Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of europium

From Wikipedia, the free encyclopedia
(Redirected fromEuropium-151)

Isotopes ofeuropium (63Eu)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
150Eusynth36.9 yβ+150Sm
151Eu47.8%4.62×1018 yα147Pm
152Eusynth13.54 yβ+152Sm
β152Gd
153Eu52.2%stable
154Eusynth8.59 yβ154Gd
155Eusynth4.76 yβ155Gd
Standard atomic weightAr°(Eu)

Naturally occurringeuropium (63Eu) is composed of twoisotopes,151Eu and153Eu, with153Eu being the most abundant (52.2%natural abundance). While153Eu is observationally stable (theoretically can undergoalpha decay with half-life over 5.5×1017 years),151Eu was found in 2007 to be unstable and undergoalpha decay.[4] Thehalf-life is measured to be (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 1018 years[5] which corresponds to 1 alpha decay per two minutes in every kilogram of natural europium. Besides the natural radioisotope151Eu, 36 artificial radioisotopes have been characterized, with the most stable being150Eu with ahalf-life of 36.9 years,152Eu with a half-life of 13.516 years,154Eu with a half-life of 8.593 years, and155Eu with a half-life of 4.7612 years. The majority of the remainingradioactive isotopes, which range from130Eu to170Eu, have half-lives that are less than 12.2 seconds. This element also has 18metastable isomers, with the most stable being150mEu (t1/2 12.8 hours),152m1Eu (t1/2 9.3116 hours) and152m5Eu (t1/2 96 minutes).

The primarydecay mode before the most abundant stable isotope,153Eu, iselectron capture, and the primary mode after isbeta decay. The primarydecay products before153Eu areisotopes of samarium and the primary products after areisotopes of gadolinium.

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[6]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity[1]
[n 9][n 5]
Natural abundance(mole fraction)
Excitation energy[n 5]Normal proportion[1]Range of variation
130Eu6367129.96402(58)#1.0(4) msp129Sm(1+)
131Eu6368130.95763(43)#17.8(19) msp (89%)130Sm3/2+
β+ (?%)131Sm
β+, p (?%)130Pm
134Eu6371133.94654(32)#0.5(2) sβ+134Sm
β+, p (?%)133Pm
135Eu6372134.94187(21)#1.5(2) sβ+135Sm5/2+#
136Eu6373135.93962(21)#3.3(3) sβ+ (99.91%)136Sm6+#
β+, p (0.09%)135Pm
136mEu[n 10]100(100)# keV3.8(3) sβ+ (99.91%)136Sm1+#
β+, p (0.09%)135Pm
137Eu6374136.9354307(47)8.4(5) sβ+137Sm5/2+#
138Eu6375137.933709(30)5# s2−#
138mEu[n 10]100(50)# keV12.1(6) sβ+138Sm7−#
139Eu6376138.929792(14)17.9(6) sβ+139Sm(11/2)−
139mEu148.3(3) keV10(2) μsIT139Eu(7/2+)
140Eu6377139.928088(55)1.51(2) sβ+ (95.1%)140Sm1+
EC (4.9%)
140m1Eu210(14) keV125(2) msIT (>99%)140Eu(5−)
β+ (>1%)140Sm
140m2Eu669(14) keV299.8(21) nsIT140Eu(8+)
141Eu6378140.924932(14)40.7(7) sβ+141Sm5/2+
141mEu96.45(7) keV2.7(3) sIT (86%)141Eu11/2−
β+ (14%)141Sm
142Eu6379141.923447(32)2.36(10) sβ+ (89.9%)142Sm1+
EC (11.1%)142Sm
142mEu450(30) keV1.223(8) minβ+142Sm8−
143Eu6380142.920299(12)2.59(2) minβ+143Sm5/2+
143mEu389.51(4) keV50.0(5) μsIT143Eu11/2−
144Eu6381143.918819(12)10.2(1) sβ+144Sm1+
144mEu1127.6(6) keV1.0(1) μsIT144Eu8−
145Eu6382144.9162727(33)5.93(4) dβ+145Sm5/2+
145mEu716.0(3) keV490(30) nsIT145Eu11/2−
146Eu6383145.9172109(65)4.61(3) dβ+146Sm4−
146mEu666.33(11) keV235(3) μsIT146Eu9+
147Eu6384146.9167524(28)24.1(6) dβ+147Sm5/2+
α (0.0022%)143Pm
147mEu625.27(5) keV765(15) nsIT147Eu11/2−
148Eu6385147.918091(11)54.5(5) dβ+148Sm5−
α (9.4×10−7%)144Pm
148mEu720.4(3) keV162(8) nsIT148Eu9+
149Eu6386148.9179369(42)93.1(4) dEC149Sm5/2+
149mEu496.386(2) keV2.45(5) μsIT149Eu11/2−
150Eu6387149.9197071(67)36.9(9) yβ+150Sm5−
150mEu41.7(10) keV12.8(1) hβ (89%)150Gd0−
β+ (11%)150Sm
IT (<5×10−8%)[7]150Eu
151Eu[n 11]6388150.9198566(13)4.6(12)×1018 yα147Pm5/2+0.4781(6)
151mEu196.245(10) keV58.9(5) μsIT151Eu11/2−
152Eu6389151.9217510(13)13.517(6) yβ+ (72.08%)152Sm3−
β (27.92%)152Gd
152m1Eu45.5998(4) keV9.3116(13) hβ (73%)152Gd0−
β+ (27%)152Sm
152m2Eu65.2969(4) keV940(80) nsIT152Eu1−
152m3Eu78.2331(4) keV165(10) nsIT152Eu1+
152m4Eu89.8496(4) keV384(10) nsIT152Eu4+
152m5Eu147.86(10) keV95.8(4) minIT152Eu8−
153Eu[n 12]6390152.9212368(13)Observationally Stable[n 13][8][9]5/2+0.5219(6)
153mEu1771.0(4) keV475(10) nsIT153Eu19/2−
154Eu[n 12]6391153.9229857(13)8.592(3) yβ (99.98%)154Gd3−
EC (0.018%)154Sm
154m1Eu68.1702(4) keV2.2(1) μsIT154Eu2+
154m2Eu145.3(3) keV46.3(4) minIT154Eu(8−)
155Eu[n 12]6392154.9228998(13)4.742(8) yβ155Gd5/2+
156Eu[n 12]6393155.9247630(38)15.19(8) dβ156Gd0+
157Eu6394156.9254326(45)15.18(3) hβ157Gd5/2+
158Eu6395157.9277822(22)45.9(2) minβ158Gd1−
159Eu6396158.9290995(46)18.1(1) minβ159Gd5/2+
160Eu6397159.93183698(97)42.6(5) sβ160Gd(5−)
160mEu93.0(12) keV30.8(5) sIT160Eu(1−)
161Eu6398160.933664(11)26.2(23) sβ161Gd5/2+#
162Eu6399161.9369583(14)~10 sβ162Gd1+#
162mEu158.0(17) keV15.0(5) sIT162Eu(6+)
163Eu63100162.93926551(97)7.7(4) sβ163Gd5/2+#
163mEu964.5(5) keV911(24) nsIT163Eu(13/2−)
164Eu63101163.9428529(22)4.16(19) sβ164Gd3−#
165Eu63102164.9455401(56)2.163+0.139
−0.120
 s
[10]
β165Gd5/2+#
166Eu63103165.94981(11)#1.277+0.100
−0.145
 s
[10]
β (99.37%)166Gd0−#
β, n (0.63%)165Gd
167Eu63104166.95301(43)#852+76
−54
 ms
[10]
β (98.05%)167Gd5/2+#
β, n (1.95%)166Gd
168Eu63105167.95786(43)#440+48
−47
 ms
[10]
β (96.05%)168Gd6−#
β, n (3.95%)167Gd
169Eu63106168.96172(54)#389+92
−88
 ms
[10]
β (85.38%)169Gd5/2+#
β, n (14.62%)168Gd
170Eu63107169.96687(54)#197+74
−71
 ms
[10]
β (>76%)170Gd
β, n (<24%)169Gd
This table header & footer:
  1. ^mEu – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^abc# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^Modes of decay:
    α:Alpha decay
    β+:Positron emission
    EC:Electron capture
    β:Beta decay
    IT:Isomeric transition


    p:Proton emission
  7. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^Bold symbol as daughter – Daughter product is stable.
  9. ^( ) spin value – Indicates spin with weak assignment arguments.
  10. ^abOrder of ground state and isomer is uncertain.
  11. ^primordialradionuclide
  12. ^abcdFission product
  13. ^Believed to undergo α decay to149Pm with a half-life over5.5×1017 years

Europium-155

[edit]
t½
(year)
Yield
(%)
Q
(keV)
βγ
155Eu4.760.0803252βγ
85Kr10.760.2180687βγ
113mCd14.10.0008316β
90Sr28.94.505  2826β
137Cs30.236.337  1176βγ
121mSn43.90.00005390βγ
151Sm94.60.531477β

Europium-155 is afission product with ahalf-life of 4.76 years. It has a maximumdecay energy of 252keV. In athermal reactor (almost all currentnuclear power plants), it has a lowfission product yield, about half of one percent as much as the most abundant fission products.

155Eu's largeneutron capturecross section (about 3900 barns forthermal neutrons, 16000resonance integral) means that most of even the small amount produced is destroyed in the course of thenuclear fuel'sburnup. Yield, decay energy, and half-life are all far less than that of137Cs and90Sr, so155Eu is not a significant contributor tonuclear waste.

Some155Eu is also produced by successive neutron capture on153Eu (nonradioactive, 350 barns thermal, 1500 resonance integral, yield is about 5 times as great as155Eu) and154Eu (half-life 8.6 years, 1400 barns thermal, 1600 resonance integral, fission yield is extremely small because beta decay stops at154Sm). However, the differing cross sections mean that both155Eu and154Eu are destroyed faster than they are produced.

154Eu is a prolific emitter ofgamma radiation.[11]

IsotopeHalf-lifeRelative yieldThermal neutronResonance integral
Eu-153Stable53501500
Eu-1548.6 yearsNearly 015001600
Eu-1554.76 years1390016000

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Europium".CIAAW. 1995.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Belli, P.; et al. (2007). "Search for α decay of natural europium".Nuclear Physics A.789 (1–4):15–29.Bibcode:2007NuPhA.789...15B.doi:10.1016/j.nuclphysa.2007.03.001.
  5. ^Casali, N.; Nagorny, S. S.; Orio, F.; Pattavina, L.; et al. (2014). "Discovery of the151Eu α decay".Journal of Physics G: Nuclear and Particle Physics.41 (7): 075101.arXiv:1311.2834.Bibcode:2014JPhG...41g5101C.doi:10.1088/0954-3899/41/7/075101.S2CID 116920467.
  6. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  7. ^"Adopted Levels for150Eu"(PDF). NNDC Chart of Nuclides.
  8. ^Danevich, F. A.; Andreotti, E.; Hult, M.; Marissens, G.; Tretyak, V. I.; Yuksel, A. (2012). "Search for α decay of151Eu to the first excited level of147Pm using underground γ-ray spectrometry".European Physical Journal A.48 (157): 157.arXiv:1301.3465.Bibcode:2012EPJA...48..157D.doi:10.1140/epja/i2012-12157-7.S2CID 118657922.
  9. ^Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays".European Physical Journal A.55 (8): 140–1–140–7.arXiv:1908.11458.Bibcode:2019EPJA...55..140B.doi:10.1140/epja/i2019-12823-2.ISSN 1434-601X.S2CID 201664098.
  10. ^abcdefKiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022)."Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region".The Astrophysical Journal.936 (107): 107.Bibcode:2022ApJ...936..107K.doi:10.3847/1538-4357/ac80fc.hdl:2117/375253.
  11. ^"Archived copy"(PDF). Archived fromthe original(PDF) on 2011-07-06. Retrieved2011-04-02.{{cite web}}: CS1 maint: archived copy as title (link)
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_europium&oldid=1277325099#Europium-151"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp