Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ewald–Oseen extinction theorem

From Wikipedia, the free encyclopedia
Theorem in optics that explains light propagation in a medium

Inoptics, theEwald–Oseen extinction theorem, sometimes referred to as just theextinction theorem, is a theorem that underlies the common understanding of scattering (as well as refraction, reflection, and diffraction). It is named afterPaul Peter Ewald andCarl Wilhelm Oseen, who proved the theorem in crystalline and isotropic media, respectively, in 1916 and 1915.[1] Originally, the theorem applied to scattering by an isotropic dielectric objects in free space. The scope of the theorem was greatly extended to encompass a wide variety of bianisotropic media.[2]

Overview

[edit]

An important part of optical physics theory is starting with microscopic physics—the behavior of atoms and electrons—and using it toderive the familiar, macroscopic, laws of optics. In particular, there is a derivation of how therefractive index works and where it comes from, starting from microscopic physics. The Ewald–Oseen extinction theorem is one part of that derivation (as is theLorentz–Lorenz equation etc.).

When light traveling in vacuum enters a transparent medium like glass, the light slows down, as described by theindex of refraction. Although this fact is famous and familiar, it is actually quite strange and surprising when you think about it microscopically. After all, according to thesuperposition principle, the light in the glass is a superposition of:

  • The original light wave, and
  • The light waves emitted by oscillating electrons in the glass.

(Light is an oscillating electromagnetic field that pushes electrons back and forth, emittingdipole radiation.)

Individually, each of these waves travels at the speed of light in vacuum,not at the (slower) speed of light in glass. Yet when the waves are added up, they surprisingly createonly a wave that travels at the slower speed.

The Ewald–Oseen extinction theorem says that the light emitted by the atoms has a component traveling at the speed of light in vacuum, which exactly cancels out ("extinguishes") the original light wave. Additionally, the light emitted by the atoms has a component which looks like a wave traveling at the slower speed of light in glass. Altogether, theonly wave in the glass is the slow wave, consistent with what we expect from basic optics.

A more complete description can be found in Classical Optics and its Applications, by Masud Mansuripur.[3] A proof of the classical theorem can be found inPrinciples of Optics, by Born and Wolf.,[1] and that of its extension has been presented byAkhlesh Lakhtakia.[2]

Derivation from Maxwell's equations

[edit]

Introduction

[edit]

When an electromagnetic wave enters a dielectric medium, it excites (resonates) the material's electrons whether they are free or bound, setting them into a vibratory state with the same frequency as the wave. These electrons will in turn radiate their own electromagnetic fields as a result of their oscillation (EM fields of oscillating charges). Due to the linearity of Maxwell equations, one expects the total field at any point in space to be the sum of the original field and the field produced by oscillating electrons. This result is, however, counterintuitive to the practical wave one observes in the dielectric moving at a speed of c/n, where n is the medium index of refraction. The Ewald–Oseen extinction theorem seek to address the disconnect by demonstrating how the superposition of these two waves reproduces the familiar result of a wave that moves at a speed of c/n.

Derivation

[edit]

The following is a derivation based on a work by Ballenegger and Weber.[4] Let's consider a simplified situation in which a monochromatic electromagnetic wave is normally incident on a medium filling half the space in the region z>0 as shown in Figure 1.

Figure 1: The half-space z>0 is a dielectric material with susceptibility χ. The half-space z<0 is vacuum.

Theelectric field at a point in space is the sum of the electric fields due to all the various sources. In our case, we separate the fields in two categories based on their generating sources. We denote the incident fieldEvac{\displaystyle \mathbf {E} _{\mathrm {vac} }}and the sum of the fields generated by the oscillating electrons in the mediumErad(z,t).{\displaystyle \mathbf {E} _{\mathrm {rad} }(z,t).}

The total field at any point z in space is then given by the superposition of the two contributions,E(z,t)=Evac(z,t)+Erad(z,t).{\displaystyle \mathbf {E} (z,t)=\mathbf {E} _{\mathrm {vac} }(z,t)+\mathbf {E} _{\mathrm {rad} }(z,t).}

To match what we already observe,Evac{\displaystyle \mathbf {E} _{\mathrm {vac} }} has this form. However, we already know that inside the medium, z>0, we will only observe what we call the transmitted E-fieldET{\displaystyle \mathbf {E} _{\mathrm {T} }} which travels through the material at speed c/n.

Therefore, in this formalism,Erad(z,t)=Evac(z,t)+ET(z,t){\displaystyle \mathbf {E} _{\mathrm {rad} }(z,t)=-\mathbf {E} _{\mathrm {vac} }(z,t)+\mathbf {E} _{T}(z,t)}

This to say that the radiated field cancels out the incident field and creates a transmitted field traveling within the medium at speed c/n. Using the same logic, outside the medium the radiated field produces the effect of a reflected fieldER{\displaystyle \mathbf {E} _{R}} traveling at speed c in the opposite direction to the incident field.Erad(z,t)=Evac(z,t)ER(z,t){\displaystyle \mathbf {E} _{\mathrm {rad} }(z,t)=-\mathbf {E} _{\mathrm {vac} }(z,t)-\mathbf {E} _{R}(z,t)}assume that the wavelength is much larger than the average separation of atoms so that the medium can be considered continuous. We use the usual macroscopic E and B fields and take the medium to be nonmagnetic and neutral so thatMaxwell's equations readE=0B=0×E=Bt×B=μ0J+ϵ0μ0Et{\displaystyle {\begin{aligned}\nabla \cdot \mathbf {E} &=0\\\nabla \cdot \mathbf {B} &=0\\\nabla \times \mathbf {E} &=-{\frac {\partial \mathbf {B} }{\partial t}}\\\nabla \times \mathbf {B} &={\boldsymbol {\mu }}_{0}\mathbf {J} +\epsilon _{0}{\boldsymbol {\mu }}_{0}{\frac {\partial \mathbf {E} }{\partial t}}\end{aligned}}}both the total electric and magnetic fieldsE=Evac+Erad,B=Bvac+Brad{\displaystyle \mathbf {E} =\mathbf {E} _{\mathrm {vac} }+\mathbf {E} _{\mathrm {rad} },\quad \mathbf {B} =\mathbf {B} _{\mathrm {vac} }+\mathbf {B} _{\mathrm {rad} }}the set of Maxwell equations inside the dielectricErad=0Brad=0×Erad=Brad/t×Brad=μ0J+ϵ0μ0Erad/t{\displaystyle {\begin{array}{l}{\nabla \cdot \mathbf {E} _{\mathrm {rad} }=0}\\{\nabla \cdot \mathbf {B} _{\mathrm {rad} }=0}\\{\nabla \times \mathbf {E} _{\mathrm {rad} }=-\partial \mathbf {B} _{\mathrm {rad} }/\partial t}\\{\nabla \times \mathbf {B} _{\mathrm {rad} }=\mu _{0}\mathbf {J} +\epsilon _{0}\mu _{0}\partial \mathbf {E} _{\mathrm {rad} }/\partial t}\end{array}}}whereJ{\displaystyle \mathbf {J} } includes the true and polarization current induced in the material by the outside electric field. We assume a linear relationship between the current and the electric field, henceJ=σ(Evac+Erad){\displaystyle \mathbf {J} ={\sigma }\left(\mathbf {E} _{\mathrm {vac} }+\mathbf {E} _{\mathrm {rad} }\right)}

The set of Maxwell equations outside the dielectric has nocurrent density termEvac=0Bvac=0×Evac=Bvac/t×Bvac=ϵ0μ0Evac/t{\displaystyle {\begin{array}{l}{\nabla \cdot \mathbf {E} _{\mathrm {vac} }=0}\\{\nabla \cdot \mathbf {B} _{\mathrm {vac} }=0}\\{\nabla \times \mathbf {E} _{\mathrm {vac} }=-\partial \mathbf {B} _{\mathrm {vac} }/\partial t}\\{\nabla \times \mathbf {B} _{\mathrm {vac} }=\epsilon _{0}\mu _{0}\partial \mathbf {E} _{\mathrm {vac} }/\partial t}\end{array}}}

The two sets of Maxwell equations are coupled since the vacuum electric field appears in the current density term.

For a monochromatic wave at normal incidence, the vacuum electric field has the formEvac(z,t)=Evacexp[i(kzωt)],{\displaystyle \mathbf {E} _{\mathrm {vac} }(z,t)=\mathbf {E} _{\mathrm {vac} }\exp[i(kz-\omega t)],}withk=ω/c{\displaystyle k=\omega /{c}}.

Now to solve forErad{\displaystyle \mathbf {E} _{\mathrm {rad} }}, we take the curl of the third equation in the first set of Maxwell equation and combine it with the fourth.×(×Erad)=t(×Brad)×(×Erad)=t(μ0J+ϵ0μ0Eradt){\displaystyle {\begin{aligned}\nabla \times (\nabla \times \mathbf {E} _{\mathrm {rad} })&=-{\frac {\partial }{\partial t}}(\nabla \times \mathbf {B} _{\mathrm {rad} })\\[1ex]\nabla \times (\nabla \times \mathbf {E} _{\mathrm {rad} })&=-{\frac {\partial }{\partial t}}\left(\mu _{0}\mathbf {J} +\epsilon _{0}\mu _{0}{\frac {\partial \mathbf {E} _{\mathrm {rad} }}{\partial t}}\right)\end{aligned}}}

We simplify the double curl in a couple of steps usingEinstein summation.×(×E)i=ϵijkϵklmjlEm=(δilδjmδimδjl)jlEm=i(jEj)jjEi{\displaystyle {\begin{aligned}\nabla \times (\nabla \times \mathbf {E} )_{i}&=\epsilon _{ijk}\epsilon _{klm}\partial _{j}\partial _{l}E_{m}\\&=(\delta _{il}\delta _{j\mathrm {m} }-\delta _{i\mathrm {m} }\delta _{jl})\partial _{j}\partial _{l}E_{m}\\&=\partial _{i}(\partial _{j}E_{j})-\partial _{j}\partial _{j}E_{i}\end{aligned}}}

Hence we obtain,×(×Erad)=(Erad)2Erad{\displaystyle \nabla \times (\nabla \times \mathbf {E} _{rad})=\nabla (\nabla \cdot \mathbf {E} _{rad})-\nabla ^{2}\mathbf {E} _{rad}}

Then substitutingJ{\displaystyle \mathbf {J} } byσ(Evac+Erad){\displaystyle {\sigma }\left(\mathbf {E} _{\mathrm {vac} }+\mathbf {E} _{\mathrm {rad} }\right)}, using the fact thatErad=0{\displaystyle \nabla \cdot \mathbf {E} _{\mathrm {rad} }=0} we obtain,2Erad=t(μ0σEvac+μ0σErad+ϵ0μ0Erad/t){\displaystyle \nabla ^{2}\mathbf {E} _{\mathrm {rad} }={\frac {\partial }{\partial t}}(\mu _{0}{\sigma }\mathbf {E} _{\mathrm {vac} }+\mu _{0}{\sigma }\mathbf {E} _{\mathrm {rad} }+\epsilon _{0}\mu _{0}\partial \mathbf {E} _{\mathrm {rad} }/\partial t)}

Realizing that all the fields have the same time dependenceexp(iωt){\displaystyle \exp(-i\omega t)}, the time derivatives are straightforward and we obtain the following inhomogeneous wave equation2Erad+μ0ω2(ϵ0+iσ/ω)Erad=iμ0ωσEvac(z){\displaystyle \nabla ^{2}\mathbf {E} _{\mathrm {rad} }+\mu _{0}\omega ^{2}\left(\epsilon _{0}+i\sigma /\omega \right)\mathbf {E} _{\mathrm {rad} }=-i\mu _{0}\omega \sigma \mathbf {E} _{\mathrm {vac} }(z)}with particular solutionEradP=Evac(z){\displaystyle \mathbf {E} _{\mathrm {rad} }^{P}=-\mathbf {E} _{\mathrm {vac} }(z)}

For the complete solution, we add to the particular solution the general solution of the homogeneous equation which is a superposition of plane waves traveling in arbitrary directions(Eradc)i=gi(θ,ϕ)exp(ikr)dΩ{\displaystyle \left(\mathbf {E} _{\mathrm {rad} }^{c}\right)_{i}=\int g_{i}({\boldsymbol {\theta }},{\boldsymbol {\phi }})\exp \left(i\mathbf {k} '\cdot \mathbf {r} \right)d\Omega }wherek{\displaystyle k'} is found from the homogeneous equation to bek2=μ0ϵ0ω2(1+iσϵ0ω){\displaystyle k^{\prime 2}=\mu _{0}\epsilon _{0}\omega ^{2}\left(1+i{\frac {\sigma }{\epsilon _{0}\omega }}\right)}

Note that we have taken the solution as a coherent superposition of plane waves. Because of symmetry, we expect the fields to be the same in a plane perpendicular to thez{\displaystyle z} axis. Henceka=0,{\displaystyle \mathbf {k} '\cdot \mathbf {a} =0,} wherea{\displaystyle \mathbf {a} } is a displacement perpendicular toz{\displaystyle z}.

Since there are no boundaries in the regionz>0{\displaystyle z>0}, we expect a wave traveling to the right. The solution to the homogeneous equation becomes,Eradc=ETexp(ikz){\displaystyle \mathbf {E} _{\mathrm {rad} }^{c}=\mathbf {E} _{T}\exp \left(ik'z\right)}

Adding this to the particular solution, we get the radiated wave inside the medium (z>0{\displaystyle z>0})Erad=Evac(z)+ETexp(ikz){\displaystyle \mathbf {E} _{\mathrm {rad} }=-\mathbf {E} _{\mathrm {vac} }(z)+\mathbf {E} _{T}\exp \left(ik'z\right)}

The total field at any positionz{\displaystyle z} is the sum of the incident and radiated fields at that position. Adding the two components inside the medium, we get the total fieldE(z)=ETexp(ikz),z>0{\displaystyle \mathrm {E} (z)=\mathrm {E} _{T}\exp \left(ik'z\right),\qquad z>0}

This wave travels inside the dielectric at speedc/n,{\displaystyle c/n,}n=ck/ω=1+iσϵ0ω{\displaystyle n=ck'/\omega ={\sqrt {1+i{\frac {\sigma }{\epsilon _{0}\omega }}}}}

We can simplify the aboven{\displaystyle n} to a familiar form of the index of refraction of a linear isotropic dielectric. To do so, we remember that in a linear dielectric an applied electric fieldE{\displaystyle \mathbf {E} } induces a polarizationP{\displaystyle \mathbf {P} } proportional to the electric fieldP=ϵ0χeE{\displaystyle \mathbf {P} =\epsilon _{0}\chi _{e}\mathbf {E} }. When the electric field changes, the induced charges move and produces a current density given byP/t{\displaystyle \partial \mathbf {P} /\partial t}. Since the time dependence of the electric field isexp(iωt){\displaystyle \exp(-i\omega t)}, we getJ=iϵ0ωχeE,{\displaystyle \mathbf {J} =-i\epsilon _{0}\omega \chi _{e}\mathbf {E} ,}which implies that the conductivityσ=iϵ0ωχe.{\displaystyle \sigma =-i\epsilon _{0}\omega \chi _{e}.}

Then substituting the conductivity in the equation ofn{\displaystyle n}, givesn=1+χe{\displaystyle n={\sqrt {1+\chi _{e}}}}which is a more familiar form. For the regionz<0{\displaystyle z<0}, one imposes the condition of a wave traveling to the left. By setting the conductivity in this regionσ=0{\displaystyle \sigma =0}, we obtain the reflected waveE(z)=ERexp(ikz),{\displaystyle \mathrm {E} (z)=\mathrm {E} _{R}\exp \left(-ikz\right),}traveling at the speed of light.

Note that the coefficients nomenclature,ET{\displaystyle \mathbf {E} _{T}} andER{\displaystyle \mathbf {E} _{R}}, are only adopted to match what we already expect.

Hertz vector approach

[edit]

The following is a derivation based on a work by Wangsness[5] and a similar derivation found in chapter 20 of Zangwill's text, Modern Electrodynamics.[6] The setup is as follows, let the infinite half-spacez<0{\displaystyle z<0} be vacuum and the infinite half-spacez>0{\displaystyle z>0} be a uniform, isotropic, dielectric material withelectric susceptibility,χ.{\displaystyle \chi .}

Theinhomogeneous electromagnetic wave equation for the electric field can be written in terms of the electricHertz Potential,πe{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e} }}, in the Lorenz gauge as2πe1c22πet2=Pϵ0.{\displaystyle \nabla ^{2}{\boldsymbol {\pi }}_{\mathrm {e} }-{\frac {1}{c^{2}}}{\frac {\partial ^{2}{\boldsymbol {\pi }}_{\mathrm {e} }}{\partial t^{2}}}=-{\frac {\mathbf {P} }{\epsilon _{0}}}.}

The electric field in terms of the Hertz vectors is given asE=××πePϵ0t(×πm),{\displaystyle \mathbf {E} =\nabla \times \nabla \times {\boldsymbol {\pi }}_{\mathrm {e} }-{\frac {\mathbf {P} }{\epsilon _{0}}}-{\frac {\partial }{\partial t}}\left(\nabla \times {\boldsymbol {\pi }}_{\mathrm {m} }\right),}but the magnetic Hertz vectorπm{\displaystyle {\boldsymbol {\pi }}_{\mathrm {m} }} is 0 since the material is assumed to be non-magnetizable and there is no external magnetic field. Therefore, the electric field simplifies toE=××πePϵ0.{\displaystyle \mathbf {E} =\nabla \times \nabla \times {\boldsymbol {\pi }}_{\mathrm {e} }-{\frac {\mathbf {P} }{\epsilon _{0}}}.}

In order to calculate the electric field we must first solve the inhomogeneous wave equation forπe{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e} }}. To do this, splitπe{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e} }} in the homogeneous and particular solutionsπe(r,t)=πe,h(r,t)+πe,p(r,t).{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e} }(\mathbf {r} ,t)={\boldsymbol {\pi }}_{e,h}(\mathbf {r} ,t)+{\boldsymbol {\pi }}_{\mathrm {e,p} }(\mathbf {r} ,t).}

Linearity then allows us to writeE(r,t)=Eh(r,t)+Ep(r,t).{\displaystyle \mathbf {E} (\mathbf {r} ,t)=\mathbf {E} _{h}(\mathbf {r} ,t)+\mathbf {E} _{\mathrm {p} }(\mathbf {r} ,t).}

Thehomogeneous solution,Eh(r,t){\displaystyle \mathbf {E} _{h}(\mathbf {r} ,t)}, is the initialplane wave traveling with wave vectork0=ω/c{\displaystyle k_{0}=\omega /c} in the positivez{\displaystyle z} directionEh(r,t)=E0ei(k0zωt).{\displaystyle \mathbf {E} _{h}(\mathbf {r} ,t)=\mathbf {E} _{0}e^{i\left(k_{0}z-\omega t\right)}.}

We do not need to explicitly findπe,h(r,t){\displaystyle {\boldsymbol {\pi }}_{e,h}(\mathbf {r} ,t)} since we are only interested in finding the field.

The particular solution,πe,p(r,t){\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }(\mathbf {r} ,t)} and therefore,Ep(r,t){\displaystyle \mathbf {E} _{\mathrm {p} }(\mathbf {r} ,t)}, is found using a time dependentGreen's function method on the inhomogeneous wave equation forπe,p{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }} which produces theretarded integralπe,p(r,t)=14πϵ0d3rP(r,t|rr|/c)|rr|.{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }(\mathbf {r} ,t)={\frac {1}{4\pi \epsilon _{0}}}\int d^{3}r'{\frac {\mathbf {P} \left(\mathbf {r} ',t-\left|\mathbf {r} -\mathbf {r} '\right|/c\right)}{\left|\mathbf {r} -\mathbf {r} '\right|}}.}

Since the initial electric field is polarizing the material, the polarization vector must have the same space and time dependenceP(r,t)=P0ei(kzωt).{\displaystyle \mathbf {P} (\mathbf {r} ,t)=\mathbf {P} _{0}e^{i(kz-\omega t)}.} More detail about this assumption is discussed by Wangsness. Plugging this into the integral and expressing in terms of Cartesian coordinates producesπe,p(r,t)=P0ei(kzωt)4πϵ00dzeik(zz)dxdyeik0|rr||rr|.{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }(\mathbf {r} ,t)={\frac {\mathbf {P} _{0}e^{i(kz-\omega t)}}{4\pi \epsilon _{0}}}\int _{0}^{\infty }dz'e^{ik\left(z'-z\right)}\int _{-\infty }^{\infty }dx'\int _{-\infty }^{\infty }dy'{\frac {e^{ik_{0}\left|\mathbf {r} -\mathbf {r} '\right|}}{\left|\mathbf {r} -\mathbf {r} '\right|}}.}

First, consider only the integration overx{\displaystyle x'} andy{\displaystyle y'} and convert this tocylindrical coordinates(x,y,z)(ρ,φ,z){\displaystyle (x,y,z)\rightarrow (\rho ,\varphi ,z)} and call|rr|=R{\displaystyle \left|\mathbf {r} -\mathbf {r} '\right|=R}I:=dxdyeik0|rr||rr|=02πdφ0dρeik0RR=2π0dρeik0RR.{\displaystyle I:=\int _{-\infty }^{\infty }dx^{\prime }\int _{-\infty }^{\infty }dy^{\prime }{\frac {e^{ik_{0}\left|\mathbf {r} -\mathbf {r} ^{\prime }\right|}}{\left|\mathbf {r} -\mathbf {r} ^{\prime }\right|}}=\int _{0}^{2\pi }d\varphi '\int _{0}^{\infty }d\rho '{\frac {e^{ik_{0}R}}{R}}=2\pi \int _{0}^{\infty }d\rho '{\frac {e^{ik_{0}R}}{R}}.}

Then using the substitutionR2=ρ2+|zz|2ρ2=R2|zz|2ρdρ=RdR{\displaystyle R^{2}=\rho ^{2}+\left|z'-z\right|^{2}\Rightarrow \rho ^{2}=R^{2}-\left|z'-z\right|^{2}\Rightarrow \rho \,d\rho =R\,dR}andρ=R2|zz|2{\displaystyle \rho ={\sqrt {R^{2}-\left|z'-z\right|^{2}}}}so the limits becomeρ=0=R2|zz|2R=|zz|{\displaystyle \rho =0={\sqrt {R^{2}-\left|z'-z\right|^{2}}}\Rightarrow R=\left|z'-z\right|}andρ==R2|zz|2R=.{\displaystyle \rho =\infty ={\sqrt {R^{2}-\left|z'-z\right|^{2}}}\Rightarrow R=\infty .}

Then introduce a convergence factoreϵR{\displaystyle e^{-\epsilon R}} withϵR{\displaystyle \epsilon \in \mathbb {R} } into the integrand since it does not change the value of the integral,

I=2π|zz|dReik0R=2πlimϵ0|zz|dRe(ik0ϵ)R=2πlimϵ0[e(ik0ϵ)Rik0ϵ]||zz|=2πlimϵ0[e(ik0ϵ)ik0ϵe(ik0ϵ)|zz|ik0ϵ].{\displaystyle {\begin{aligned}I&=2\pi \int _{\left|z'-z\right|}^{\infty }dRe^{ik_{0}R}\\&=2\pi \lim _{\epsilon \to 0}\int _{\left|z'-z\right|}^{\infty }dRe^{(ik_{0}-\epsilon )R}\\&=\left.2\pi \lim _{\epsilon \to 0}\left[{\frac {e^{(ik_{0}-\epsilon )R}}{ik_{0}-\epsilon }}\right]\right|_{\left|z'-z\right|}^{\infty }\\&=2\pi \lim _{\epsilon \to 0}\left[{\frac {e^{(ik_{0}-\epsilon )\infty }}{ik_{0}-\epsilon }}-{\frac {e^{(ik_{0}-\epsilon ){\left|z'-z\right|}}}{ik_{0}-\epsilon }}\right].\end{aligned}}}

ThenϵR{\displaystyle \epsilon \in \mathbb {R} } implieslimϵ0eϵ=0{\displaystyle \lim _{\epsilon \to 0}e^{-\epsilon \infty }=0}, hencelimϵ0e(ik0ϵ)=limϵ0eik0eϵ=0{\displaystyle \lim _{\epsilon \to 0}e^{(ik_{0}-\epsilon )\infty }=\lim _{\epsilon \to 0}e^{ik_{0}\infty }e^{-\epsilon \infty }=0}. Therefore,I=2πlimϵ0[0e(ik0ϵ)|zz|ik0ϵ]=2πeik0|zz|ik0=2πieik0|zz|k0.{\displaystyle {\begin{aligned}I&=2\pi \lim _{\epsilon \to 0}\left[0-{\frac {e^{(ik_{0}-\epsilon ){\left|z^{\prime }-z\right|}}}{ik_{0}-\epsilon }}\right]\\&=-2\pi {\frac {e^{ik_{0}{\left|z'-z\right|}}}{ik_{0}}}\\&=2\pi i{\frac {e^{ik_{0}{\left|z'-z\right|}}}{k_{0}}}.\end{aligned}}}

Now, plugging this result back into the z-integral yieldsπe,p(z,t)=iP0ei(kzωt)2k0ϵ00dzeik(zz)eik0|zz|{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }(z,t)={\frac {i\mathbf {P} _{0}e^{i(kz-\omega t)}}{2k_{0}\epsilon _{0}}}\int _{0}^{\infty }dz'e^{ik\left(z'-z\right)}e^{ik_{0}\left|z-z'\right|}}

Notice thatπe,p{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }} is now only a function ofz{\displaystyle z} and notr{\displaystyle \mathbf {r} }, which was expected for the given symmetry.

This integration must be split into two due to the absolute value|zz|{\displaystyle \left|z-z'\right|} inside the integrand. The regions arez<0{\displaystyle z<0} andz>0{\displaystyle z>0}. Again, a convergence factor must be introduced to evaluate both integrals and the result isπe,p(z,t)=Peiωt2ϵ0k0{1k+k0eik0zz<02k0k02k2eikz+1kk0eik0zz>0.{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }(z,t)=-{\frac {\mathbf {P} e^{-i\omega t}}{2\epsilon _{0}k_{0}}}{\begin{cases}{{\frac {1}{k+k_{0}}}e^{-ik_{0}z}}&{z<0}\\{{\frac {2k_{0}}{k_{0}^{2}-k^{2}}}e^{ikz}+{\frac {1}{k-k_{0}}}e^{ik_{0}z}}&{z>0.}\end{cases}}}

Instead of pluggingπe,p{\displaystyle {\boldsymbol {\pi }}_{\mathrm {e,p} }} directly into the expression for the electric field, several simplifications can be made. Begin with thecurl of the curl vector identity,×(×πe,p)=(πe,p)2πe,p,{\displaystyle \nabla \times (\nabla \times \mathbf {{\boldsymbol {\pi }}_{\mathrm {e,p} }} )=\nabla (\nabla \cdot \mathbf {{\boldsymbol {\pi }}_{\mathrm {e,p} }} )-\nabla ^{2}\mathbf {{\boldsymbol {\pi }}_{\mathrm {e,p} }} ,}therefore,Ep=××πePϵ0=(πe,p)2πe,pPϵ0.{\displaystyle {\begin{aligned}\mathbf {E} _{\mathrm {p} }&=\nabla \times \nabla \times {\boldsymbol {\pi }}_{\mathrm {e} }-{\frac {\mathbf {P} }{\epsilon _{0}}}\\&=\nabla (\nabla \cdot {\boldsymbol {\pi }}_{\mathrm {e,p} })-\nabla ^{2}{\boldsymbol {\pi }}_{\mathrm {e,p} }-{\frac {\mathbf {P} }{\epsilon _{0}}}.\end{aligned}}}

Notice thatπe,p=0{\displaystyle \nabla \cdot {\boldsymbol {\pi }}_{\mathrm {e,p} }=0} becauseP{\displaystyle \mathbf {P} } has noz{\displaystyle {\mathbf {z} }} dependence and is always perpendicular toz^{\displaystyle {\hat {\mathbf {z} }}}. Also, notice that the second and third terms are equivalent to the inhomogeneous wave equation, therefore,Ep=1c22πe,pt2=1c2(iω)2πe,p=k02πe,p{\displaystyle {\begin{aligned}\mathbf {E} _{\mathrm {p} }&=-{\frac {1}{c^{2}}}{\frac {\partial ^{2}{\boldsymbol {\pi }}_{\mathrm {e,p} }}{\partial t^{2}}}\\&=-{\frac {1}{c^{2}}}(-i\omega )^{2}{\boldsymbol {\pi }}_{\mathrm {e,p} }\\&=k_{0}^{2}{\boldsymbol {\pi }}_{\mathrm {e,p} }\end{aligned}}}

Therefore, the total field isE(z,t)=E0ei(k0zωt)+k02πe,p(z,t){\displaystyle \mathbf {E} (z,t)=\mathbf {E} _{0}e^{i\left(k_{0}z-\omega t\right)}+k_{0}^{2}{\boldsymbol {\pi }}_{\mathrm {e,p} }(z,t)}which becomes,E(z,t)={E0ei(k0zωt)P2ϵ0k0k+k0ei(k0z+ωt)z<0E0ei(k0zωt)P2ϵ0k0kk0ei(k0zωt)Pϵ0k02k02k2ei(kzωt)z>0.{\displaystyle \mathbf {E} (z,t)=\left\{{\begin{array}{l}{\mathbf {E} _{0}e^{i\left(k_{0}z-\omega t\right)}-{\frac {\mathbf {P} }{2\epsilon _{0}}}{\frac {k_{0}}{k+k_{0}}}e^{-i\left(k_{0}z+\omega t\right)}}&{z<0}\\{\mathbf {E} _{0}e^{i\left(k_{0}z-\omega t\right)}-{\frac {\mathbf {P} }{2\epsilon _{0}}}{\frac {k_{0}}{k-k_{0}}}e^{i\left(k_{0}z-\omega t\right)}-{\frac {\mathbf {P} }{\epsilon _{0}}}{\frac {k_{0}^{2}}{k_{0}^{2}-k^{2}}}e^{i(kz-\omega t)}}&{z>0.}\end{array}}\right.}

Now focus on the field inside the dielectric. Using the fact thatE(z,t){\displaystyle \mathbf {E} (z,t)} is complex, we may immediately writeE(z>0,t)=Eei(k0zωt){\displaystyle \mathbf {E} (z>0,t)=\mathbf {E} e^{i\left(k_{0}z-\omega t\right)}}recall also that inside the dielectric we haveP=ϵ0χE{\displaystyle \mathbf {P} =\epsilon _{0}\chi \mathbf {E} }.

Then by coefficient matching we find,ei(kzωt)1=χk02k02k2{\displaystyle e^{i\left(kz-\omega t\right)}\Rightarrow 1=-\chi {\frac {k_{0}^{2}}{k_{0}^{2}-k^{2}}}}andei(k0zωt)0=E0χ2k0kk0E.{\displaystyle e^{i\left(k_{0}z-\omega t\right)}\Rightarrow 0=\mathbf {E} _{0}-{\frac {\chi }{2}}{\frac {k_{0}}{k-k_{0}}}\mathbf {E} .}

The first relation quickly yields thewave vector in the dielectric in terms of the incident wave ask=1+χk0=nk0.{\displaystyle {\begin{aligned}k&={\sqrt {1+\chi }}k_{0}\\&=nk_{0}.\end{aligned}}}

Using this result and the definition ofP{\displaystyle \mathbf {P} } in the second expression yields the polarization vector in terms of the incident electric field asP=2ϵ0(n1)E0.{\displaystyle \mathbf {P} =2\epsilon _{0}(n-1)\mathbf {E} _{0}.}

Both of these results can be substituted into the expression for the electric field to obtain the final expressionE(z,t)={E0ei(k0zωt)(n1n+1)E0ei(k0z+ωt)z<0(2n+1)E0ei(nk0zωt)z>0.{\displaystyle \mathbf {E} (z,t)=\left\{{\begin{array}{l}{\mathbf {E} _{0}e^{i\left(k_{0}z-\omega t\right)}-\left({\frac {n-1}{n+1}}\right)\mathbf {E} _{0}e^{-i\left(k_{0}z+\omega t\right)}}&{z<0}\\{\left({\frac {2}{n+1}}\right)\mathbf {E} _{0}e^{i\left(nk_{0}z-\omega t\right)}}&{z>0.}\end{array}}\right.}

This is exactly the result as expected. There is only one wave inside the medium and it has wave speed reduced by n. The expected reflection and transmission coefficients are also recovered.

Extinction lengths and tests of special relativity

[edit]

The characteristic "extinction length" of a medium is the distance after which the original wave can be said to have been completely replaced. For visible light, traveling in air at sea level, this distance is approximately 1 mm.[7] In interstellar space, the extinction length for light is 2 light years.[8] At very high frequencies, the electrons in the medium can't "follow" the original wave into oscillation, which lets that wave travel much further: for 0.5 MeV gamma rays, the length is 19 cm of air and 0.3 mm of Lucite, and for 4.4 GeV, 1.7 m in air, and 1.4 mm in carbon.[9]

Special relativity predicts that the speed of light in vacuum is independent of the velocity of the source emitting it. This widely believed prediction has been occasionally tested using astronomical observations.[7][8] For example, in a binary star system, the two stars are moving in opposite directions, and one might test the prediction by analyzing their light. (See, for instance, theDe Sitter double star experiment.) Unfortunately, the extinction length of light in space nullifies the results of any such experiments using visible light, especially when taking account of the thick cloud of stationary gas surrounding such stars.[7] However, experiments using X-rays emitted by binary pulsars, with much longer extinction length, have been successful.[8]

References

[edit]
  1. ^abBorn, Max;Wolf, Emil (1999),Principles of Optics (7th ed.), Cambridge: Cambridge University Press, p. 106,ISBN 9780521784498
  2. ^abLakhtakia, Akhlesh (2017), "The Ewald–Oseen Extinction Theorem and the Extended Boundary Condition Method",The Ewald-Oseen Extinction Theorem and the Extended Boundary Condition Method, in: The World of Applied Electromagnetics, Cham, Switzerland: Springer, pp. 481–513,doi:10.1007/978-3-319-58403-4_19,ISBN 978-3-319-58402-7
  3. ^Mansuripur, Masud (2009),"The Ewald–Oseen extinction theorem",Classical Optics and its Applications (2nd ed.), Cambridge: Cambridge University Press, p. 209,arXiv:1507.05234,doi:10.1017/CBO9780511803796.019,ISBN 9780511803796
  4. ^Ballenegger, Vincent C.; Weber, T. A. (1999-07-01)."The Ewald–Oseen extinction theorem and extinction lengths".American Journal of Physics.67 (7):599–605.doi:10.1119/1.19330.ISSN 0002-9505.
  5. ^Wangsness, Roald K. (1981-10-01). "Effect of matter on the phase velocity of an electromagnetic wave".American Journal of Physics.49 (10):950–953.Bibcode:1981AmJPh..49..950W.doi:10.1119/1.12596.ISSN 0002-9505.
  6. ^Zangwill, Andrew (2013).Modern Electrodynamics. Cambridge University Press.ISBN 9780521896979.
  7. ^abcFox, J.G. (1962), "Experimental Evidence for the Second Postulate of Special Relativity",American Journal of Physics,30 (1):297–300,Bibcode:1962AmJPh..30..297F,doi:10.1119/1.1941992.
  8. ^abcBrecher, K. (1977). "Is the speed of light independent of the velocity of the source".Physical Review Letters.39 (17):1051–1054.Bibcode:1977PhRvL..39.1051B.doi:10.1103/PhysRevLett.39.1051.
  9. ^Filippas, T.A.;Fox, J.G. (1964). "Velocity of Gamma Rays from a Moving Source".Physical Review.135 (4B): B1071–1075.Bibcode:1964PhRv..135.1071F.doi:10.1103/PhysRev.135.B1071.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ewald–Oseen_extinction_theorem&oldid=1323545239"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp