
Dynomak is aspheromak[1]fusion reactor concept developed by theUniversity of Washington usingU.S. Department of Energy funding.[2][3]
A dynomak is aspheromak that is started and maintained bymagnetic flux injection. It is formed when analternating current is used to induce amagnetic flux intoplasma. An electricalternating currenttransformer uses the same induction process to create a secondary current. Once formed, the plasma inside a dynomak relaxes into its lowest energy state, while conserving overall flux.[4][5] This is termed aTaylor state and inside the machine what is formed is a plasma structure named aspheromak. A dynomak is a kind of spheromak that is started and driven by externally induced magnetic fields.

Plasma is afluid that conducts electricity, which gives it the unique property that it can be self-structured intovortex rings (e.g.,smoke ring like objects) which includefield-reversed configurations andspheromaks. A structured plasma has the advantage that it is hotter, denser and more controllable which makes it a good choice for a fusion reactor.[6] But forming these plasma structures has been challenging since the first structures were observed in 1959[7][8][9] because they are inherently unstable.
In 1974,Dr. John B Taylor proposed that a spheromak could be formed by inducing a magnetic flux into a loop plasma. The plasma would then relax naturally into aspheromak also termed aTaylor state.[10][5] This process worked if the plasma:
Later, in 1979, these claims were checked by Marshall Rosenbluth.[11] In 1974, Dr. Taylor could only use results from the ZETA pinch device to back up these claims. But, since then,Taylor states have been formed in multiple machines including:
The dynomak evolved from the HIT-SI experiment. HIT-SI went through several upgrades: the HIT-SI3 (~2013 to ~2020) and HIT-SIU (post ~2020), both were variants on the same machine.[18] These machines demonstrated that an inductive current can be used to make and sustain a spheromak plasma structure.


By definition, a dynomak is a plasma structure that is started, formed, and sustained using magnetic flux injection. Electrictransformers use a similar process; a magnetic flux is created on the primary loop, and this makes an alternating current on the secondary side. Because ofFaraday's law of induction, only achanging magnetic field can induce a secondary current – this is why a direct current transformer cannot exist. In a dynomak, magnetic induction is used to create a plasma current inside a plasma filled chamber. This gets the plasma moving and the system eventually relaxes into aTaylor state orspheromak. The relaxation process involves the flow ofmagnetic helicity (a twist in the field lines) from the injectors into the center of the machine.[19]
Supporters of this heating approach have argued that induction is 2-3 orders of magnitude more efficient thanradio frequency (RF) or neutral beam heating.[19][20] If this is true, it gives a dynomak several distinct advantages over other fusion approaches liketokamaks ormagnetic mirrors. But this is an open area of research; below are some examples of how effective inductive drive is in creating plasma current inside a dynomak.
| Induction power (megawatts) | Drive frequency (kHz) | Plasma current (kiloamps) | Machine | Year |
|---|---|---|---|---|
| 3 | 5.8 | 12 | HIT-SI | 2006 |
| 6 | 14.7 | 38 | HIT-SI | 2011 |
A dynomak uses injectors, which are curved arms that are attached to the main chamber. An alternating current is applied around the curve of these arms, which creates themagnetic flux that drives a dynomak. The University of Washington experimented with two and three numbers of injectors. Thephase of the alternating current is offset to allow continuous injection of flux into a dynomak. Injector count effects offset angle: The drive current, and thus injectors, are offset by 90 degrees with two injectors, and by 60 degrees with three injectors.
Aspheromak plasma structure forms naturally, with no added technology needed. Supporters argue that this gives dynomaks several inherent advantages, including:
As of 2014plasma densities reached 5x1019 m−3, temperatures of 60 eV, and maximum operation time of 1.5 ms.[citation needed] No confinement time results were available. At those temperatures, fusion, alpha heating, or neutron production do not occur.
Once the technical principals were proven in the HIT-SI machine, Dr. Jarboe challenged his students in a University of Washington class to come up with a fusion reactor based on this approach.[2] The students designed the dynomak as a reactor-level power plant that built on discoveries made from the HIT-SI and earlier machines.
| Industry | fusion power |
|---|---|
| Predecessor | University of Washington |
| Founded | 2015; 11 years ago (2015) |
| Founders | Chris Ajemian Aaron Hossack Kyle Morgan Derek Sutherland |
| Defunct | 2023; 3 years ago (2023) |
| Headquarters | , United States |
Number of employees | 10 (2023) |
Eventually, these students formed CTFusion as aspin off from the University of Washington, to commercialize the dynomak in 2015.[23] The firm has exclusive rights to 3 university patents and raised over $3.6 million from 2015 to 2019 in public and private funding.[24] The acronym CT stands forcompact toroid, which is what spheromaks were referred to for decades. The firm received funding as part of an Advanced Research Projects Agency – Energy (ARPA-E) funding award for fusion. CTFusion closed in 2023.[25]
Unlike other fusion reactor designs (such asITER), a dynomak can be, according to its engineering team, comparable in costs to a conventionalcoal plant.[2] A dynomak is calculated to cost a tenth of ITER and produce five times more energy at an efficiency of 40 percent. A one gigawatt dynomak would cost US$2.7 billion compared to US$2.8 billion for a coal plant.[26]
Dynomak incorporates an ITER-developed cryogenic pumping system. Spheromak use an oblatespheroid instead of atokamak configuration, with no central core, or large, complexsuperconducting magnets as in many tokamaks, e.g., ITER. The magnetic fields are produced by putting electric fields into the center of the plasma using superconducting tapes wrapped around the vessel, such that the plasma contains itself.[26]
A dynomak is smaller simpler and cheaper to build than a tokamak, such as ITER, while producing more power. The fusion reaction is self-sustaining as excess heat is drawn off by amolten salt blanket to power a steam turbine.[26] The prototype was about one tenth the scale of a commercial project, and can sustain plasma efficiently. Higher output would require larger scale, and higher plasma temperature.[2]
A dynomak relies on a copper wall to conserve and direct the magnetic flux that is injected into the machine. This wall butts up against the plasma, creating the possibility of high conduction losses through the metal. The HIT-SI coated the inside of the copper wall with an aluminum-oxide insulator to reduce these losses, but this could still be a major loss mechanism if the machine goes to fusion reactor conditions.[27]
Further, the injection of magnetic helicity into the field forces the machine to break the magnetic flux surfaces that hold and sustain the plasma structure. The breaking of these surfaces has been cited as a reason that a dynomaks' heating mechanism does not work as efficiently as predicted.
Lastly, a dynomak has a complex chamber geometry, which complicates and presents challenges for maintenance and vacuum forming.