Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Exponential object

From Wikipedia, the free encyclopedia
Categorical generalization of a function space in set theory

Inmathematics, specifically incategory theory, anexponential object ormap object is thecategorical generalization of afunction space inset theory.Categories with allfinite products and exponential objects are calledcartesian closed categories. Categories (such assubcategories ofTop) without adjoined products may still have anexponential law.[1][2]

Definition

[edit]

LetC{\displaystyle \mathbf {C} } be a category, letZ{\displaystyle Z} andY{\displaystyle Y} beobjects ofC{\displaystyle \mathbf {C} }, and letC{\displaystyle \mathbf {C} } have allbinary products withY{\displaystyle Y}. An objectZY{\textstyle Z^{Y}} together with amorphismeval:(ZY×Y)Z{\textstyle \mathrm {eval} \colon (Z^{Y}\times Y)\to Z} is anexponential object if for any objectX{\displaystyle X} and morphismg:X×YZ{\textstyle g\colon X\times Y\to Z} there is a unique morphismλg:XZY{\textstyle \lambda g\colon X\to Z^{Y}} (called thetranspose ofg{\displaystyle g}) such that the following diagramcommutes:

Universal property of the exponential object
Universal property of the exponential object

This assignment of a uniqueλg{\displaystyle \lambda g} to eachg{\displaystyle g} establishes anisomorphism (bijection) ofhom-sets,Hom(X×Y,Z)Hom(X,ZY).{\textstyle \mathrm {Hom} (X\times Y,Z)\cong \mathrm {Hom} (X,Z^{Y}).}

IfZY{\textstyle Z^{Y}}exists for all objectsZ,Y{\displaystyle Z,Y} inC{\displaystyle \mathbf {C} }, then thefunctor()Y:CC{\displaystyle (-)^{Y}\colon \mathbf {C} \to \mathbf {C} } defined on objects byZZY{\displaystyle Z\mapsto Z^{Y}} and on arrows by(f:XZ)(fY:XYZY){\displaystyle (f\colon X\to Z)\mapsto (f^{Y}\colon X^{Y}\to Z^{Y})}, is aright adjoint to the product functor×Y{\displaystyle -\times Y}. For this reason, the morphismsλg{\displaystyle \lambda g} andg{\displaystyle g} are sometimes calledexponential adjoints of one another.[3]

Equational definition

[edit]

Alternatively, the exponential object may be defined through equations:

Universal property

[edit]

The exponentialZY{\displaystyle Z^{Y}} is given by auniversal morphism from the product functor×Y{\displaystyle -\times Y} to the objectZ{\displaystyle Z}. This universal morphism consists of an objectZY{\displaystyle Z^{Y}} and a morphismeval:(ZY×Y)Z{\textstyle \mathrm {eval} \colon (Z^{Y}\times Y)\to Z}.

Examples

[edit]

In thecategory of sets, an exponential objectZY{\displaystyle Z^{Y}} is the set of allfunctionsYZ{\displaystyle Y\to Z}.[4] The mapeval:(ZY×Y)Z{\displaystyle \mathrm {eval} \colon (Z^{Y}\times Y)\to Z} is just theevaluation map, which sends the pair(f,y){\displaystyle (f,y)} tof(y){\displaystyle f(y)}. For any mapg:X×YZ{\displaystyle g\colon X\times Y\to Z} the mapλg:XZY{\displaystyle \lambda g\colon X\to Z^{Y}} is thecurried form ofg{\displaystyle g}:

λg(x)(y)=g(x,y).{\displaystyle \lambda g(x)(y)=g(x,y).\,}

AHeyting algebraH{\displaystyle H} is just a boundedlattice that has all exponential objects. Heyting implication,YZ{\displaystyle Y\Rightarrow Z}, is an alternative notation forZY{\displaystyle Z^{Y}}. The above adjunction results translate to implication (⇒:H×HH{\displaystyle \Rightarrow :H\times H\to H}) beingright adjoint tomeet (:H×HH{\displaystyle \wedge :H\times H\to H}). This adjunction can be written as(Y)(Y){\displaystyle (-\wedge Y)\dashv (Y\Rightarrow -)}, or more fully as:(Y):HH:(Y){\displaystyle (-\wedge Y):H{\stackrel {\longrightarrow }{\underset {\longleftarrow }{\top }}}H:(Y\Rightarrow -)}

In thecategory of topological spaces, the exponential objectZY{\displaystyle Z^{Y}} exists provided thatY{\displaystyle Y} is alocally compactHausdorff space. In that case, the spaceZY{\displaystyle Z^{Y}} is the set of allcontinuous functions fromY{\displaystyle Y} toZ{\displaystyle Z} together with thecompact-open topology. The evaluation map is the same as in the category of sets; it is continuous with the above topology.[5] IfY{\displaystyle Y} is not locally compact Hausdorff, the exponential object may not exist (the spaceZY{\displaystyle Z^{Y}} still exists, but it may fail to be an exponential object since the evaluation function need not be continuous). For this reason the category of topological spaces fails to becartesian closed.However, the category of locally compact topological spaces is not cartesian closed either, sinceZY{\displaystyle Z^{Y}} need not be locally compact for locally compact spacesZ{\displaystyle Z} andY{\displaystyle Y}. A cartesian closed category of spaces is, for example, given by thefull subcategory spanned by thecompactly generated Hausdorff spaces.

Infunctional programming languages, the morphismeval{\displaystyle \operatorname {eval} } is often calledapply{\displaystyle \operatorname {apply} }, and the syntaxλg{\displaystyle \lambda g} is oftenwrittencurry(g){\displaystyle \operatorname {curry} (g)}. The morphismeval{\displaystyle \operatorname {eval} } should not be confused with theeval function in someprogramming languages, which evaluates quoted expressions.

See also

[edit]

Notes

[edit]
  1. ^Exponential law for spaces at thenLab
  2. ^Convenient category of topological spaces at thenLab
  3. ^Goldblatt, Robert (1984). "Chapter 3: Arrows instead of epsilon".Topoi : the categorial analysis of logic. Studies in Logic and the Foundations of Mathematics #98 (Revised ed.).North-Holland. p. 72.ISBN 978-0-444-86711-7.
  4. ^Mac Lane, Saunders (1978). "Chapter 4: Adjoints".Categories for the working mathematician. graduate texts in mathematics. Vol. 5 (2nd ed.). Springer-Verlag. p. 98.doi:10.1007/978-1-4757-4721-8_5.ISBN 978-0387984032.
  5. ^Joseph J. Rotman,An Introduction to Algebraic Topology (1988) Springer-VerlagISBN 0-387-96678-1(See Chapter 11 for proof.)

References

[edit]

External links

[edit]
Key concepts
Key concepts
Universal constructions
Limits
Colimits
Algebraic categories
Constructions on categories
A simple triangular commutative diagram
Key concepts
n-categories
Weakn-categories
Strictn-categories
Categorified concepts
Retrieved from "https://en.wikipedia.org/w/index.php?title=Exponential_object&oldid=1250322176"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp