Anelectrostatic motor orcapacitor motor is a type ofelectric motor based on the attraction and repulsion ofelectric charge.
An alternative type of electrostatic motor is the spacecraft electrostaticion drive thruster where forces and motion are created by electrostatically accelerating ions.
An electrostatic motor is based on the attraction and repulsion of electric charge. Usually, electrostatic motors are thedual of conventional coil-based motors. They typically require a high voltage power supply, although very small motors employ lower voltages. Conventional electric motors instead employ magnetic attraction and repulsion, and require high current at low voltages. In the 1740s and 1750s, the first electrostatic motors were developed byAndrew Gordon and byBenjamin Franklin. Today the electrostatic motor finds frequent use in micro-mechanical (MEMS) systems where their drive voltages are below 100 volts, and where moving, charged plates are far easier to fabricate than coils and iron cores.
Thecorona-discharge motor, also known ascorona motor, has been known for centuries.[1]
In 2004, researchers atUniversity of California, Berkeley, developed rotational bearings based upon multiwall carbon nanotubes. By attaching a gold plate (with dimensions of the order of 100 nm) to the outer shell of a suspended multiwall carbon nanotube (like nested carbon cylinders), they are able to electrostatically rotate the outer shell relative to the inner core. These bearings are very robust; devices have been oscillated thousands of times with no indication of wear. These nanoelectromechanical systems (NEMS) represent a promising direction in miniaturization and may find their way into commercial applications in the future.[2]
Electric motors, in general, produce motion when powered by electric currents. The common type of spacecraftion thruster uses electrostatic forces to accelerate ions to generate forces to create motion, and thus can be considered as unconventional electric motors.
Gridded electrostatic ion thrusters commonly utilizexenon gas. This gas has no charge and isionized by bombarding it with energetic electrons. These electrons can be provided from a hot-filamentcathode and accelerated in the electrical field of the cathode fall to the anode (Kaufman type ion thruster). Alternatively, the electrons can be accelerated by the oscillating electric field induced by an alternating magnetic field of a coil, which results in a self-sustaining discharge and omits any cathode (radiofrequency ion thruster).
The prime classifications of electrostatic motors by theUSPTO are: