Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Evolution of brachiopods

From Wikipedia, the free encyclopedia

TheDevonian brachiopodTylothyris from the Milwaukee Formation, Milwaukee County, Wisconsin

The origin of thebrachiopods is uncertain; they either arose from reduction of a multi-plated tubular organism, or from the folding of a slug-like organism with a protective shell on either end. Since theirCambrian origin, the phylum rose to aPalaeozoic dominance, but dwindled during theMesozoic.

Origins

[edit]

Brachiopod fold hypothesis

[edit]

The long-standing hypothesis of brachiopod origins, which has recently come under fire,[1] suggests that the brachiopods arose by the folding of aHalkieria-like organism, which bore two protective shells at either end of a scaled body.[2] Thetannuolinids were thought to represent an intermediate form, although the fact that they do not, as thought, possess ascleritome means that this is now considered unlikely.[3] Under this hypothesis, thePhoronid worms share a similar evolutionary history; molecular data also appear to indicate their membership of Brachiopoda.[4]

Under the Brachiopod Fold Hypothesis, the "dorsal" and "ventral" valves would in fact represent an anterior and posterior shell. This would make the axes of symmetry consistent with that of otherbilaterian phyla[4] and appears to be consistent with the embryological development, in which the body axis folds to bring the shells from the dorsal surface to their mature position.[4] Further support has been identified from the gene expression pattern during development,[4] but on balance, developmental evidence speaks against the BFH.[5]

More recent developmental studies have cast doubt on the BFH. Most significantly, the dorsal and ventral valves have significantly different origins; the dorsal (branchial) valve is secreted by dorsal epithelia, whereas the ventral (pedicle) valve corresponds to the cuticle of the pedicle, which becomes mineralized during development.[6] Moreover, the dorsal and ventral valves ofLingula do not display theHox gene expression patterns that would be expected if they were ancestrally 'anterior' and 'posterior'.[7]

Tommotiids

[edit]

The 'tommotiids' are an informal group of animals thought to belophotrochozoans. Their remains are usually found asmicrofossils, entombed in carbonate as phosphatic sclerites(armor plates). While the sclerites are disarticulated in their fossil state, in life a huge number of them would have articulated and attached onto a soft-bodied animal. The taxonomical affinities of such animal have long been uncertain - they had been compared to other fossils known from armor plates/scales, such asHalkieria and themachaeridian worms.[8]

Continuing research in the current century has brought on a new exciting perspective on the affinities oftommotiids: they are now being regarded asstem-group brachiopods. One crucial fossil linking the tommotiids with brachiopods isMicrina. Analysis on the microscopic inner structure of the phosphatic shell has shown similarities to theorganophosphatic brachiopods, one of them being tubes - that must have housedsetae in life - perforating the shell layers. Setigerous tubes have also been found in early brachiopods, like thePaterinates for example.[9] A later publication (Holmeret al. 2008) asserted thatMicrina was a bivalved animal not unlike a brachiopod, having only two armor plates in life.Tommotiid sclerites can be classified by their shape, and most had two types of them: the sellate sclerite and the mitral sclerite. In this modelMicrina had one of each. The sellate and mitral sclerites oftommotiids would end up becoming dorsal(brachial) and ventral(pedicle) valves respectively.[10]

Another crucial find would be the discovery of (partially) articulated tommotiids. The first of these isEccentrotheca, and the secondPaterimitra. Unlike the traditional view of them being slug-like animals comparable to Halkieria, the articulated exoskeleton suggest that they were sessile filter feeders,[1][11] just like the brachiopods and their sister-group phoronids. Their shell microstructure, again, show similarity to thePaterinate brachiopods, especially in their primary mineralised layer.[12]

Appearance of the brachiopod crown-group

[edit]

The earliest unequivocal brachiopod fossils appeared in the earlyCambrian Period.[13][14] The oldest known brachiopod isAldanotreta sunnaginensis from the lowestTommotian Stage, early Cambrian of theSiberia was confidently identified as a paterinid linguliforms.

The question of Paterinata

[edit]

The brachiopod classPaterinata is an organophosphatic-shelled group that includes some of the oldest brachiopods known. They are usually considered as members ofLinguliformea, beingsister-groups with the similarly organophosphaticlingulates. However, paterinates possess a number of traits that resemble the 'articulate' brachiopods more thanlingulates. Their adductor muscle scars are oriented postero-medially like the rhynchonelliforms. They have a strophic(straight) hinge line, which resemble early articulate groups like theorthids. Their mantle canal system houses gonads(like thecraniiforms) and have exclusively marginalvascula terminalia.[15] This mosaic of traits lead to a repeated suggestion of the possibility that paterinates[16][15](or at least a few of them[13]) could be very early diverging members separate from the lingulates. Their shell microstructure also seems to be closer to the stem-brachiopod tommotiids,[12] though this is something that was brought up later down the line.

Evolutionary history

[edit]

Palaeozoic dominance

[edit]

Brachiopods are extremely common fossils throughout thePalaeozoic.During theOrdovician andSilurian periods, brachiopods became adapted to life in most marine environments and became particularly numerous in shallow water habitats, in some cases forming whole banks in much the same way as bivalves (such asmussels) do today. In some places, large sections oflimestonestrata and reef deposits are composed largely of their shells.

The major shift came with thePermian extinction, as a result of theMesozoic marine revolution. Before theextinction event, brachiopods were more numerous and diverse than bivalve mollusks. Afterwards, in theMesozoic, their diversity and numbers were drastically reduced and they were largely replaced by bivalve molluscs. Molluscs continue to dominate today, and the remaining orders of brachiopods survive largely in fringe environments.

Mesozoic decline

[edit]

Throughout their long geological history, the brachiopods have gone through several major proliferations and diversifications, and have also suffered from majorextinctions as well.

It has been suggested that the slow decline of the brachiopods over the last 100 million years or so is a direct result of the rise in diversity of filter-feeding bivalves, which have ousted the brachiopods from their former habitats; however, the bivalves have undergone a steady rise in diversity from the mid-Paleozoic onwards, and their abundance is unrelated to that of the brachiopods; further, many bivalves occupy niches (e.g. burrowing) which brachiopods never inhabited.[17]

Alternative possibilities for their demise include the increasing disturbance of sediments by roving deposit feeders (including many burrowing bivalves); the increased intensity and variety of shell-crushing predation; or even chance demise – they were hard hit in theEnd-Permian extinction and may simply never have recovered.

See also

[edit]

References

[edit]
  1. ^abSkovsted, C. B.; Holmer, E.; Larsson, M.; Hogstrom, E.; Brock, A.; Topper, P.; Balthasar, U.; Stolk, P.; Paterson, R. (May 2009)."The scleritome of Paterimitra: an Early Cambrian stem group brachiopod from South Australia".Proceedings of the Royal Society B: Biological Sciences.276 (1662):1651–1656.doi:10.1098/rspb.2008.1655.ISSN 0962-8452.PMC 2660981.PMID 19203919.
  2. ^Sigwart, J. D.; Sutton, M. D. (Oct 2007)."Deep molluscan phylogeny: synthesis of palaeontological and neontological data".Proceedings of the Royal Society B: Biological Sciences.274 (1624):2413–2419.doi:10.1098/rspb.2007.0701.PMC 2274978.PMID 17652065. For a summary, see"The Mollusca". University of California Museum of Paleontology. Retrieved2 October 2008.
  3. ^G. Giribet C. W. Dunn G. D. Edgecombe A. Hejnol M. Q. Martindale G. W. Rouse."Assembling the spiralian tree of life"(PDF). In M. J. Telford; D. T. J. Littlewood (eds.).Animal Evolution — Genomes, Fossils, and Trees. pp. 52–64.
  4. ^abcdCohen, B. L.; Holmer, L. E.; Luter, C. (2003)."The brachiopod fold: a neglected body plan hypothesis"(PDF).Palaeontology.46 (1):59–65.Bibcode:2003Palgy..46...59C.doi:10.1111/1475-4983.00287.
  5. ^Altenburger, Andreas; Martinez, Pedro; Budd, Graham E.; Holmer, Lars E. (2017)."Gene Expression Patterns in Brachiopod Larvae Refute the "Brachiopod-Fold" Hypothesis".Frontiers in Cell and Developmental Biology.5: 74.doi:10.3389/fcell.2017.00074.PMC 5572269.PMID 28879180.
  6. ^Altenburger, A.; Wanninger, A.; Holmer, L. E. (2013)."Metamorphosis in Craniiformea revisited:Novocrania anomala shows delayed development of the ventral valve".Zoomorphology.132 (4): 379.doi:10.1007/s00435-013-0194-3.S2CID 16785860.
  7. ^Luo, Yi-Jyun; Kanda, Miyuki; Koyanagi, Ryo; Hisata, Kanako; Akiyama, Tadashi; Sakamoto, Hirotaka; Sakamoto, Tatsuya; Satoh, Noriyuki (2018)."Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads".Nature Ecology & Evolution.2 (1):141–151.doi:10.1038/s41559-017-0389-y.PMID 29203924. (see Supplementary Information for discussion)
  8. ^Dzik, Jerzy (1986). "Turrilepadida and other Machaeridia".Malacologia.52:97–113.doi:10.4002/040.052.0107.
  9. ^Williams, Alwyn; Holmer, Lars E. (2002)."Shell Structure And Inferred Growth, Functions And Affinities Of The Sclerites Of The Problematic Micrina".Palaeontology.45 (5):845–873.Bibcode:2002Palgy..45..845W.doi:10.1111/1475-4983.00264.ISSN 0031-0239.
  10. ^Holmer, Lars E; Skovsted, Christian B; Brock, Glenn A; Valentine, James L; Paterson, John R (2008-12-23)."The Early Cambrian tommotiid Micrina , a sessile bivalved stem group brachiopod".Biology Letters.4 (6):724–728.doi:10.1098/rsbl.2008.0277.ISSN 1744-9561.PMC 2614141.PMID 18577500.
  11. ^Skovsted, C. B.; Brock, G. A.; Paterson, J. R.; Holmer, L. E.; Budd, G. E. (2008). "The scleritome ofEccentrotheca from the Lower Cambrian of South Australia: Lophophorate affinities and implications for tommotiid phylogeny".Geology.36 (2): 171.Bibcode:2008Geo....36..171S.doi:10.1130/G24385A.1.
  12. ^abBalthasar, U.; Skovsted, C. B.; Holmer, L. E.; Brock, G. A. (2009-12-01)."Homologous skeletal secretion in tommotiids and brachiopods".Geology.37 (12):1143–1146.Bibcode:2009Geo....37.1143B.doi:10.1130/g30323a.1.ISSN 0091-7613.
  13. ^abAlwyn Williams; Leonid E. Popov; Lars E. Holmer; Maggie Cusack (1998)."The diversity and phylogeny of the paterinate Brachiopods"(PDF).Palaeontology.41 (2):241–262. Archived from the original on 2011-07-16. Retrieved2009-10-10.
  14. ^Valentine, James W. (2004).On the origin of phyla. Chicago: University of Chicago Press. p. 638.ISBN 978-0-226-84548-7.
  15. ^abHarper, David A. T.; Popov, Leonid E.; Holmer, Lars E. (September 2017). Smith, Andrew (ed.)."Brachiopods: origin and early history".Palaeontology.60 (5):609–631.Bibcode:2017Palgy..60..609H.doi:10.1111/pala.12307.ISSN 0031-0239.
  16. ^Rowell, Albert J. (1982)."The monophyletic origin of the Brachiopoda".Lethaia.15 (4):299–307.Bibcode:1982Letha..15..299R.doi:10.1111/j.1502-3931.1982.tb01695.x.ISSN 0024-1164.
  17. ^Gould, S. J.; Calloway, C. B. (1 October 1980). "Clams and Brachiopods — Ships that Pass in the Night".Paleobiology.6 (4):383–396.Bibcode:1980Pbio....6..383G.doi:10.1017/s0094837300003572.ISSN 0094-8373.JSTOR 2400538.
Evolution
Population
genetics
Development
Oftaxa
Oforgans
Ofprocesses
Tempo and modes
Speciation
History
Philosophy
Related
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Evolution_of_brachiopods&oldid=1303156065"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp