Experimental antiviral drug with potential activity against RNA viruses
You can helpexpand this article with text translated fromthe corresponding article in German. (March 2021)Click [show] for important translation instructions.
View a machine-translated version of the German article.
Machine translation, likeDeepL orGoogle Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia.
Consideradding a topic to this template: there are already 2,371 articles in themain category, and specifying|topic= will aid in categorization.
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
Youmust providecopyright attribution in theedit summary accompanying your translation by providing aninterlanguage link to the source of your translation. A model attribution edit summary isContent in this edit is translated from the existing German Wikipedia article at [[:de:Favipiravir]]; see its history for attribution.
You may also add the template{{Translated|de|Favipiravir}} to thetalk page.
Favipiravir, sold under the brand nameAvigan among others,[3] is anantiviral medication used to treatinfluenza in Japan.[4] It is also being studied to treat a number of other viral infections, includingSARS-CoV-2.[4] Like the experimental antiviral drugs T-1105 and T-1106, it is apyrazinecarboxamide derivative.[5]
Favipiravir has been approved to treatinfluenza in Japan.[6] It is, however, only indicated for novel influenza (strains that cause more severe disease) rather thanseasonal influenza.[6][8] As of 2020, the probability of resistance developing appears low.[6]
There is evidence that use during pregnancy may result inharm to the baby.[6] Teratogenic and embryotoxic effects were shown on four animal species.[6][9] In one case report, a 6-month old infant developed benign bright blue discolouration of the cornea after treatment with favipiravir which resolved after treatment cessation.[10]
The mechanism of its actions is thought to be related to the selective inhibition of viralRNA-dependent RNA polymerase.[11][medical citation needed] Favipiravir is aprodrug that is metabolized to its active form, favipiravir-ribofuranosyl-5'-triphosphate (favipiravir-RTP), available in both oral and intravenous formulations.[12][13] In 2014, favipiravir was approved in Japan for stockpiling againstinfluenza pandemics.[14] However, favipiravir has not been shown to be effective in primary human airway cells, casting doubt on its efficacy in influenza treatment.[15]
Favipiravir ribofuranosyl triphosphate, the active form inside the body
Favipiravir-RTP is anucleoside analogue. It mimics both guanosine and adenosine for the viral RdRP. Incorporating two such bases in a row stops primer extension, although it is unclear how as of 2013.[11]
The US Department of Defense developed favipiravir in partnership with MediVector, Inc. as a broad-spectrum antiviral and sponsored it through FDA Phase II and Phase III clinical trials, where it demonstrated safety in humans and efficacy against the influenza virus.[19] favipiravir remains unapproved in the UK and the USA.[20] In 2014, Japan approved favipiravir for treating influenza strains unresponsive to current antivirals.[21] Toyama Chemical initially hoped that favipiravir would become a new influenza medication that could replaceoseltamivir (brand name Tamiflu). However, animal experiments show the potential forteratogenic effects, and the approval of production by The Ministry of Health, Labor and Welfare was greatly delayed and the production condition is limited only in an emergency in Japan.[22]
Despite limited data on efficacy, as of March 2021 favipiravir is widely prescribed for outpatient treatment of mild to moderate COVID-19 in Egypt,[23] Hungary[24] and Serbia.[25] Patients are required to sign a consent form before obtaining the drug.[citation needed]
Favipiravir is sold under the brand names Avigan (アビガン,Abigan), Avifavir,[1] Avipiravir,[26] Areplivir,[2] FabiFlu,[27] Favipira,[28] Reeqonus,[29][30] and Qifenda.
Coronavir is the brand name of favipiravir used inRussia, where it is approved for the treatment ofCOVID-19. It is produced and sold byR-Pharm.[31][32] Coronavir was approved for use in Russia in hospitals in July 2020, and in September 2020 it received approval for prescription sales for outpatient use.[33]
Favipiravir, as an antiviral drug, has been authorized for treating COVID-19 in several countries including Japan, Russia, Serbia, Turkey, India, and Thailand, under emergency provisions.[34][35][36][37] A rapid meta-review in September 2020 (analyzing four studies) noted that the drug led to clinical and radiological improvements; however, no reduction in mortality or differences in oxygen-support requirement were observed and more rigorous studies were sought.[38][39] A Cochrane Systematic review published in Feb 2024, noted that there is actually no real benefit with Favipiravir in treating Covid-19 in terms of mortality benefits, or admission to mechanical ventillation, or hospitalisation, and it may not make any difference in adverse effects or serious adverse effects.[40]
As of May 2021[update], large-cohort clinical trials are underway.[41]
Research in 2014, suggested that favipiravir may have efficacy againstEbola based on studies inmouse models; efficacy in humans was unaddressed.[42][43][44]
During the2014 West Africa Ebola virus outbreak, a French nurse who contracted Ebola while volunteering forMédecins Sans Frontières (MSF) in Liberia reportedly recovered after receiving a course of favipiravir.[45] A clinical trial investigating the use of favipiravir against Ebola virus disease began inGuéckédou, Guinea, in December 2014.[46] Preliminary results presented in 2016 at theConference on Retroviruses and Opportunistic Infections (CROI), later published, showed a decrease in mortality in patients with low-to-moderate levels of virus in blood, but no effect on patients with high levels (the group at a higher risk of death).[47][48][49] The trial design was concomitantly criticised for using only historical controls.[50]
Nipah virus is a causative agent of outbreaks of encephalitis with pneumonia and has a highcase fatality rate. The first outbreak occurred in Malaysia-Singapore, related to contact with pigs in slaughterhouses and an outbreak in Philippines related to slaughter of horses, most other outbreaks have affected India and Bangladesh. in Bangladesh outbreaks are often associated with consumption of raw date palm sap contaminated by saliva and urine of fruit bats.[51] In a study published in the Scientific Reports, Syrian hamster model for Nipah virus infection was used, which closely mirrors most aspects of human disease, such as widespread vasculitis, pneumonia, and encephalitis. The hamsters were infected with a lethal dose of 104 PFU NiV-M via the intraperitoneal (i.p.) route similar to previous studies and treatment was initiated immediately after infection. Favipiravir was administered twice daily via the peroral (p.o.) route for 14 days. The treated hamsters displayed 100% survival and no obvious morbidity after lethal NiV challenge, whereas all the control cases died of severe disease.[52]
The possibletautomerism of favipiravir has been investigated computationally[59] and experimentally.[60] It was found that the enol-like form was substantially more stable in organic solvents than the keto-like form, meaning that Favipiravir likely exists almost exclusively in the enol-like form. In aqueous solution the keto-like tautomer is substantially stabilized due to the specific interaction with the water molecules. Upon protonation the keto form is switched on.[citation needed]
^Furuta Y, Takahashi K.:Nitrogenous heterocyclic carboxamide derivatives or salts thereof and antiviral agents containing both, WO 00/10569[P]. 2001-04-07.
^条件付き承認で普及に足かせ 富山化学インフル薬の"無念" [Conditional approval hinders popularization Toyama chemical flu drug's "disappointment"] (in Japanese). 25 February 2014. Retrieved25 February 2014.
^Smither SJ, Eastaugh LS, Steward JA, Nelson M, Lenk RP, Lever MS (April 2014). "Post-exposure efficacy of oral T-705 (Favipiravir) against inhalational Ebola virus infection in a mouse model".Antiviral Research.104:153–155.doi:10.1016/j.antiviral.2014.01.012.PMID24462697.