Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Exotic hadron

From Wikipedia, the free encyclopedia
Subatomic particles consisting of quarks and gluons
One model of apentaquark:q is aquark andq anantiquark;gluons (wavy lines) mediatestrong interactions between quarks; red, green, and bluecolor charges must each be present, while the remaining quark and antiquark must share a color and its anticolor, in this example blue and antiblue (shown as yellow).

Exotic hadrons aresubatomic particles composed ofquarks andgluons, but which – unlike "well-known"hadrons such asprotons,neutrons andmesons – consist of more than threevalence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic.[1] In theory, there is no limit on the number of quarks in a hadron, as long as the hadron'scolor charge is white, or color-neutral.[2]

Consistent with ordinary hadrons, exotic hadrons are classified as being eitherfermions, like ordinary baryons, orbosons, like ordinary mesons. According to this classification scheme,pentaquarks, containing five valence quarks, are exotic baryons, whiletetraquarks (four valence quarks) andhexaquarks (six quarks, consisting of either a dibaryon or three quark-antiquark pairs) would be consideredexotic mesons. Tetraquark and pentaquark particles are believed to have been observed and are being investigated;hexaquarks have not yet been confirmed as observed.

Exotic hadrons can be searched for by looking forS-matrix poles withquantum numbers forbidden to ordinary hadrons. Experimental signatures for such exotic hadrons had been seen by 2003 at the latest,[3][4] but they remain a topic of controversy inparticle physics.

Jaffe and Low[5] suggested that the exotic hadrons manifest themselves as poles of the P matrix, and not of the S matrix. ExperimentalP-matrix poles are determined reliably in both themeson–meson channels andnucleon–nucleon channels.

History

[edit]

When the quark model was first postulated byMurray Gell-Mann and others in the 1960s, it was to organize the states known then to be in existence in a meaningful way. Asquantum chromodynamics (QCD) developed over the next decade, it became apparent that there was no reason why only three-quark and quark-antiquark combinations could exist. Indeed, Gell-Mann's original 1964 paper alludes to the possibility of exotic hadrons and classifies hadrons into baryons and mesons depending upon whether they have an odd (baryon) or even (meson) number of valence quarks.[6] In addition, it seemed that gluons, the mediator particles of the strong interaction, could also form bound states by themselves (glueballs) and with quarks (hybrid hadrons). Several decades have passed without conclusive evidence of an exotic hadron that could be associated with the S-matrix pole.

There have been many observations of so-called 'exotic candidates' experimentally observed, which are particles that don't appear to fit the standard quark model. The first few exotic candidates to be identified include the X(3872), which was discovered by theBelle experiment in Japan[7]; the Y(4260) which was discovered at theBaBar experiment[8]; and the Zc+(3900), which was discovered independently by theBES III experiment in China[9] and the Belle experiment.[10]

In April 2014, theLHCb collaboration confirmed the existence of the Z(4430), discovered by the Belle experiment, and demonstrated that it must have a minimal quark content of ccdu.[11] Since this was the first exotic hadron to have it's quark content experimentally identified, it is also the first unambiguous discovery of an exotic hadron.[12]

In July 2015, LHCb announced the discovery of two particles, namedP+
c
(4380)
andP+
c
(4450)
, which must have minimal quark content ccuud, making thempentaquarks.[13]

Candidates

[edit]
List of exotic hadron candidates
StateExperimentsNotes
X(3872)Belle,BaBar,LHCb,CDF,,CMS,ATLAS,BES III[7]
X(3915)Belle, BaBar
X(3940)Belle
X(4140)CDF, CMS, DØ, LHCb
X(4160)Belle[14]
Y(4260)BaBar,CLEO, Belle[8]
Y(4220)BES III, Belle
X(4274)CDF, CMS, LHCb
X(4350)Belle[15]
Y(4360)BaBar, Belle, BES III
Y(4390)BES III[16]
X(4500)LHCb
X(4700)LHCb
Y(4660)Belle, BaBar
X(6900)LHCb
Zc+,0(3900)BES III, Belle[9][10]
Zc+,0(4020)BES III
Z+(4050)Belle, BaBar
Z+(4200)Belle, LHCb
Z+(4250)Belle, BaBar
Z+(4430)Belle, LHCb
Pc+(4380)LHCb
Pc+(4450)LHCb
Yb(10860)Belle
Zb+,0(10610)Belle
Zb+(10650)Belle

See also

[edit]

