Climate change affectshuman health in many ways, including an increase inheat-related illnesses and deaths, worsened air quality, the spread ofinfectious diseases, and health risks associated withextreme weather such as floods and storms. Rising global temperatures and changes in weather patterns are increasing the severity ofheat waves and extreme weather events. These events in turn have direct and indirect impacts on human health. For example, when people are exposed to higher temperatures for longer time periods they might experienceheat illness andheat-related death.[1]
Climate change affects human health at all ages, from infancy through adolescence, adulthood and old age.[1] Factors such as age, gender andsocioeconomic status influence to what extent these effects become wide-spread risks to human health.[5]: 1867 Some groups are morevulnerable than others to the health effects of climate change. These include children, the elderly, outdoor workers and disadvantaged people.[1]: 15
The effects of climate change on human health can be grouped into direct and indirect effects.[5]: 1867 Extreme weather, including increased storms, floods, droughts, heat waves andwildfires can directly cause injury, illness, or death.[1] The indirect impact of climate change happens through changes in the environment that change theEarth's natural systems on a large-scale.[6] These include worseningwater quality,air pollution, reduced food availability, and faster spread of disease-carrying insects.[7] Recent research highlights that these direct and indirect health impacts are increasingly interlinked, as climate change contributes simultaneously to worsening food and water insecurity, undernutrition, and infectious disease burdens across diverse populations.[8][9] The World Health Organization likewise reports that climate change is already contributing to increases in undernutrition, vector-borne diseases, and heat-related mortality, with disproportionate impacts on vulnerable populations.[10]
Both direct and indirect health effects vary across the world and between different groups of people according to age, gender, mobility and other factors. For example, differences in health service provision or economic development will result in different health risks and outcomes, with less developed countries facing greater health risks. In many places, the combination of lower socioeconomic status and gender roles result in increased health risks to women and girls as a result of climate change, compared to those faced by men and boys (although the converse may apply in other instances).[5]
The provision ofhealth care can also be impacted by the collapse ofhealth systems and damage to infrastructure due to climate-induced events such as flooding. Therefore, building health systems that areclimate resilient is a priority.[11][1]: 15 The World Health Organisation has called climate change the biggest global health threat of the 21st century.[12][13]
Health risks from extreme weather and climate events
Climate change is increasing the frequency and intensity of someextreme weather events.[14] Extreme heat and cold events are the most likely to increase and worsen followed by more frequent heavy rain or snow and increases in the intensity of droughts.[15]
Extreme weather events, such as floods, hurricanes, heatwaves, droughts and wildfires can result in injuries, death and the spread ofinfectious diseases.[16][17][18][19] For example, localepidemics can occur due to loss of infrastructure, such as hospitals andsanitation services, but also because of climate changes creating a more suitable weather for disease-carrying organisms.[20]
Since the 1970s, temperature on the surface of Earth has become warmer each decade. This increase happened faster than in any other 50-year period over at least the last 2000 years. Compared to the second half of the 19th century, temperature in the 21st century show a warming of 1.09 °C.[21]
Extreme heat is a direct threat to health, especially for people over 65 years, children, people living in cities and those who have already existing health conditions. Risingglobal temperatures impact the health and well being of people in multiple ways. In the last few decades, people all over the world have become more vulnerable to heat and experienced an increasing number of life-threateningheatwave events.[1] Extreme heat has negative effects onmental health as well, raising the risk of mental health-related hospitalizations and suicidal.[1]
Although heat itself is not a direct threat to health on its own, a combination of factors of rising temperatures can detriment one's health. The effects of heat on an individual's health is influenced by temperatures, humidity, exercise, hydration, age, pre-existing health status and also by occupation, clothing, behavior, autonomy, vulnerability, and sense of obligation.[22]
Physical exercise is beneficial for reducing the risk the many illnesses and for mental health. At the same time the number of hours per day when the temperature is dangerously high for outdoor exercise has been increasing. The rising heat also impacts people's ability to work and the number of hours when it is not safe to work outdoors (construction, agriculture, etc.) has also increased.[1]
It is estimated that between 1960 and 1990, climate change has put over 600 million people (9% of the global population) outside thehuman climate niche which is the average temperature range in which people have been able to thrive in the past 6,000 years.[23] Unlessgreenhouse gas emissions are reduced, regions inhabited by a third of the human population could become as hot as the hottest parts of theSahara within 50 years. The projected annual average temperature of above 29 °C for these regions would be outside the biologically suitable temperature range for humans.[24][25]
Overlap between future population distribution and extreme heat[26]
Exposure to extreme heat poses an acute health hazard, especially for people deemed as vulnerable.[1][27] Vulnerable people with regard toheat illnesses include people with low incomes, minority groups, women (in particular pregnant women), children, older adults (over 65 years old), people with chronic diseases, disabilities andmultiple long-term health conditions.[1]: 13 Other people at risk include those living in urban environments (due to theurban heat island effect), outdoor workers and people who take certainprescription drugs.[1]
Climate change increases the frequency and severity of heatwaves and thusheat stress for people. A 2022 global study found that heat-related deaths increased significantly between 2000 and 2019, particularly in tropical and low-income countries, underscoring the growing health burden from rising temperatures.[28]Human responses to heat stress can includeheat stroke and overheating (hyperthermia). Extreme heat is also linked toacute kidney injury, low qualitysleep,[29][30] and complications withpregnancy.[31]: 1051 Furthermore, it may cause the deterioration of pre-existingcardiovascular andrespiratory disease.[31]: 1624 Adverse pregnancy outcomes due to high ambient temperatures include for examplelow birth weight andpre-term birth.[31]: 1051 Heat waves have also resulted in epidemics ofchronic kidney disease (CKD).[32][33] Prolonged heat exposure, physical exertion, and dehydration are sufficient factors for the development of CKD.[32][33]
The human body requires evaporation of sweat to cool down and prevent overheating, even with a low activity level. With excessive heat and humidity human bodies would no longer be able to adequately cool the skin.[34][35] Awet-bulb temperature of 35 °C is regarded as the limit for humans (called the "physiological threshold for human adaptability" to heat and humidity).[36]: 1498 As of 2020, only two weather stations had recorded 35 °C wet-bulb temperatures, and only very briefly, but the frequency and duration of these events is expected to rise with ongoing climate change.[37][38][39] Global warming above 1.5 degrees risks making parts of thetropics uninhabitable because the threshold for the wet bulb temperature may be passed.[34] A wet-bulb temperature of 31 degrees is already considered dangerous, even for young and healthy people. This threshold is not uniform for all and depend on many factors including environmental factors, activity and age. If the global temperature will rise by 3 degrees (the most likely scenario without reducing the use of fossil fuels), temperatures will exceed this limit at large areas in Pakistan, India, China, sub-Saharan Africa, United States, Australia, and South America.[40]
People with cognitive health issues (e.g.depression,dementia,Parkinson's disease) are more at risk when faced with high temperatures and ought to be extra careful[41] as cognitive performance has been shown to be differentially affected by heat.[42] People with diabetes and those who are overweight, have sleep deprivation, or have cardiovascular/cerebrovascular conditions should avoid too much heat exposure.[41][43]
The risk of dying from chronic lung disease during a heat wave has been estimated at 1.8–8.2% higher compared to average summer temperatures.[44] An 8% increase in hospitalization rate for people withchronic obstructive pulmonary disease (COPD) has been estimated for every 1 °C increase in temperatures above 29 °C.[27]
Increasingheat waves are oneeffect of climate change that affect human health: Illustration ofurban heat exposure via a temperature distribution map: red shows warm areas, white shows hot areas.
The effects of heatwaves tend to be more pronounced in urban areas because they are typically warmer than surrounding rural areas due to theurban heat island effect.[45][46]: 2926 This results from the way many cities are built. For example, they often have extensive areas of asphalt, reduced greenery along with many large heat-retaining buildings that physically block cooling breezes and ventilation.[27] Lack of water features are another cause.[46]: 2926
Extreme heat exposure in cities with awet bulb globe temperature above 30 °C tripled between 1983 and 2016.[45] It increased by about 50% when the population growth in these cities is not taken into account.[45]
Cities are often on the front-line of climate change due to their densely concentrated populations, the urban heat island effect, their frequent proximity to coasts and waterways, and reliance on ageing physical infrastructure networks.[47]
Health experts warn that "exposure to extreme heat increases the risk of death fromcardiovascular,cerebrovascular, andrespiratory conditions and all-cause mortality. Heat-related deaths in people older than 65 years reached a record high of an estimated 345 000 deaths in 2019".[1]: 9 More than 70,000 Europeans died as a result of the2003 European heat wave.[48] Also more than 2,000 people died inKarachi, Pakistan in June 2015 due to a severe heat wave with temperatures as high as 49 °C (120 °F).[49][50]
Due to climate change temperatures rose in Europe and heat mortality increased. From 2003–12 to 2013–22 alone, it increased by 17 deaths per 100,000 people, while women are more vulnerable than men.[51]
Mortality due to heat waves could be reduced if buildings were better designed to modify the internal climate, or if the occupants were better educated about the issues, so they can take action on time.[52][53] Heatwave early warning and response systems are important elements of heat action plans.
Heat exposure can affect people's ability to work.[1]: 8 The annual Countdown Report byThe Lancet investigated change in labour capacity as an indicator. It found that during 2021, high temperature reduced global potential labour hours by 470 billion – a 37% increase compared to the average annual loss that occurred during the 1990s. Occupational heat exposure especially affects laborers in the agricultural sector ofdeveloping countries. In those countries, the vast majority of these labour hour losses (87%) were in the agricultural sector.[31]: 1625
Working in extreme heat can lead to labor force productivity decreases as well as participation because employees' health may be weaker due to heat related health problems, such as dehydration, fatigue, dizziness, and confusion.[54][55]: 1073–1074
With regards to sporting activities, it has been observed that "hot weather reduces the likelihood of engaging in exercise".[31]: 1625 Furthermore, participating in sports during excessive heat can lead to injury or even death.[55]: 1073–1074 It is also well established that regular physical activity is beneficial for human health, including mental health.[31]: 1625 Therefore, an increase in hot days due to climate change could indirectly affect health due to people exercising less.
Climate change affects multiple factors associated withdroughts, such as how much rain falls and how fast the rainevaporates again. Warming over land increases the severity and frequency of droughts around much of the world.[56][57]: 1057 Many of theconsequences of droughts have effects on human health.
Due to an increase in heavy rainfall events,floods are expected to become more severe in the future when they do occur.[57]: 1155 However, the interactions between rainfall and flooding are complex. In some regions, flooding is expected to become rarer. This depends on several factors, such as changes in rain and snowmelt, but alsosoil moisture.[57]: 1156 Floods have short and long-term negative implications to people's health and well-being. Short term implications includemortalities,injuries anddiseases, while long term implications includenon-communicable diseases andpsychosocial health aspects.[58] From a mid-term perspective, floods can seriously impact infrastructure, thereby disrupting emergency services and access to medical facilities such as hospitals.[59] This disruption can even affect hospitals located far from the epicenter of the extreme event.[60] For example, the2022 Pakistan floods (which were likely more severe because of climate change[61][62]) affected people's health directly and indirectly. There were outbreaks of diseases like malaria, dengue, and other skin diseases.[63][64]
Air pollution from a surface fire in the western desert ofUtah.Wildfires become more frequent and intense due to climate change.
Climate change increaseswildfire potential and activity.[65] Climate change leads to a warmer ground temperature and its effects include earlier snowmelt dates, drier than expectedvegetation, increased number of potential fire days, increased occurrence of summerdroughts, and a prolongeddry season.[66] Wood smoke from wildfires producesparticulate matter that has damaging effects to human health.[67] The health effects of wildfire smoke exposure include exacerbation and development of respiratory illness such asasthma andchronic obstructive pulmonary disorder; increased risk oflung cancer,mesothelioma andtuberculosis; increased airway hyper-responsiveness; changes in levels of inflammatory mediators and coagulation factors; andrespiratory tract infection.[67]
Storms become wetter under climate change. These includetropical cyclones andextratropical cyclones. Both the maximum and mean rainfall rates increase. This more extreme rainfall is also true forthunderstorms in some regions.[68] Furthermore, tropical cyclones and storm tracks are moving towards the poles. This means some regions will see large changes in maximum wind speeds.[68][69] Scientists expect there will be fewer tropical cyclones. But they expect their strength to increase.[69]
Health risks from climate-sensitive infectious diseases
Climate change is altering the geographic range and seasonality of some insects that can carry diseases, for exampleAedes aegypti, the mosquito that is thevector fordengue transmission.
Climate change is influencing thetransmission andburden of manyinfectious diseases worldwide.[70] Rising temperatures, shifting rainfall patterns, and more frequentextreme weather events affect howpathogens,vectors and disease hosts interact. These changes are altering the geographic ranges and seasonal activity of disease-carrying organisms such as mosquitoes and ticks, and influence the growth and survival ofbacteria and other pathogens in food and water systems.[70][71][72]: 9
These diseases are prevalent in arid and typically economically poorer countries where preventative infastructure and healthcare is inaccessible or underdeveloped[74] and therefore cannot cope with this growing influx of disease treatment requirements as climate change increases the abundance of mosquitos and other disease spreading animals. Particularly, the spread of vector-borne diseases can be attributed to these economic inequalities, most notably, a household/ community's access to piped, clean water and insect prevention methods. With nearly 1 in 3 people globally not having access to clean drinking water,[75] the chances of a water source becoming contaminated withdiarrheal diseases,cholera,typhoid,hepatitis A, etc, is increased exponentially, as the hot weather creates favourable conditions for such bacteria andpathogens to live and spread. The adverse effects of an environment like this are numerous, not only effecting physical health, but also mental health and social well-being. The mental strain provided in a situation like this can be devastating and long-lasting, not only on an individual but more importantly on a given community who may be struck with such illnesses. While climate change effects people all around the world, it has great effects on people in low-income countries with already extreme weather conditions,[76] as with the multitude of those effected and the access to treatment or prevention services are restricted due to factors such as geography orsocio-economic status.
Indoor air pollution is known to affect the health, comfort, and well-being of building occupants. It has also been linked tosick building syndrome, respiratory issues,[77] reduced productivity, and impaired learning in schools. Indoor air quality is linked inextricably tooutdoor air quality.[78] Climate change can affect indoor air quality by increasing the level of outdoor air pollutants such as ozone andparticulate matter, for example through emissions from wildfires caused by extreme heat and drought.[79][80] There are numerous predictions for how indoor air pollutants will change in future.[81][82][83][84] Models have attempted to predict how the forecasted scenarios will affect indoor air quality and indoor comfort parameters such as humidity and temperature.[85]
Thenet-zero challenge requires significant changes in the performance of both new and retrofitted buildings. Increasedenergy efficient housing (without good ventilation systems) can trap pollutants inside them, whether produced indoors or outdoors, and lead to an increase in human exposure.[86][87]
The relationship between surface ozone (also calledground-level ozone) and ambient temperature is complex. Changes in air temperature and water content affect the air's chemistry and the rates of chemical reactions that create and remove ozone. Many chemical reaction rates increase with temperature and lead to increased ozone production. Climate change projections show that rising temperatures and water vapour in the atmosphere will likely increase surface ozone in polluted areas like the eastern United States.[88]
On the other hand, ozone concentrations could decrease in a warming climate if anthropogenic ozone-precursor emissions (e.g., nitrogen oxides) continue to decrease through implementation of policies and practices.[89] Therefore, future surface ozone concentrations depend on the climate change mitigation steps taken (more or less methane emissions) as well as air pollution control steps taken.[90]: 884
High surface ozone concentrations often occur during heat waves in the United States.[89] Throughout much of the eastern United States, ozone concentrations during heat waves are at least 20% higher than the summer average.[89] Broadly speaking, surface ozone levels are higher in cities with high levels of air pollution.[90]: 876 Ozone pollution in urban areas affects denser populations, and is worsened by high populations of vehicles, which emit pollutants NO2 andVOCs, the main contributors to problematic ozone levels.[91]
There is a great deal of evidence to show that surface ozone can harm lung function and irritate therespiratory system.[92][93] Exposure to ozone (and the pollutants that produce it) is linked to prematuredeath,asthma,bronchitis,heart attack, and other cardiopulmonary problems.[94][95] High ozone concentrations irritate the lungs and thus affect respiratory function, especially among people with asthma.[89] People who are most at risk from breathing in ozone air pollution are those with respiratory issues, children, older adults and those who typically spend long periods of time outside such as construction workers.[96]
Climate change affects many aspects offood security through "multiple and interconnected pathways".[31]: 1619 Many of these are related to theeffects of climate change on agriculture, for example failed crops due to more extreme weather events. This comes on top of other coexisting crises that reduce food security in many regions. Less food security means moreundernutrition with all its associated health problems. Food insecurity is increasing at the global level (some of the underlying causes are related to climate change, others are not) and about 720–811 million people suffered from hunger in 2020.[31]: 1629
The number of deaths resulting from climate change-induced changes to food availability are difficult to estimate. The 2022IPCC Sixth Assessment Report does not quantify this number in its chapter on food security.[97] A modelling study from 2016 found "a climate change–associated net increase of 529,000 adult deaths worldwide [...] from expected reductions in food availability (particularly fruit and vegetables) by 2050, as compared with a reference scenario without climate change."[98][99]
A headline finding in 2021 regarding marine food security stated that: "In 2018–20, nearly 70% of countries showed increases in average sea surface temperature in their territorial waters compared within 2003–05, reflecting an increasing threat to their marine food productivity and marine food security".[1]: 14 (see alsoclimate change and fisheries).
Smoke inSydney (Australia) fromlarge bushfires in 2019 affected some people's mental health in a direct way. The likelihood ofwildfires is increased byclimate change.Theeffects of climate change on mental health and wellbeing are being documented as the consequences of climate change become more tangible and impactful. This is especially the case for vulnerable populations and those with pre-existing seriousmental illness.[100] There are three broad pathways by which these effects can take place: directly, indirectly or via awareness.[101] The direct pathway includes stress-related conditions caused by exposure toextreme weather events. These includepost-traumatic stress disorder (PTSD). Scientific studies have linked mental health to several climate-related exposures. These include heat, humidity, rainfall, drought, wildfires and floods.[102] The indirect pathway can be disruption to economic and social activities. An example is when an area of farmland is less able to produce food.[102] The third pathway can be of mere awareness of the climate change threat, even by individuals who are not otherwise affected by it.[101] This especially manifests in the form of anxiety over the quality of life for future generations.[103]
Climate change–related events can be broadly categorised into acute, subacute, and long-lasting types, each producing distinct pathways for mental health impacts. Acute events, such as hurricanes and floods, unfold over days and often cause immediate psychological trauma, particularly in low- and middle-income settings where vulnerability is heightened.[104] Subacute events, like prolonged droughts or extended heatwaves, persist for months and frequently result in indirect impacts, including chronic stress and livelihood strain; notably, a 1 °C rise in average temperature over five years has been linked to a 2% increase in mental health disorders,[104] with greater risks of aggression and self-harm. Long-lasting climate changes, spanning decades or centuries, lead to permanent environmental degradation, economic losses, displacement, and forced migration, generating severe psychological distress for marginalized populations reliant on agriculture. Beyond material loss, anthropological research emphasizes how climate disruption undermines cultural identity, ecological rhythms, and community cohesion, contributing tosolastalgia and other forms of eco-distress.[104][105] A peer-reviewed systematic review highlights that Indigenous people, farmers, children, women, and the elderly are particularly susceptible, as environmental change erodes both livelihood security and cultural continuity (Tschakert et al., 2019,International Journal of Mental Health Systems).[105] Thus, climate change exacerbates mental health challenges in socially and culturally mediated ways.
Average decrease ofmicronutrient density across a range of crops at elevated CO2 concentrations, reconstructed from multiple studies through ameta-analysis.[107] The elevated concentration in this figure, 689 ppm, is over 50% greater than the current levels, yet it is expected to be approached under the "mid-range" climate change scenarios, and will be surpassed in the high-emission one.[108]Changes in atmosphericcarbon dioxide may reduce thenutritional quality of some crops, with for instance wheat having less protein and less of some minerals.[109]: 439 [110] The nutritional quality ofC3 plants (e.g. wheat, oats, rice) is especially at risk: lower levels of protein as well as minerals (for example zinc and iron) are expected.[111]: 1379 Food crops could see a reduction ofprotein,iron andzinc content in common food crops of 3 to 17%.[112] This is the projected result of food grown under the expected atmospheric carbon-dioxide levels of 2050. Using data from theUN Food and Agriculture Organization as well as other public sources, the authors analysed 225 different staple foods, such aswheat,rice,maize,vegetables, roots andfruits.[113]
Cyanobacteria (blue-green algae) bloom onLake Erie (United States) in 2009. These kinds of algae can cause harmful algal blooms.
The warming oceans and lakes are leading to more frequentharmful algal blooms.[114][115][116] Also, during droughts, surface waters are even more susceptible to harmful algal blooms and microorganisms.[117] Algal blooms increase water turbidity, suffocating aquatic plants, and can deplete oxygen, killing fish. Some kinds ofblue-green algae (cyanobacteria) createneurotoxins, hepatoxins, cytotoxins or endotoxins that can cause serious and sometimes fatal neurological, liver and digestive diseases in humans. Cyanobacteria grow best in warmer temperatures (especially above 25 degrees Celsius), and so areas of the world that are experiencing general warming as a result of climate change are also experiencing harmful algal blooms more frequently and for longer periods of time.[118]
It is possible that a potential health benefit from global warming could result from fewer cold days in winter:[55]: 1099 This could lead to some mental health benefits. However, the evidence on this correlation is regarded as inconsistent in 2022.[55]: 1099
Benefits from climate change mitigation and adaptation
The potential health benefits (also called "co-benefits") fromclimate change mitigation andadaptation measures are significant, having been described as "the greatest global health opportunity" of the 21st century.[5]: 1861 Measures can not only mitigate future health effects from climate change but also improve health directly.[121] Climate change mitigation is interconnected with various co-benefits (such as reducedair pollution and associated health benefits)[122] and how it is carried out (in terms of e.g. policymaking) could also determine its effect on living standards (whether and how inequality and poverty are reduced).[123]
There are many health co-benefits associated with climate action. These include those of cleaner air, healthier diets (e.g. less red meat), moreactive lifestyles, and increased exposure to green urban spaces.[1]: 26 Access to urban green spaces provides benefits to mental health as well.[1]: 18
In the transportation sector mitigation strategies could enable more equitable access to transportation services and reduce congestion.[124]: SPM-32 Biking reducesgreenhouse gas emissions[125] while reducing the effects of asedentary lifestyle at the same time[126] According toPLoS Medicine: "obesity, diabetes, heart disease, and cancer, which are in part related to physical inactivity, may be reduced by a switch to low-carbon transport—including walking and cycling."[127]
Future sustainablepathways scenarios may result in an annual reduction of 1.18 million air pollution-related deaths, 5.86 million diet-related deaths, and 1.15 million deaths due to physical inactivity, across nine countries by 2040. These benefits were attributable to the mitigation of direct greenhouse gas emissions and the accompanying actions that reduce exposure to harmful pollutants, as well as improved diets and safe physical activity.[128] Globally the cost of limiting warming to 2 °C is less than the value of the extra years of life due to cleaner air - and in India and China much less.[128]
Studies suggest that efforts to reduce consumption of goods and services have largely beneficial effects on 18 constituents ofwell-being.[129][130]
Addressing inequality can assist with climate change mitigation efforts.[124]: 38 Placing health as a key focus of theNationally Determined Contributions could present an opportunity to increase ambition and realise health co-benefits.[128]
Air pollution generated by fossil fuel combustion is both a major driver of global warming and the causeof a large number of annual deaths with some estimates as high as 8.7 million excess deaths during 2018.[131][132] Climate change mitigation policies can lead to lower emissions of co-emitted air pollutants, for instance by shifting away from fossil fuel combustion. Gases such asblack carbon and methane contribute both to global warming and to air pollution. Their mitigation can bring benefits in terms of limiting global temperature increases as well as improving air quality.[133] Implementation of the climate pledges made in the run-up to theParis Agreement could therefore have significant benefits for human health by improving air quality.[134]
The replacement of coal-based energy with renewables can lower the number of premature deaths caused by air pollution and decrease health costs associated with coal-related respiratory diseases. This switch to renewable energy is crucial, as air pollution is responsible for over 13 million deaths annually.[135][136]
Simplified conceptual causal loop diagram of cascading global climate failure, related to the concept ofOne Health[137]
Estimating deaths (mortality) orDALYs (morbidity) from the effects of climate change at the global level is very difficult. A 2014 study by theWorld Health Organization estimated the effect of climate change on human health, but not all of theeffects of climate change were included.[138] For example, the effects of more frequent and extreme storms were excluded. The study assessed deaths from heat exposure in elderly people, increases indiarrhea, malaria, dengue,coastal flooding, and childhood undernutrition. The authors estimated that climate change was projected to cause an additional 250,000 deaths per year between 2030 and 2050 but also stated that "these numbers do not represent a prediction of the overall impacts of climate change on health, since we could not quantify several important causal pathways".[138]
Climate change was responsible for 3% ofdiarrhoea, 3% ofmalaria, and 3.8% ofdengue fever deaths worldwide in 2004.[139] Total attributable mortality was about 0.2% of deaths in 2004; of these, 85% were child deaths. The effects of more frequent and extreme storms were excluded from this study.
The health effects of climate change are expected to rise in line with projected ongoing global warming for differentclimate change scenarios.[140][141] A review[142] found if warming reaches or exceeds 2 °C this century, roughly 1 billion premature deaths would be caused by anthropogenic global warming.[143]
A 2021 report published inThe Lancet found that climate change does not affect people's health in an equal way. The greatest impact tends to fall on the most vulnerable such as the poor, women, children, the elderly, people with pre-existing health concerns, other minorities and outdoor workers.[1]: 13
Social factors shape health outcomes as people are rendered more or less able to adapt to harms. For example there are "demographic, socioeconomic, housing, health (such as pre-existing health conditions), neighbourhood, and geographical factors" that moderate the effect of climate change on human health.[144]
Much of the health burden associated with climate change falls on vulnerable people (e.g.indigenous peoples and economically disadvantaged communities). As a result, people of disadvantaged sociodemographic groups experience unequal risks.[145] Often these people will have made a disproportionately low contribution toward man-made global warming, thus leading to concerns overclimate justice.[146][147][141]
Climate change has diverse effects on migration activities, and can lead to decreases or increases in the number of people who migrate.[55]: 1079 Migration activities can have an effect on health and well-being, in particular formental health. Migration in the context of climate change can be grouped into four types: adaptive migration (see alsoclimate change adaptation), involuntary migration, organised relocation of populations, and immobility (which is when people are unable or unwilling to move even though it is recommended).[55]: 1079
The observed contribution of climate change to conflict risk is small in comparison with cultural, socioeconomic, and political causes. There is some evidence thatrural-to-urban migration within countries worsens the conflict risk in violence prone regions. But there is no evidence that migration between countries would increase the risk of violence.[55]: 1008, 1128
Studies have found that whencommunicating climate change with the public, it can help encourage engagement if it is framed as a health concern, rather than as an environmental issue.[148][149] This is especially the case when comparing a health related framing to one that emphasised environmental doom, as was common in the media at least up until 2017.[150][151] Communicating theco-benefits to health helps underpingreenhouse gas reduction strategies.[47] Safeguarding health—particularly of the most vulnerable—is a frontline localclimate change adaptation goal.[47]
Research shows that health professionals around the world agree that climate change is real, is caused by humans, and is causing increased health problems in their communities. Health professionals can act by informing people about health harms and ways to address them, by lobbying leaders to take action, and by taking steps to decarbonize their own homes and workplaces.[158]
^Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J. F.; Hahn, M.; Hayden, M.; Monaghan, A. J.; Ogden, N. H.; Schramm, P. J. (2016-04-04).Ch. 5: Vectorborne Diseases (Report). U.S. Global Change Research Program, Washington, DC. pp. 129–156. Archived fromthe original on September 28, 2024.
^Zhao, Q., Guo, Y., Ye, T., Gasparrini, A., Tong, S., & Wang, C. (2022). Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study.The Lancet Planetary Health,6(6), e491–e500.https://doi.org/10.1016/S2542-5196(22)00091-0
^"Climate driven extreme heat threatens human habitation on earth".Open Access Government. Penn State College of Health and Human Development, Purdue University College of Sciences, Purdue Institute for a Sustainable Future. 16 October 2023. Retrieved22 October 2023.
^Koppe, Christina; Kovats, Sari; Jendritzky, Gerd; Menne, Bettina (2004)."Heat-waves: risks and responses".Health and Global Environmental Change Series.2. Archived fromthe original on 2023-03-22. Retrieved2023-03-16.
^Blondel, Benoît; Mispelon, Chloé; Ferguson, Julian (November 2011).Cycle more Often 2 cool down the planet !(PDF). European Cyclists' Federation. Archived fromthe original(PDF) on 17 February 2019. Retrieved16 April 2019.
^abHales, Simon; Kovats, Sari; Lloyd, Simon; Campbell-Lendrum, Diarmid, eds. (2014).Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. Switzerland: World Health Organization.hdl:10665/134014.ISBN978-92-4-150769-1.[page needed]