The Euphrates is thefifteenth-longest river inAsia and the longest in West Asia, at about 2,780 km (1,730 mi), with a drainage area of 440,000 km2 (170,000 sq mi) that covers six countries.
The termEuphrates derives from theGreekEuphrátēs (Εὐφρᾱ́της), adapted fromOld Persian:𐎢𐎳𐎼𐎠𐎬𐎢,romanized: hUfrātuš,[2] itself fromElamite:𒌑𒅁𒊏𒌅𒅖,romanized: Úipratuiš. The Elamite name is ultimately derived fromcuneiform 𒌓𒄒𒉣; read asBuranun inSumerian andPurattu inAkkadian; many cuneiform signs have a Sumerian pronunciation and an Akkadian pronunciation, taken from a Sumerian word and an Akkadian word that mean the same. The AkkadianPurattu[3] has been perpetuated inSemitic languages (cf.Arabic:الفراتal-Furāt;Syriac:̇ܦܪܬPǝrāṯ,Hebrew:פְּרָתPǝrāṯ) and in other nearby languages of the time (cf.HurrianPuranti,SabarianUruttu). The Elamite, Akkadian, and possibly Sumerian forms are suggested to be from an unrecordedsubstrate language.[4]Tamaz V. Gamkrelidze andVyacheslav Ivanov suggest the proto-Sumerian*burudu "copper" (Sumerianurudu) as an origin, with an explanation that Euphrates was the river by which copper ore was transported in rafts, since Mesopotamia was the center of copper metallurgy during the period.[5]
The Euphrates is calledYeprat inArmenian (Եփրատ),Perat in modernHebrew (פרת),Fırat inTurkish andFirat inKurdish. TheMandaic name isPraš (ࡐࡓࡀࡔ), and is often mentioned asPrašZiwa (pronouncedFraš Ziwa) inMandaean scriptures such as theGinza Rabba.[6] In Mandaean scriptures, the Euphrates is considered to be the earthly manifestation of the heavenlyyardna or flowing river (similar to theYazidi concept ofLalish being the earthly manifestation of its heavenly counterpart,[7] or the ‘Sacred House’Kaaba inMecca being the earthly manifestation of the heavenly Al-Bayt Al-Mamur).[8]
The earliest references to the Euphrates come fromcuneiform texts found inShuruppak and pre-SargonicNippur in southernIraq and date to the mid-3rd millennium BCE. In these texts, written in Sumerian, the Euphrates is calledBuranuna (logographic: UD.KIB.NUN). The name could also be written KIB.NUN.(NA) ordKIB.NUN, with the prefix "d" indicating that the river was adivinity. In Sumerian, the name of the city ofSippar in modern-day Iraq was also written UD.KIB.NUN, indicating a historically strong relationship between the city and the river.
Plan, topographic representation of Babylon. The clay tablet depicts "Tu-ba", a suburb of the ancient city of Babylon. The River Euphrates is represented by the water-lined band. 660-500 BCE. British Museum
The Euphrates is the longest river ofWest Asia.[9] It emerges from the confluence of theKara Su or Western Euphrates (450 kilometres (280 mi)) and theMurat Su or Eastern Euphrates (650 kilometres (400 mi)) 10 kilometres (6.2 mi) upstream from the town ofKeban in southeastern Turkey.[10] Daoudy and Frenken put the length of the Euphrates from the source of the Murat River to the confluence with theTigris at 3,000 kilometres (1,900 mi), of which 1,230 kilometres (760 mi) is inTurkey, 710 kilometres (440 mi) inSyria and 1,060 kilometres (660 mi) in Iraq.[11][12] The same figures are given by Isaev and Mikhailova.[13] The length of theShatt al-Arab, which connects the Euphrates and the Tigris with thePersian Gulf, is given by various sources as 145–195 kilometres (90–121 mi).[14]
Both the Kara Su and the Murat Su rise northwest fromLake Van at elevations of 3,290 metres (10,790 ft) and 3,520 metres (11,550 ft)amsl, respectively.[15] At the location of theKeban Dam, the two rivers, now combined into the Euphrates, have dropped to an elevation of 693 metres (2,274 ft) amsl. From Keban to the Syrian–Turkish border, the river drops another 368 metres (1,207 ft) over a distance of less than 600 kilometres (370 mi). Once the Euphrates enters theUpper Mesopotamian plains, itsgrade drops significantly; within Syria the river falls 163 metres (535 ft) while over the last stretch betweenHīt and the Shatt al-Arab the river drops only 55 metres (180 ft).[10][16]
The Euphrates receives most of its water in the form of rainfall and melting snow, resulting in peak volumes during the months April through May.Discharge in these two months accounts for 36 percent of the total annual discharge of the Euphrates, or even 60–70 percent according to one source, while low runoff occurs in summer and autumn.[13][17] The average natural annual flow of the Euphrates has been determined from early- and mid-twentieth century records as 20.9 cubic kilometres (5.0 cu mi) at Keban, 36.6 cubic kilometres (8.8 cu mi) atHīt and 21.5 cubic kilometres (5.2 cu mi) atHindiya.[18] However, these averages mask the high inter-annual variability in discharge; atBirecik, just north of the Syro–Turkish border, annual discharges have been measured that ranged from a low volume of 15.3 cubic kilometres (3.7 cu mi) in 1961 to a high of 42.7 cubic kilometres (10.2 cu mi) in 1963.[19]
The discharge regime of the Euphrates has changed dramatically since the construction of the first dams in the 1970s. Data on Euphrates discharge collected after 1990 show the impact of the construction of the numerous dams in the Euphrates and of the increased withdrawal of water for irrigation. Average discharge at Hīt after 1990 has dropped to 356 cubic metres (12,600 cu ft) per second (11.2 cubic kilometres (2.7 cu mi) per year). The seasonal variability has equally changed. The pre-1990 peak volume recorded at Hīt was 7,510 cubic metres (265,000 cu ft) per second, while after 1990 it is only 2,514 cubic metres (88,800 cu ft) per second. The minimum volume at Hīt remained relatively unchanged, rising from 55 cubic metres (1,900 cu ft) per second before 1990 to 58 cubic metres (2,000 cu ft) per second afterward.[20][21]
In Syria, three rivers add their water to the Euphrates; theSajur, theBalikh and theKhabur. These rivers rise in the foothills of theTaurus Mountains along the Syro–Turkish border and add comparatively little water to the Euphrates. The Sajur is the smallest of these tributaries; emerging from two streams nearGaziantep and draining the plain aroundManbij before emptying into thereservoir of theTishrin Dam. The Balikh receives most of its water from akarstic spring near 'Ayn al-'Arus and flows due south until it reaches the Euphrates at the city ofRaqqa. In terms of length, drainage basin and discharge, the Khabur is the largest of these three. Its main karstic springs are located aroundRa's al-'Ayn, from where the Khabur flows southeast pastAl-Hasakah, where the river turns south and drains into the Euphrates nearBusayrah. Once the Euphrates enters Iraq, there are no more natural tributaries to the Euphrates, although canals connecting the Euphrates basin with the Tigris basin exist.[22][23]
Thedrainage basins of the Kara Su and the Murat River cover an area of 22,000 square kilometres (8,500 sq mi) and 40,000 square kilometres (15,000 sq mi), respectively.[10] Estimates of the area of the Euphrates drainage basin vary widely; from a low 233,000 square kilometres (90,000 sq mi) to a high 766,000 square kilometres (296,000 sq mi).[13] Recent estimates put the basin area at 388,000 square kilometres (150,000 sq mi),[10] 444,000 square kilometres (171,000 sq mi)[11][24] and 579,314 square kilometres (223,674 sq mi).[25] The greater part of the Euphrates basin is located in Turkey, Syria, and Iraq. According to both Daoudy and Frenken, Turkey's share is 28 percent, Syria's is 17 percent and that of Iraq is 40 percent.[11][12] Isaev and Mikhailova estimate the percentages of the drainage basin lying within Turkey, Syria and Iraq at 33, 20 and 47 percent respectively.[13] Some sources estimate that approximately 15 percent of the drainage basin is located withinSaudi Arabia, while a small part falls inside the borders ofKuwait.[11][12] Finally, some sources also includeJordan in the drainage basin of the Euphrates; a small part of the eastern desert (220 square kilometres (85 sq mi)) drains toward the east rather than to the west.[13][26]
The Euphrates flows through a number of distinctvegetation zones. Although millennia-long human occupation in most parts of the Euphrates basin has significantly degraded the landscape, patches of original vegetation remain. The steady drop in annual rainfall from the sources of the Euphrates toward the Persian Gulf is a strong determinant for the vegetation that can be supported. In its upper reaches the Euphrates flows through the mountains of Southeast Turkey and their southern foothills which support axeric woodland. Plant species in the moister parts of this zone include variousoaks,pistachio trees, andRosaceae (rose/plum family). The drier parts of the xeric woodland zone supports less dense oak forest andRosaceae. Here can also be found the wild variants of many cereals, includingeinkorn wheat,emmer,oat andrye.[28]
South of this zone lies a zone of mixed woodland-steppe vegetation. Between Raqqa and the Syro–Iraqi border the Euphrates flows through a steppe landscape. This steppe is characterised bywhite wormwood (Artemisia herba-alba) andAmaranthaceae. Throughout history, this zone has been heavily overgrazed due to the practicing ofsheep andgoatpastoralism by its inhabitants.[29] Southeast of the border between Syria and Iraq starts truedesert. This zone supports either no vegetation at all or small pockets ofChenopodiaceae orPoa sinaica. Although today nothing of it survives due to human interference, research suggests that the Euphrates Valley would have supported ariverine forest. Species characteristic of this type of forest include theOriental plane, theEuphrates poplar, thetamarisk, theash and various wetland plants.[30]
Among the fish species in the Tigris–Euphrates basin, the family of theCyprinidae are the most common, with 34 species out of 52 in total.[31] Among the Cyprinids, themangar has goodrecreational fishing qualities, leading the British to nickname it the "Tigris salmon." TheEuphrates softshell turtle is an endangeredsoft-shelled turtle that is limited to the Tigris–Euphrates river system.[32][33]
TheNeo-Assyrian palace reliefs from the 1st millennium BCE depictlion and bull hunts in fertile landscapes.[34] Sixteenth to nineteenth century European travellers in the Syrian Euphrates basin reported on an abundance of animals living in the area, many of which have become rare or even extinct. Species likegazelle,onager and the now-extinctArabian ostrich lived in the steppe bordering the Euphrates valley, while the valley itself was home to thewild boar. Carnivorous species include thewolf, thegolden jackal, thered fox, theleopard and the lion. TheSyrian brown bear can be found in the mountains of Southeast Turkey. The presence ofEurasian beaver has been attested in the bone assemblage of the prehistoric site ofTell Abu Hureyra in Syria, but the beaver has never been sighted in historical times.[35]
Map (in French) showing the locations of dams and barrages built in theSyro–Turkish part of the Euphrates basin
TheHindiya Barrage on the Iraqi Euphrates, based on plans by British civil engineerWilliam Willcocks and finished in 1913, was the first modern water diversion structure built in the Tigris–Euphrates river system.[36] The Hindiya Barrage was followed in the 1950s by theRamadi Barrage and the nearby Abu Dibbis Regulator, which serve to regulate the flow regime of the Euphrates and to discharge excess flood water into thedepression that is nowLake Habbaniyah. Iraq's largest dam on the Euphrates is theHaditha Dam; a 9-kilometre-long (5.6 mi)earth-fill dam creatingLake Qadisiyah.[37] Syria and Turkey built their first dams in the Euphrates in the 1970s. TheTabqa Dam in Syria was completed in 1973 while Turkey finished the Keban Dam, a prelude to the immenseSoutheastern Anatolia Project, in 1974. Since then, Syria has built two more dams in the Euphrates, theFreedom Dam and the Tishrin Dam, and plans to build a fourth dam – theHalabiye Dam – between Raqqa andDeir ez-Zor.[38] The Tabqa Dam is Syria's largest dam and its reservoir (Lake Assad) is an important source of irrigation and drinking water. It was planned that 640,000 hectares (2,500 sq mi) should be irrigated from Lake Assad, but in 2000 only 100,000–124,000 hectares (390–480 sq mi) had been realized.[39][40] Syria also built three smaller dams on the Khabur and its tributaries.[41]
With the implementation of the Southeastern Anatolia Project (Turkish:Güneydoğu Anadolu Projesi, orGAP) in the 1970s, Turkey launched an ambitious plan to harness the waters of the Tigris and the Euphrates for irrigation and hydroelectricity production and provide an economic stimulus to its southeastern provinces.[42] GAP affects a total area of 75,000 square kilometres (29,000 sq mi) and approximately 7 million people; representing about 10 percent of Turkey's total surface area and population, respectively. When completed, GAP will consist of 22 dams – including the Keban Dam – and 19 power plants and provide irrigation water to 1,700,000 hectares (6,600 sq mi) of agricultural land, which is about 20 percent of the irrigable land in Turkey.[43] C. 910,000 hectares (3,500 sq mi) of this irrigated land is located in the Euphrates basin.[44] By far the largest dam in GAP is theAtatürk Dam, located c. 55 kilometres (34 mi) northwest ofŞanlıurfa. This 184-and-1,820-metre-long (604 and 5,971 ft) dam was completed in 1992; thereby creating a reservoir that is the third-largest lake in Turkey. With a maximum capacity of 48.7 cubic kilometres (11.7 cu mi), the Atatürk Dam reservoir is large enough to hold the entire annual discharge of the Euphrates.[45] Completion of GAP was scheduled for 2010 but has been delayed because theWorld Bank has withheld funding due to the lack of an official agreement on water sharing between Turkey and the downstream states on the Euphrates and the Tigris.[46]
Apart from barrages and dams, Iraq has also created an intricate network of canals connecting the Euphrates with Lake Habbaniyah,Lake Tharthar, and Abu Dibbis reservoir; all of which can be used to store excess floodwater. Via theShatt al-Hayy, the Euphrates is connected with the Tigris. The largest canal in this network is the Main Outfall Drain or so-called "Third River;" constructed between 1953 and 1992. This 565-kilometre-long (351 mi) canal is intended to drain the area between the Euphrates and the Tigris south ofBaghdad to preventsoil salinization from irrigation. It also allows large freight barges to navigate up to Baghdad.[47][48][49]
Keban Dam inTurkey, the first dam on the Euphrates after it emerges from the confluence of theKara Su and theMurat SuQal'at Ja'bar inSyria, once perched on a hilltop overlooking the Euphrates valley but now turned into an island by the flooding ofLake Assad
The construction of the dams and irrigation schemes on the Euphrates has had a significant impact on the environment and society of each riparian country. The dams constructed as part of GAP – in both the Euphrates and the Tigris basins – have affected 382 villages and almost 200,000 people have been resettled elsewhere. The largest number of people was displaced by the building of the Atatürk Dam, which alone affected 55,300 people.[50] A survey among those who were displaced showed that the majority were unhappy with their new situation and that the compensation they had received was considered insufficient.[51] The flooding of Lake Assad led to the forced displacement of c. 4,000 families, who were resettled in other parts of northern Syria as part of a now abandoned plan to create an "Arab belt" along the borders with Turkey and Iraq.[52][53][54]
Apart from the changes in the discharge regime of the river, the numerous dams and irrigation projects have also had other effects on the environment. The creation of reservoirs with large surfaces in countries with high average temperatures has led to increasedevaporation; thereby reducing the total amount of water that is available for human use. Annual evaporation from reservoirs has been estimated at 2 cubic kilometres (0.48 cu mi) in Turkey, 1 cubic kilometre (0.24 cu mi) in Syria and 5 cubic kilometres (1.2 cu mi) in Iraq.[55] Water quality in the Iraqi Euphrates is low because irrigation water tapped in Turkey and Syria flows back into the river, together with dissolved fertilizer chemicals used on the fields.[56] The salinity of Euphrates water in Iraq has increased as a result of upstream dam construction, leading to lower suitability as drinking water.[57] The many dams and irrigation schemes, and the associated large-scale water abstraction, have also had a detrimental effect on the ecologically already fragileMesopotamian Marshes and on freshwater fishhabitats in Iraq.[58][59]
The inundation of large parts of the Euphrates valley, especially in Turkey and Syria, has led to the flooding of manyarchaeological sites and other places of cultural significance.[60] Although concerted efforts have been made to record or save as much of the endangeredcultural heritage as possible, many sites are probably lost forever. The combined GAP projects on the Turkish Euphrates have led to major international efforts to document the archaeological and cultural heritage of the endangered parts of the valley. Especially the flooding ofZeugma with its uniqueRoman mosaics by the reservoir of theBirecik Dam has generated much controversy in both the Turkish and international press.[61][62] The construction of the Tabqa Dam in Syria led to a large international campaign coordinated byUNESCO to document the heritage that would disappear under the waters of Lake Assad. Archaeologists from numerous countries excavated sites ranging in date from theNatufian to theAbbasid period, and two minarets were dismantled and rebuilt outside the flood zone. Important sites that have been flooded or affected by the rising waters of Lake Assad includeMureybet,Emar and Abu Hureyra.[63] A similar international effort was made when the Tishrin Dam was constructed, which led, among others, to the flooding of the importantPre-Pottery Neolithic B site ofJerf el Ahmar.[64] Anarchaeological survey andrescue excavations were also carried out in the area flooded by Lake Qadisiya in Iraq.[65] Parts of the flooded area have recently become accessible again due to the drying up of the lake, resulting not only in new possibilities for archaeologists to do more research, but also providing opportunities forlooting, which has been rampant elsewhere in Iraq in the wake of the2003 invasion.[66]
In Islamic tradition, ahadith ofMuhammad states that the Last Hour will not occur until the Euphrates River uncovers a mountain of gold, over which people will fight. Ninety-nine out of every one hundred individuals engaged in this conflict will perish. This event is considered one of the minor signs of the approaching Day of Judgment.[67]
In theChristian Bible, the Euphrates River is mentioned inRevelation 16:12: the Euphrates drying up is part of a series of events that foretell theSecond Coming. The river Phrath mentioned inGenesis 2:14 is also identified as the Euphrates.[68]
The early occupation of the Euphrates basin was limited to its upper reaches; that is, the area that is popularly known as theFertile Crescent.Acheulean stoneartifacts have been found in the Sajur basin and in theEl Kowm oasis in the centralSyrian steppe; the latter together with remains ofHomo erectus that were dated to 450,000 years old.[69][70] In the Taurus Mountains and the upper part of the Syrian Euphrates valley, early permanent villages such as Abu Hureyra – at first occupied byhunter-gatherers but later by some of the earliestfarmers, Jerf el Ahmar, Mureybet andNevalı Çori became established from the eleventh millennium BCE onward.[71] In the absence of irrigation, these early farming communities were limited to areas whererainfed agriculture was possible, that is, the upper parts of the Syrian Euphrates as well as Turkey.[72] Late Neolithic villages, characterized by the introduction ofpottery in the early 7th millennium BCE, are known throughout this area.[73] Occupation of lower Mesopotamia started in the 6th millennium and is generally associated with the introduction of irrigation, as rainfall in this area is insufficient for dry agriculture. Evidence for irrigation has been found at several sites dating to this period, includingTell es-Sawwan.[74] During the 5th millennium BCE, or lateUbaid period, northeastern Syria was dotted by small villages, although some of them grew to a size of over 10 hectares (25 acres).[75] In Iraq, sites likeEridu andUr were already occupied during the Ubaid period.[76] Clay boat models found atTell Mashnaqa along theKhabur indicate that riverine transport was already practiced during this period.[77] TheUruk period, roughly coinciding with the 4th millennium BCE, saw the emergence of trulyurban settlements across Mesopotamia. Cities likeTell Brak andUruk grew to over 100 hectares (250 acres) in size and displayed monumental architecture.[78] The spread of southern Mesopotamian pottery, architecture andsealings far into Turkey andIran has generally been interpreted as the material reflection of a widespread trade system aimed at providing the Mesopotamian cities with raw materials.Habuba Kabira on the Syrian Euphrates is a prominent example of a settlement that is interpreted as an Uruk colony.[79][80]
During theJemdet Nasr (3600–3100 BCE) andEarly Dynastic periods (3100–2350 BCE), southern Mesopotamia experienced a growth in the number and size of settlements, suggesting strong population growth. These settlements, includingSumero-Akkadian sites likeSippar, Uruk,Adab andKish, were organized in competingcity-states.[81] Many of these cities were located along canals of the Euphrates and the Tigris that have since dried up, but that can still be identified fromremote sensing imagery.[82] A similar development took place inUpper Mesopotamia,Subartu andAssyria, although only from the mid 3rd millennium and on a smaller scale than in Lower Mesopotamia. Sites likeEbla,Mari andTell Leilan grew to prominence for the first time during this period.[83]
Large parts of the Euphrates basin were for the first time united under a single ruler during theAkkadian Empire (2335–2154 BC) andUr III empires, which controlled – either directly or indirectly through vassals – large parts of modern-day Iraq and northeastern Syria.[84] Following their collapse, theOld Assyrian Empire (1975–1750 BCE) and Mari asserted their power over northeast Syria and northern Mesopotamia, while southern Mesopotamia was controlled by city-states likeIsin,Kish andLarsa before their territories were absorbed by the newly emerged state ofBabylonia underHammurabi in the early to mid 18th century BCE.[85]
In the second half of the 2nd millennium BCE, the Euphrates basin was divided betweenKassite Babylon in the south andMitanni, Assyria and theHittite Empire in the north, with theMiddle Assyrian Empire (1365–1020 BC) eventually eclipsing the Hittites, Mitanni and Kassite Babylonians.[86] Following the end of the Middle Assyrian Empire in the late 11th century BCE, struggles broke out between Babylonia and Assyria over the control of the Iraqi Euphrates basin. TheNeo-Assyrian Empire (935–605 BC) eventually emerged victorious out of this conflict and also succeeded in gaining control of the northern Euphrates basin in the first half of the 1st millennium BCE.[87]
In the centuries to come, control of the wider Euphrates basin shifted from the Neo-Assyrian Empire (which collapsed between 612 and 599 BC) to the short livedMedian Empire (612–546 BC) and equally briefNeo-Babylonian Empire (612–539 BC) in the last years of the 7th century BC, and eventually to theAchaemenid Empire (539–333 BC).[88] The Achaemenid Empire was in turn overrun byAlexander the Great, who defeated the last kingDarius III and died in Babylon in 323 BCE.[89]
In the north, the river served as a border betweenGreater Armenia (331 BC–428 AD) andLesser Armenia (the latter became a Roman province in the 1st century BC).
AfterWorld War I, the borders in Southwest Asia were redrawn in theTreaty of Lausanne (1923), when theOttoman Empire waspartitioned. Clause 109 of the treaty stipulated that the three riparian states of the Euphrates (at that time Turkey,France for itsSyrian mandate and theUnited Kingdom for itsmandate of Iraq) had to reach a mutual agreement on the use of its water and on the construction of any hydraulic installation.[90] An agreement between Turkey and Iraq signed in 1946 required Turkey to report to Iraq on any hydraulic changes it made on the Tigris–Euphrates river system, and allowed Iraq to construct dams on Turkish territory to manage the flow of the Euphrates.[91]
Coat of arms of the Kingdom of Iraq 1932–1959 depicting the two rivers, the confluence Shatt al-Arab and the date palm forest, which used to be the largest in the world
Turkey and Syria completed their first dams on the Euphrates – the Keban Dam and the Tabqa Dam, respectively – within one year of each other and filling of the reservoirs commenced in 1975. At the same time, the area was hit by severe drought and river flow toward Iraq was reduced from 15.3 cubic kilometres (3.7 cu mi) in 1973 to 9.4 cubic kilometres (2.3 cu mi) in 1975. This led to an international crisis during which Iraq threatened to bomb the Tabqa Dam. An agreement was eventually reached between Syria and Iraq after intervention by Saudi Arabia and theSoviet Union.[92][93] A similar crisis, although not escalating to the point of military threats, occurred in 1981 when the Keban Dam reservoir had to be refilled after it had been almost emptied to temporarily increase Turkey's hydroelectricity production.[94] In 1984, Turkey unilaterally declared that it would ensure a flow of at least 500 cubic metres (18,000 cu ft) per second, or 16 cubic kilometres (3.8 cu mi) per year, into Syria, and in 1987 a bilateral treaty to that effect was signed between the two countries.[95] Another bilateral agreement from 1989 between Syria and Iraq settles the amount of water flowing into Iraq at 60 percent of the amount that Syria receives from Turkey.[91][93][96] In 2008, Turkey, Syria and Iraq instigated the Joint Trilateral Committee (JTC) on the management of the water in the Tigris–Euphrates basin and on 3 September 2009 a further agreement was signed to this effect.[97]On 15 April 2014, Turkey began to reduce the flow of the Euphrates into Syria and Iraq. The flow was cut off completely on 16 May 2014 resulting in the Euphrates terminating at the Turkish–Syrian border.[98] This was in violation of an agreement reached in 1987 in which Turkey committed to releasing a minimum of 500 cubic metres (18,000 cu ft) of water per second at the Turkish–Syrian border.[99]
Throughout history, the Euphrates has been of vital importance to those living along its course. With the construction of largehydropower stations, irrigation schemes, and pipelines capable of transporting water over large distances, many more people now depend on the river for electricity and drinking water than in the past. Syria's Lake Assad is the most important source of drinking water for the city ofAleppo, 75 kilometres (47 mi) to the west of the river valley.[101] The lake also supports a modest state-operated fishing industry.[102] Through a newly restored power line, the Haditha Dam in Iraq provides electricity to Baghdad.[103]
^Gelbert, Carlos (2011).Ginza Rba. Sydney: Living Water Books.ISBN9780958034630.Archived from the original on 16 March 2022. Retrieved17 February 2022.
Abdul-Amir, Sabah Jasim (1988),Archaeological Survey of Ancient Settlements and Irrigation Systems in the Middle Euphrates Region of Mesopotamia (PhD thesis), Ann Arbor: University of Michigan,OCLC615058488
Adams, Robert McC. (1981),Heartland of Cities. Surveys of Ancient Settlement and Land Use on the Central Floodplain of the Euphrates, Chicago: University of Chicago Press,ISBN0-226-00544-5
Akkermans, Peter M. M. G.; Schwartz, Glenn M. (2003),The Archaeology of Syria. From Complex Hunter-Gatherers to Early Urban Societies (ca. 16,000–300 BC), Cambridge: Cambridge University Press,ISBN0-521-79666-0
Bilen, Özden (1994), "Prospects for Technical Cooperation in the Euphrates–Tigris Basin", in Biswas, Asit K. (ed.),International Waters of the Middle East: From Euphrates-Tigris to Nile, Oxford University Press, pp. 95–116,ISBN978-0-19-854862-1
Bounni, Adnan (1979), "Campaign and Exhibition from the Euphrates in Syria",The Annual of the American Schools of Oriental Research,44:1–7,JSTOR3768538
Daoudy, Marwa (2005),Le Partage des Eaux entre la Syrie, l'Irak et la Turquie. Négociation, Sécurité et Asymétrie des Pouvoirs, Moyen-Orient (in French), Paris: CNRS,ISBN2-271-06290-X
del Olmo Lete, Gregorio; Montero Fenollós, Juan Luis, eds. (1999),Archaeology of the Upper Syrian Euphrates, the Tishrin Dam area: Proceedings of the International Symposium held at Barcelona, January 28th–30th, 1998, Barcelona: AUSA,ISBN978-84-88810-43-4
Hillel, Daniel (1994),Rivers of Eden: the Struggle for Water and the Quest for Peace in the Middle East, New York: Oxford University Press,ISBN0-19-508068-8
Iraqi Ministries of Environment, Water Resources and Municipalities and Public Works (2006a), "Volume I: Overview of Present Conditions and Current Use of the Water in the Marshlands Area/Book 1: Water Resources",New Eden Master Plan for Integrated Water Resources Management in the Marshlands Areas, New Eden Group
Iraqi Ministries of Environment, Water Resources and Municipalities and Public Works (2006b), "Annex III: Main Water Control Structures (Dams and Water Diversions) and Reservoirs",New Eden Master Plan for Integrated Water Resources Management in the Marshlands Areas, New Eden Group
Isaev, V.A.; Mikhailova, M.V. (2009), "The Hydrology, Evolution, and Hydrological Regime of the Mouth Area of the Shatt al-Arab River",Water Resources,36 (4):380–395,doi:10.1134/S0097807809040022,S2CID129706440
Jongerden, Joost (2010), "Dams and Politics in Turkey: Utilizing Water, Developing Conflict",Middle East Policy,17 (1):137–143,doi:10.1111/j.1475-4967.2010.00432.x
Kolars, John (1994), "Problems of International River Management: The Case of the Euphrates", in Biswas, Asit K. (ed.),International Waters of the Middle East: From Euphrates-Tigris to Nile, Oxford University Press, pp. 44–94,ISBN978-0-19-854862-1
McClellan, Thomas L. (1997), "Euphrates Dams, Survey of", in Meyers, Eric M. (ed.),The Oxford Encyclopedia of Archaeology in the Ancient Near East, vol. 2, New York: Oxford University Press, pp. 290–292,ISBN0-19-506512-3
McDowall, David (2004),A Modern History of the Kurds, London: I.B. Tauris,ISBN978-1-85043-416-0
Moore, A.M.T.; Hillman, G.C.; Legge, A.J. (2000),Village on the Euphrates. From Foraging to Farming at Abu Hureyra, Oxford: Oxford University Press,ISBN0-19-510807-8
Rahi, Khayyun A.; Halihan, Todd (2009), "Changes in the Salinity of the Euphrates River System in Iraq",Regional Environmental Change,10:27–35,doi:10.1007/s10113-009-0083-y,S2CID8616217
Sagona, Antonio; Zimansky, Paul (2009),Ancient Turkey, Routledge World Archaeology, London: Routledge,ISBN978-0-415-48123-6
Shapland, Greg (1997),Rivers of Discord: International Water Disputes in the Middle East, New York: Palgrave Macmillan,ISBN978-0-312-16522-2
Steele, Caroline (2005), "Who Has not Eaten Cherries with the Devil? Archaeology under Challenge", in Pollock, Susan; Bernbeck, Reinhard (eds.),Archaeologies of the Middle East: Critical Perspectives, Blackwell Studies in Global Archaeology, Malden: Blackwell, pp. 45–65,ISBN0-631-23001-7
Thomason, A.K. (2001), "Representations of the North Syrian Landscape in Neo-Assyrian Art",Bulletin of the American Schools of Oriental Research,323 (323):63–96,doi:10.2307/1357592,JSTOR1357592,S2CID153904585
van de Mieroop, Marc (2007),A History of the Ancient Near East, ca. 3000–323 BC, Blackwell History of the Ancient World (2nd ed.), Malden: Blackwell,ISBN978-1-4051-4911-2
Zarins, Juris (1997), "Euphrates", in Meyers, Eric M. (ed.),The Oxford Encyclopedia of Archaeology in the Ancient Near East, vol. 2, New York: Oxford University Press, pp. 287–290,ISBN0-19-506512-3