Notes

[edit]
  1. ^Close, F. E. (1988). "Gluonic Hadrons".Reports on Progress in Physics.51 (6):833–882.Bibcode:1988RPPh...51..833C.doi:10.1088/0034-4885/51/6/002.S2CID 250819208.
  2. ^Belz, J., et al. (BNL-E888 Collaboration) (1996). "Search for the weak decay of an H dibaryon".Physical Review Letters.76 (18):3277–3280.arXiv:hep-ex/9603002.Bibcode:1996PhRvL..76.3277B.doi:10.1103/PhysRevLett.76.3277.PMID 10060926.S2CID 15729745.The theory of quantum chromodynamics imposes no specific limitation on the number of quarks composing hadrons other than that they form color singlet states.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  3. ^SeeTetraquark
  4. ^"Note on non-q qbar mesons"(PDF).Journal of Physics G.33: 1. 2006.
  5. ^Jaffe, R. L.;Low, F. E. (1979). "Connection between quark-model eigenstates and low-energy scattering".Physical Review D.19 (7): 2105.Bibcode:1979PhRvD..19.2105J.doi:10.1103/PhysRevD.19.2105.
  6. ^Gell-Mann, M. (1964). "A Schematic Model of Baryons and Mesons".Physics Letters.8 (3):214–215.Bibcode:1964PhL.....8..214G.doi:10.1016/S0031-9163(64)92001-3.
  7. ^abChoi, S.-K.; Olsen, S. L.; Abe, K.; Abe, T.; Adachi, I.; Ahn, Byoung Sup; Aihara, H.; Akai, K.; Akatsu, M.; Akemoto, M.; Asano, Y.; Aso, T.; Aulchenko, V.; Aushev, T.; Bakich, A. M. (2003-12-23)."Observation of a Narrow Charmoniumlike State in Exclusive B ± → K ± π + π − J / ψ Decays".Physical Review Letters.91 (26).doi:10.1103/PhysRevLett.91.262001.ISSN 0031-9007.
  8. ^abCoan, T. E.; Gao, Y. S.; Liu, F.; Artuso, M.; Blusk, S.; Butt, J.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Redjimi, R.; Sia, R.; Skwarnicki, T.; Stone, S. (2006-04-28)."Charmonium Decays of Y ( 4260 ) , ψ ( 4160 ) , and ψ ( 4040 )".Physical Review Letters.96 (16).doi:10.1103/PhysRevLett.96.162003.ISSN 0031-9007.
  9. ^abAblikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Ambrose, D. J.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Becker, J.; Bennett, J. V.; Bertani, M.; Bian, J. M.; Boger, E. (2013-06-17)."Observation of a Charged Charmoniumlike Structure in e + e − → π + π − J / ψ at s = 4.26 GeV".Physical Review Letters.110 (25).doi:10.1103/PhysRevLett.110.252001.ISSN 0031-9007.
  10. ^abLiu, Z. Q.; Shen, C. P.; Yuan, C. Z.; Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Aziz, T.; Bakich, A. M.; Bala, A.; Belous, K.; Bhardwaj, V.; Bhuyan, B.; Bischofberger, M. (2013-06-17)."Study of e + e − → π + π − J / ψ and Observation of a Charged Charmoniumlike State at Belle".Physical Review Letters.110 (25).doi:10.1103/PhysRevLett.110.252002.ISSN 0031-9007.
  11. ^LHCb collaboration (7 April 2014). "Observation of the resonant character of the Z(4430) state".Physical Review Letters.112 (22) 222002.arXiv:1404.1903.Bibcode:2014PhRvL.112v2002A.doi:10.1103/PhysRevLett.112.222002.PMID 24949760.S2CID 904429.
  12. ^"Unambiguous observation of an exotic particle which cannot be classified within the traditional quark model". Retrieved2025-11-27.
  13. ^Aaij, R., et al. (LHCb collaboration) (2015). "Observation of J/ψp resonances consistent with pentaquark states in Λ0
    b
    →J/ψKp decays".Physical Review Letters.115 (7) 072001.arXiv:1507.03414.Bibcode:2015PhRvL.115g2001A.doi:10.1103/PhysRevLett.115.072001.PMID 26317714.S2CID 119204136.
    {{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. ^Belle Collaboration; Abe, K. (2008-05-19). "Search for new charmonium states in the processes e+ e- → J/psi D(*) D(*) at sqrt{s} ~ 10.6 GeV".Physical Review Letters.100 (20) 202001.arXiv:0708.3812.doi:10.1103/PhysRevLett.100.202001.ISSN 0031-9007.PMID 18518525.
  15. ^The Belle Collaboration; Shen, C. P. (2010-03-16). "Evidence for a new resonance and search for the Y(4140) in $\gamma \gamma \to \phi J/\psi$".Physical Review Letters.104 (11) 112004.arXiv:0912.2383.doi:10.1103/PhysRevLett.104.112004.ISSN 0031-9007.PMID 20366468.S2CID 31594166.
  16. ^Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z. (2017-03-01)."Evidence of Two Resonant Structures in $e^+ e^- \to \pi^+ \pi^- h_c$".Physical Review Letters.118 (9) 092002.arXiv:1610.07044.doi:10.1103/PhysRevLett.118.092002.ISSN 0031-9007.PMID 28306302.
Elementary
Fermions
Quarks
Leptons
Bosons
Gauge
Scalar
Ghost fields
Hypothetical
Superpartners
Gauginos
Others
Others
Composite
Hadrons
Baryons
Mesons
Exotic hadrons
Others
Hypothetical
Baryons
Mesons
Others
Quasiparticles
Lists
Related
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Exotic_hadron&oldid=1324421352"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp