Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Elongation factor

From Wikipedia, the free encyclopedia
(Redirected fromEukaryotic elongation factors)
Not to be confused withRelative elongation.
"EF2" and "EF-2" redirect here. For the tornado intensity rating, seeEnhanced Fujita scale § Parameters.
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Elongation factor" – news ·newspapers ·books ·scholar ·JSTOR
(October 2019) (Learn how and when to remove this message)
Proteins functioning in translation
Ternary complex of EF-Tu (blue), tRNA (red) and GTP (yellow). Taken fromPDB Molecule of the MonthElongation factors, September 2006.

Elongation factors are a set of proteins that function at theribosome, duringprotein synthesis, to facilitatetranslational elongation from the formation of the first to the lastpeptide bond of a growingpolypeptide. Most common elongation factors in prokaryotes areEF-Tu,EF-Ts,EF-G.[1] Bacteria and eukaryotes use elongation factors that are largely homologous to each other, but with distinct structures and different research nomenclatures.[2]

Elongation is the most rapid step in translation.[3] Inbacteria, it proceeds at a rate of 15 to 20amino acids added per second (about 45-60 nucleotides per second).[citation needed] Ineukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).[citation needed] Elongation factors play a role in orchestrating the events of this process, and in ensuring the high accuracy translation at these speeds.[citation needed]

Nomenclature of homologous EFs

[edit]
Elongation factors
BacterialEukaryotic/ArchaealFunction
EF-TueEF-1A (α)[2]mediates the entry of the aminoacyltRNA into a free site of theribosome.[4]
EF-TseEF-1B (βγ)[2]serves as the guaninenucleotide exchange factor for EF-Tu, catalyzing the release of GDP from EF-Tu.[2]
EF-GeEF-2catalyzes the translocation of the tRNA and mRNA down the ribosome at the end of each round of polypeptide elongation. Causes large conformation changes.[5]
EF-PeIF-5Apossibly stimulates formation of peptide bonds and resolves stalls.[6]
EF-4(None)Proofreading
Note that EIF5A, the archaeal and eukaryotic homolog to EF-P, was named as an initiation factor but now considered an elongation factor as well.[6]

In addition to their cytoplasmic machinery, eukaryotic mitochondria and plastids have their own translation machinery, each with their own set of bacterial-type elongation factors.[7][8] In humans, they includeTUFM,TSFM,GFM1,GFM2,GUF1; the nominalrelease factorMTRFR may also play a role in elongation.[9]

In bacteria,selenocysteinyl-tRNA requires a special elongation factorSelB (P14081) related to EF-Tu. A few homologs are also found in archaea, but the functions are unknown.[10]

As a target

[edit]

Elongation factors are targets for the toxins of some pathogens. For instance,Corynebacterium diphtheriae producesdiphtheria toxin, which alters protein function in the host by inactivating elongation factor (EF-2). This results in the pathology and symptoms associated withdiphtheria. Likewise,Pseudomonas aeruginosaexotoxin A inactivates EF-2.[11]

References

[edit]
  1. ^Parker, J. (2001). "Elongation Factors; Translation".Encyclopedia of Genetics. pp. 610–611.doi:10.1006/rwgn.2001.0402.ISBN 9780122270802.
  2. ^abcdSasikumar, Arjun N.; Perez, Winder B.; Kinzy, Terri Goss (July 2012)."The Many Roles of the Eukaryotic Elongation Factor 1 Complex".Wiley Interdisciplinary Reviews. RNA.3 (4):543–555.doi:10.1002/wrna.1118.ISSN 1757-7004.PMC 3374885.PMID 22555874.
  3. ^Prabhakar, Arjun; Choi, Junhong; Wang, Jinfan; Petrov, Alexey; Puglisi, Joseph D. (July 2017)."Dynamic basis of fidelity and speed in translation: Coordinated multistep mechanisms of elongation and termination".Protein Science.26 (7):1352–1362.doi:10.1002/pro.3190.ISSN 0961-8368.PMC 5477533.PMID 28480640.
  4. ^Weijland A, Harmark K, Cool RH, Anborgh PH, Parmeggiani A (March 1992)."Elongation factor Tu: a molecular switch in protein biosynthesis".Molecular Microbiology.6 (6):683–8.doi:10.1111/j.1365-2958.1992.tb01516.x.PMID 1573997.
  5. ^Jørgensen, R; Ortiz, PA; Carr-Schmid, A; Nissen, P; Kinzy, TG; Andersen, GR (May 2003). "Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase".Nature Structural Biology.10 (5):379–85.doi:10.1038/nsb923.PMID 12692531.S2CID 4795260.
  6. ^abRossi, D; Kuroshu, R; Zanelli, CF; Valentini, SR (2013). "eIF5A and EF-P: two unique translation factors are now traveling the same road".Wiley Interdisciplinary Reviews. RNA.5 (2):209–22.doi:10.1002/wrna.1211.PMID 24402910.S2CID 25447826.
  7. ^Manuell, Andrea L; Quispe, Joel; Mayfield, Stephen P; Petsko, Gregory A (7 August 2007)."Structure of the Chloroplast Ribosome: Novel Domains for Translation Regulation".PLOS Biology.5 (8): e209.doi:10.1371/journal.pbio.0050209.PMC 1939882.PMID 17683199.
  8. ^G C Atkinson; S L Baldauf (2011)."Evolution of elongation factor G and the origins of mitochondrial and chloroplast forms".Molecular Biology and Evolution.28 (3):1281–92.doi:10.1093/molbev/msq316.PMID 21097998.
  9. ^"KEGG DISEASE: Combined oxidative phosphorylation deficiency".www.genome.jp.
  10. ^Atkinson, Gemma C; Hauryliuk, Vasili; Tenson, Tanel (21 January 2011)."An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea".BMC Evolutionary Biology.11 (1): 22.doi:10.1186/1471-2148-11-22.PMC 3037878.PMID 21255425.
  11. ^Lee H, Iglewski WJ (1984)."Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A".Proc. Natl. Acad. Sci. U.S.A.81 (9):2703–7.Bibcode:1984PNAS...81.2703L.doi:10.1073/pnas.81.9.2703.PMC 345138.PMID 6326138.

Further reading

[edit]

External links

[edit]
Proteins
Initiation factor
Bacterial
Mitochondrial
Archaeal
Eukaryotic
eIF1
eIF2
eIF3
eIF4
eIF5
eIF6
Elongation factor
Bacterial/Mitochondrial
Archaeal/Eukaryotic
Release factor
Ribosomal Proteins
Cytoplasmic
60S subunit
40S subunit
Mitochondrial
39S subunit
28S subunit
Other concepts
3.6.1
3.6.2
3.6.3-4:ATPase
3.6.3
Cu++ (3.6.3.4)
Ca+ (3.6.3.8)
Na+/K+ (3.6.3.9)
H+/K+ (3.6.3.10)
OtherP-type ATPase
3.6.4
3.6.5:GTPase
3.6.5.1:Heterotrimeric G protein
3.6.5.2:Small GTPase >Ras superfamily
3.6.5.3:Protein-synthesizing GTPase
3.6.5.5-6:Polymerization motors
Retrieved from "https://en.wikipedia.org/w/index.php?title=Elongation_factor&oldid=1185006700"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp