Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Factorization algebra

From Wikipedia, the free encyclopedia
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(February 2023) (Learn how and when to remove this message)
Algebraic structure in mathematical physics

Inmathematics andmathematical physics, afactorization algebra is an algebraic structure first introduced byBeilinson andDrinfel'd in analgebro-geometric setting as a reformulation ofchiral algebras[1] and applied in a more general setting byCostello and Gwilliam to formalizequantum field theory.[2]

Definition

[edit]

Prefactorization algebras

[edit]

A factorization algebra is a prefactorization algebra satisfying some properties, similar tosheafs being apresheaf with extra conditions.

IfM{\displaystyle M} is atopological space, aprefactorization algebraF{\displaystyle {\mathcal {F}}} ofvector spaces onM{\displaystyle M} is an assignment of vector spacesF(U){\displaystyle {\mathcal {F}}(U)} toopen setsU{\displaystyle U} ofM{\displaystyle M}, along with the following conditions on the assignment:

ijF(Ui,j)iF(Vi)F(W){\displaystyle {\begin{array}{lcl}&\bigotimes _{i}\bigotimes _{j}{\mathcal {F}}(U_{i,j})&\rightarrow &\bigotimes _{i}{\mathcal {F}}(V_{i})&\\&\downarrow &\swarrow &\\&{\mathcal {F}}(W)&&&\\\end{array}}}

SoF{\displaystyle {\mathcal {F}}} resembles aprecosheaf, except the vector spaces aretensored rather than(direct-)summed.

The category of vector spaces can be replaced with anysymmetric monoidal category.

Factorization algebras

[edit]

To define factorization algebras, it is necessary to define a Weisscover. ForU{\displaystyle U} an open set, a collection of opensU={Ui|iI}{\displaystyle {\mathfrak {U}}=\{U_{i}|i\in I\}} is aWeiss cover ofU{\displaystyle U} if for any finite collection of points{x1,,xk}{\displaystyle \{x_{1},\cdots ,x_{k}\}} inU{\displaystyle U}, there is an open setUiU{\displaystyle U_{i}\in {\mathfrak {U}}} such that{x1,,xk}Ui{\displaystyle \{x_{1},\cdots ,x_{k}\}\subset U_{i}}.

Then afactorization algebra of vector spaces onM{\displaystyle M} is a prefactorization algebra of vector spaces onM{\displaystyle M} so that for every openU{\displaystyle U} and every Weiss cover{Ui|iI}{\displaystyle \{U_{i}|i\in I\}} ofU{\displaystyle U}, the sequencei,jF(UiUj)kF(Uk)F(U)0{\displaystyle \bigoplus _{i,j}{\mathcal {F}}(U_{i}\cap U_{j})\rightarrow \bigoplus _{k}{\mathcal {F}}(U_{k})\rightarrow {\mathcal {F}}(U)\rightarrow 0}isexact. That is,F{\displaystyle {\mathcal {F}}} is a factorization algebra if it is a cosheaf with respect to the Weiss topology.

A factorization algebra ismultiplicative if, in addition, for each pair of disjoint opensU,VM{\displaystyle U,V\subset M}, the structure mapmUVU,V:F(U)F(V)F(UV){\displaystyle m_{U\sqcup V}^{U,V}:{\mathcal {F}}(U)\otimes {\mathcal {F}}(V)\rightarrow {\mathcal {F}}(U\sqcup V)}is an isomorphism.

Algebro-geometric formulation

[edit]

While this formulation is related to the one given above, the relation is not immediate.

LetX{\displaystyle X} be asmoothcomplex curve. Afactorization algebra onX{\displaystyle X} consists of

jJ/IVX,JjJ/I(iIVX,p1(i)){\displaystyle j_{J/I}^{*}{\mathcal {V}}_{X,J}\rightarrow j_{J/I}^{*}(\boxtimes _{i\in I}{\mathcal {V}}_{X,p^{-1}(i)})} overUJ/I{\displaystyle U^{J/I}}.

Example

[edit]

Associative algebra

[edit]
See also:associative algebra

Any associative algebraA{\displaystyle A} can be realized as a prefactorization algebraAf{\displaystyle A^{f}} onR{\displaystyle \mathbb {R} }. To eachopen interval(a,b){\displaystyle (a,b)}, assignAf((a,b))=A{\displaystyle A^{f}((a,b))=A}. An arbitrary open is a disjoint union of countably many open intervals,U=iIi{\displaystyle U=\bigsqcup _{i}I_{i}}, and then setAf(U)=iA{\displaystyle A^{f}(U)=\bigotimes _{i}A}. The structure maps simply come from the multiplication map onA{\displaystyle A}. Some care is needed for infinite tensor products, but for finitely many open intervals the picture is straightforward.


See also

[edit]

References

[edit]
  1. ^Beilinson, Alexander; Drinfeld, Vladimir (2004).Chiral algebras. Providence, R.I.: American Mathematical Society.ISBN 978-0-8218-3528-9. Retrieved21 February 2023.
  2. ^Costello, Kevin; Gwilliam, Owen (2017).Factorization algebras in quantum field theory, Volume 1. Cambridge.ISBN 9781316678626.{{cite book}}: CS1 maint: location missing publisher (link)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Factorization_algebra&oldid=1309321511"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp