06
Translation Confinement SustainmentUniversity of WashingtonRotating B-field0.1 – 2.525 – 500.70 - 0.74
Translation Confinement Sustainment-UpgradeUniversity of WashingtonRotating B-field0.4 – 1.550 – 2000.70 - 0.741.5 – 3.0
Plasma Liner CompressionMSNWTranslation trapping0.20
Inductive Plasma AcceleratorMSNWMerging collision23.0 – 26.03500.20
Inductive Plasma Accelerator-CMSNWMerging compression300.01200 - 20000.210.0
Colorado FRCUniversity of ColoradoMerging spheromak
Irvine Field Reverse ConfigurationUC IrvineCoaxial source150.0100.60
C-2Tri Alpha Energy, Inc.Merging collision5.0 – 10.0200 – 5000.60 - 0.803.0 – 5.0
STXUniversity of WashingtonRotating B-field0.5400.46
Prairie View RotamakPrairie View A&MRotating B-field0.110-300.42

Spacecraft propulsion

[edit]
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(July 2025) (Learn how and when to remove this message)

Field-reversed configuration devices have been considered for spacecraft propulsion. By angling the walls of the device outward, the plasmoid can be accelerated in the axial direction and out of the device, generating thrust.

References

[edit]
  1. ^Freidberg, Jeffrey P. (2007).Plasma Physics and Fusion Energy. Cambridge University Press.ISBN 978-0-521-85107-7.
  2. ^Freidberg, Jeffrey P. (2015).Plasma Physics and Fusion Energy(DJVU). Cambridge University Press. p. 335. Retrieved13 May 2023 – via Internet Archive.
  3. ^Kolb, A.C.; Dobbie, C.B.; Griem, H.R. (1 July 1959). "Field mixing and associated neutron production in a plasma".Physical Review Letters.3 (1). The original idea was attributed to the Greek scientist and engineer Nicholas C. Christofilos.:5–7.Bibcode:1959PhRvL...3....5K.doi:10.1103/PhysRevLett.3.5.(subscription required)
  4. ^Reinders, L. J. (2021).The Fairy Tale of Nuclear Fusion. Cham, Switzerland: Springer International Publishing. p. 83.doi:10.1007/978-3-030-64344-7.ISBN 978-3-030-64343-0.S2CID 241339825.
  5. ^abTuszewski, M. (November 1988)."Field reversed configurations".Nuclear Fusion.28 (11): 2033.doi:10.1088/0029-5515/28/11/008.S2CID 122791237.
  6. ^McKenna KF, Armstrong WT, Barnes DC, Bartsch RR, Chrien RE, Cochrane JC, Klingner PL, Hugrass WN, Linford RK, Rej DJ, Schwarzmeier JL, Sherwood EG, Siemon RE, Spencer RL, Tuszewski M (1985)."Field-reversed configuration research at Los Alamos".Nuclear Fusion.25 (9): 1317.doi:10.1088/0029-5515/25/9/057.S2CID 122374822.
  7. ^"Web page of the Redmond Plasma Physics Laboratory". Archived fromthe original on 2015-02-19.
  8. ^Hoffman, Alan L.; Carey, Larry L.; Crawford, Edward A.; Harding, Dennis G.; DeHart, Terence E.; McDonald, Kenneth F.; McNeil, John L.; Milroy, Richard D.; Slough, John T.; Maqueda, Ricardo; Wurden, Glen A. (March 1993). "The Large-s Field-Reversed Configuration Experiment".Fusion Science and Technology.23 (2):185–207.Bibcode:1993FuTec..23..185H.doi:10.13182/FST93-A30147.OSTI 6514222.
  9. ^Kirtley, David; Brown, Daniel L.; Gallimore, Alec D.; Haas, James (June 2005).Details on an AFRL Field Reversed Configuration Plasma Device(PDF) (Technical report). Air Force Research Laboratory.
  10. ^"Web page of the Fusion Technology Institute, University of Wisconsin-Madison". Archived fromthe original on 2020-05-16. Retrieved2014-06-08.
  11. ^Cohen, Samuel (2012-10-31)."First operation of the PFRC-2 device".Bulletin of the American Physical Society.57 (12).Bibcode:2012APS..DPPPP8051C.
  12. ^Harris, W.S.; Trask, E.; Roche, T.; Garate, E.P.; Heidbrink, W.W.; McWilliams, R. (20 November 2009)."Ion flow measurements and plasma current analysis in the Irvine Field Reversed Configuration"(PDF).Physics of Plasmas.16 (11). American Institute of Physics: 112509.Bibcode:2009PhPl...16k2509H.doi:10.1063/1.3265961.S2CID 103136706.
  13. ^Poddar, Yash (11 March 2014)."Can Startups Make Nuclear Fusion Possible?".Stanford University.
  14. ^Pancotti, Anthony."Testimony before the Space Subcommittee of the House Committee on Science, Space, and Technology United States House of Representatives Hearing on In-Space Propulsion: Strategic Choices and Options June 29, 2017"(PDF). Archived fromthe original(PDF) on 29 November 2022. Retrieved8 April 2019.
  15. ^"NASA's NextSTEP Advanced Electric Propulsion Activities"(PDF). NASA. 9 July 2018. Retrieved8 April 2019.
  16. ^Wessel, F. J. (2000). "Colliding beam fusion reactor space propulsion system".AIP Conference Proceedings. Vol. 504. pp. 1425–1430.doi:10.1063/1.1290961.ISBN 978-1563969195.
  17. ^Cheung, A. (2004). "Colliding Beam Fusion Reactor Space Propulsion System".AIP Conference Proceedings. Vol. 699. pp. 354–361.doi:10.1063/1.1649593.
  18. ^Slough, John; Pancotti, Anthony; Pfaff, Michael; Pihl, Christopher; Votroubek, George (November 2012).The Fusion Driven Rocket(PDF). NIAC 2012. Hampton, VA: NASA Innovative Advanced Concepts.
  19. ^Slough, John; Pancotti, Anthony; Kirtley, David; Votroubek, George (6–10 October 2013).Electromagnetically Driven Fusion Propulsion(PDF). 33rd International Electric Propulsion Conference (IEPC-2013). Washington, D.C.: George Washington University.
  20. ^"Nuclear Fusion Rocket Could Reach Mars in 30 Days".Space.com. 10 April 2013.
  21. ^Ryzhkov, Sergei V. (2002)."Features of Formation, Confinement and Stability of the Field Reversed Configuration"(PDF).Problems of Atomic Science and Technology. Plasma Physics.7 (4):73–75.ISSN 1682-9344.
  22. ^Dolan, Thomas. Magnetic Fusion Technology. Vol. 2. New York City: Springer, 2012. Print.
  23. ^Ono, Y (1999). "New relaxation of merging spheromaks to a field reversed configuration".Nuclear Fusion.39 (11Y):2001–2008.Bibcode:1999NucFu..39.2001O.doi:10.1088/0029-5515/39/11Y/346.S2CID 250871394.
  24. ^abMomita Okamoto Nomura (1987)."Advanced Fuels in a Field-Reversed Configuration".Fusion Science and Technology.11 (2):436–450.Bibcode:1987FuTec..11..436M.doi:10.13182/FST87-A25020. Retrieved2016-01-05.
  25. ^Slough, J (2011). "Creation of a high-temperature plasma through merging and compression of supersonic field reversed configuration plasmoids".Nuclear Fusion.51 (5): 053008.Bibcode:2011NucFu..51e3008S.doi:10.1088/0029-5515/51/5/053008.S2CID 120579314.
  26. ^Taguchi, M (1992-01-01). "Approximate expression for beam driven current in tokamak plasmas".Nuclear Fusion.32 (1):143–150.Bibcode:1992NucFu..32..143T.doi:10.1088/0029-5515/32/1/i12.S2CID 250743246.
  27. ^Rostoker, N.; Binderbauer, M.; Monkhorst, H. J. (1996-01-01)."Fusion reactors based on colliding beams in a field reversed configuration plasma".Fusion Technology.30 (3):1395–1402.Bibcode:1996FuTec..30.1395R.doi:10.13182/FST96-A11963143.
  28. ^Ji, H.;Belova, E.; Gerhardt, S. P.; Yamada, M. (2006-12-01). "Recent Advances in the SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques) Concept".Journal of Fusion Energy.26 (1–2):93–97.Bibcode:2007JFuE...26...93J.doi:10.1007/s10894-006-9043-4.ISSN 0164-0313.S2CID 59377360.
  29. ^Jones, Ieuan R. (1999-05-01). "A review of rotating magnetic field current drive and the operation of the rotamak as a field-reversed configuration (Rotamak-FRC) and a spherical tokamak (Rotamak-ST)".Physics of Plasmas.6 (5):1950–1957.Bibcode:1999PhPl....6.1950J.doi:10.1063/1.873452.ISSN 1070-664X.
  30. ^Glasser, A. H.; Cohen, S. A. (2002-05-01)."Ion and electron acceleration in the field-reversed configuration with an odd-parity rotating magnetic field".Physics of Plasmas.9 (5):2093–2102.Bibcode:2002PhPl....9.2093G.doi:10.1063/1.1459456.ISSN 1070-664X.
  31. ^abAhsan, T.; Cohen, S. A. (July 2022)."An analytical approach to evaluating magnetic-field closure and topological changes in FRC devices".Physics of Plasmas.29 (7): 072507.Bibcode:2022PhPl...29g2507A.doi:10.1063/5.0090163.S2CID 251140943.
  32. ^Wang, M. Y.; Miley, G. H. (1979-01-01)."Particle orbits in field-reversed mirrors".Nuclear Fusion.19 (1): 39.doi:10.1088/0029-5515/19/1/005.ISSN 0029-5515.S2CID 120544136.
  33. ^abSlough, J. T.; Hoffman, A. L. (1988). "Observation of tilt stability of field reversed configurations at large s".Nuclear Fusion.28 (6): 1121.doi:10.1088/0029-5515/28/6/016.S2CID 121761596.
  34. ^Rostoker, N.; Wessel, F.J.; Rahman, H.U.; Maglich, B.C.; Spivey, B. (22 March 1993)."Magnetic Fusion with High Energy Self-Colliding Ion Beams".Physical Review Letters.70 (1818):1818–1821.Bibcode:1993PhRvL..70.1818R.doi:10.1103/PhysRevLett.70.1818.PMID 10053394.S2CID 32950265.
  35. ^Binderbauer, M.W.; Rostoker, N. (December 1996)."Turbulent Transport in Magnetic Confinement: How to Avoid it".Journal of Plasma Physics.56 (3):451–465.Bibcode:1996JPlPh..56..451B.doi:10.1017/S0022377800019413.S2CID 122582085.
  36. ^Rostoker, N.; Binderbauer, M. W.; Wessel, F. J.; Monkhorst, H. J.Colliding Beam Fusion Reactor(PDF). Invited Paper, Special Session on Advanced Fuels APS-DPP. American Physical Society. Archived fromthe original(PDF) on 2002-01-26.
  37. ^Gerhardt, S. P.;Belova, E.; Inomoto, M.; Yamada, M.; Ji, H.; Ren, Y.; Kuritsyn, A. (2006)."Equilibrium and stability studies of oblate field-reversed configurations in the Magnetic Reconnection Experiment"(PDF).Physics of Plasmas.13 (11): 112508.Bibcode:2006PhPl...13k2508G.doi:10.1063/1.2360912.
  38. ^Omelchenko, Yu. A. (27–29 March 2000).Stabilization of the FRC Tilt Mode by a Self-Generated Toroidal Field(PDF). Sherwood 2000 International Fusion/Plasma Theory Conference. UCLA, Los Angeles, California: General Atomics Fusion Energy Research. Archived fromthe original(PDF) on 2014-12-16.
  39. ^Tuszewski, M. (1984). "Experimental study of the equilibrium of field-reversed configurations".Plasma Physics and Controlled Fusion.26 (8):991–1005.Bibcode:1984PPCF...26..991T.doi:10.1088/0741-3335/26/8/004.S2CID 250861012.
  40. ^Ohi, S.; Minato, T.; Kawakami, Y.; Tanjyo, M.; Okada, S.; Ito, Y.; Kako, M.; Gotô, S.; Ishimura, T.; Itô, H. (1983). "Quadrupole Stabilization of the n=2 Rotational Instability of a Field-Reversed Theta-Pinch Plasma".Physical Review Letters.51 (12): 1042.Bibcode:1983PhRvL..51.1042O.doi:10.1103/PhysRevLett.51.1042.
  41. ^Hoffman, A. L. (1983). "Suppression of the n=2 rotational instability in field-reversed configurations".Physics of Fluids.26 (6):1626–1629.Bibcode:1983PhFl...26.1626H.doi:10.1063/1.864298.
  42. ^Guo, H.; Hoffman, A.; Milroy, R.; Miller, K.; Votroubek, G. (2005). "Stabilization of Interchange Modes by Rotating Magnetic Fields".Physical Review Letters.94 (18): 185001.Bibcode:2005PhRvL..94r5001G.doi:10.1103/PhysRevLett.94.185001.PMID 15904379.
  43. ^Slough, J.; Miller, K. (2000)."Enhanced Confinement and Stability of a Field-Reversed Configuration with Rotating Magnetic Field Current Drive"(PDF).Physical Review Letters.85 (7):1444–7.Bibcode:2000PhRvL..85.1444S.doi:10.1103/PhysRevLett.85.1444.PMID 10970525. Archived fromthe original(PDF) on 2012-10-17.
  44. ^Steinhauer, Loren C. (July 2011)."Review of field-reversed configurations".Physics of Plasmas.18 (7): 070501.Bibcode:2011PhPl...18g0501S.doi:10.1063/1.3613680.ISSN 1070-664X.

External links

[edit]
Fusion power, processes and devices
Core topics
Nuclear fusion
Processes,
methods
Confinement
type
Gravitational
Magnetic
Magneto-inertial
Inertial
Electrostatic
Other forms
Devices,
experiments
Magnetic
confinement
Tokamak
International
Americas
Asia,
Oceania
Europe
Stellarator
Americas
Asia,
Oceania
Europe
Pinch
RFP
Mirror
Other
Magneto-inertial
Inertial
confinement
Laser
Americas
Asia
Europe
Non-laser
Science
Fuel
Neutron
Power
Medicine
Imaging
Therapy
Processing
Weapons
Topics
Lists
Waste
Products
Disposal
Debate
Light water
Heavy water
bycoolant
D2O
H2O
Organic
CO2
Water
H2O
Gas
CO2
He
Molten-salt
Fluorides
Generation IV
Others
Magnetic
Inertial
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Field-reversed_configuration&oldid=1299399637"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp