Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dual norm

From Wikipedia, the free encyclopedia
Measurement on a normed vector space

Infunctional analysis, thedual norm is a measure of size for acontinuouslinear function defined on anormed vector space.

Definition

[edit]

LetX{\displaystyle X} be anormed vector space with norm{\displaystyle \|\cdot \|} and letX{\displaystyle X^{*}} denote itscontinuous dual space. Thedual norm of a continuouslinear functionalf{\displaystyle f} belonging toX{\displaystyle X^{*}} is the non-negative real number defined[1] by any of the following equivalent formulas:f=sup{|f(x)| : x1   and  xX}=sup{|f(x)| : x<1   and  xX}=inf{c[0,) : |f(x)|cx   for all  xX}=sup{|f(x)| : x=1 or 0   and  xX}=sup{|f(x)| : x=1   and  xX} this equality holds if and only if X{0}=sup{|f(x)|x  : x0  and  xX} this equality holds if and only if X{0}{\displaystyle {\begin{alignedat}{5}\|f\|&=\sup &&\{\,|f(x)|&&~:~\|x\|\leq 1~&&~{\text{ and }}~&&x\in X\}\\&=\sup &&\{\,|f(x)|&&~:~\|x\|<1~&&~{\text{ and }}~&&x\in X\}\\&=\inf &&\{\,c\in [0,\infty )&&~:~|f(x)|\leq c\|x\|~&&~{\text{ for all }}~&&x\in X\}\\&=\sup &&\{\,|f(x)|&&~:~\|x\|=1{\text{ or }}0~&&~{\text{ and }}~&&x\in X\}\\&=\sup &&\{\,|f(x)|&&~:~\|x\|=1~&&~{\text{ and }}~&&x\in X\}\;\;\;{\text{ this equality holds if and only if }}X\neq \{0\}\\&=\sup &&{\bigg \{}\,{\frac {|f(x)|}{\|x\|}}~&&~:~x\neq 0&&~{\text{ and }}~&&x\in X{\bigg \}}\;\;\;{\text{ this equality holds if and only if }}X\neq \{0\}\\\end{alignedat}}}wheresup{\displaystyle \sup } andinf{\displaystyle \inf } denote thesupremum and infimum, respectively. The constant0{\displaystyle 0} map is the origin of the vector spaceX{\displaystyle X^{*}} and it always has norm0=0.{\displaystyle \|0\|=0.} IfX={0}{\displaystyle X=\{0\}} then the only linear functional onX{\displaystyle X} is the constant0{\displaystyle 0} map and moreover, the sets in the last two rows will both be empty and consequently, theirsupremums will equalsup={\displaystyle \sup \varnothing =-\infty } instead of the correct value of0.{\displaystyle 0.}

Importantly, a linear functionf{\displaystyle f} is not, in general, guaranteed to achieve its normf=sup{|f(x)|:x1,xX}{\displaystyle \|f\|=\sup\{|f(x)|:\|x\|\leq 1,x\in X\}} on the closed unit ball{xX:x1},{\displaystyle \{x\in X:\|x\|\leq 1\},} meaning that there might not exist any vectoruX{\displaystyle u\in X} of normu1{\displaystyle \|u\|\leq 1} such thatf=|fu|{\displaystyle \|f\|=|fu|} (if such a vector does exist and iff0,{\displaystyle f\neq 0,} thenu{\displaystyle u} would necessarily have unit normu=1{\displaystyle \|u\|=1}). R.C. James provedJames's theorem in 1964, which states that aBanach spaceX{\displaystyle X} isreflexive if and only if every bounded linear functionfX{\displaystyle f\in X^{*}} achieves its norm on the closed unit ball.[2] It follows, in particular, that every non-reflexive Banach space has some bounded linear functional that does not achieve its norm on the closed unit ball. However, theBishop–Phelps theorem guarantees that the set of bounded linear functionals that achieve their norm on the unit sphere of aBanach space is a norm-dense subset of thecontinuous dual space.[3][4]

The mapff{\displaystyle f\mapsto \|f\|} defines anorm onX.{\displaystyle X^{*}.} (See Theorems 1 and 2 below.) The dual norm is a special case of theoperator norm defined for each (bounded) linear map between normed vector spaces. Since theground field ofX{\displaystyle X} (R{\displaystyle \mathbb {R} } orC{\displaystyle \mathbb {C} }) iscomplete,X{\displaystyle X^{*}} is aBanach space. The topology onX{\displaystyle X^{*}}induced by{\displaystyle \|\cdot \|} turns out to be stronger than theweak-* topology onX.{\displaystyle X^{*}.}

The double dual of a normed linear space

[edit]

Thedouble dual (or second dual)X{\displaystyle X^{**}} ofX{\displaystyle X} is the dual of the normed vector spaceX{\displaystyle X^{*}}. There is a natural mapφ:XX{\displaystyle \varphi :X\to X^{**}}. Indeed, for eachw{\displaystyle w^{*}} inX{\displaystyle X^{*}} defineφ(v)(w):=w(v).{\displaystyle \varphi (v)(w^{*}):=w^{*}(v).}

The mapφ{\displaystyle \varphi } islinear,injective, anddistance preserving.[5] In particular, ifX{\displaystyle X} is complete (i.e. a Banach space), thenφ{\displaystyle \varphi } is an isometry onto a closed subspace ofX{\displaystyle X^{**}}.[6]

In general, the mapφ{\displaystyle \varphi } is not surjective. For example, ifX{\displaystyle X} is the Banach spaceL{\displaystyle L^{\infty }} consisting of bounded functions on the real line with the supremum norm, then the mapφ{\displaystyle \varphi } is not surjective. (SeeLp{\displaystyle L^{p}} space). Ifφ{\displaystyle \varphi } is surjective, thenX{\displaystyle X} is said to be areflexive Banach space. If1<p<,{\displaystyle 1<p<\infty ,} then thespaceLp{\displaystyle L^{p}} is a reflexive Banach space.

Examples

[edit]

Dual norm for matrices

[edit]
Main articles:Hilbert–Schmidt operator andMatrix norm § Frobenius norm

TheFrobenius norm defined byAF=i=1mj=1n|aij|2=trace(AA)=i=1min{m,n}σi2{\displaystyle \|A\|_{\text{F}}={\sqrt {\sum _{i=1}^{m}\sum _{j=1}^{n}\left|a_{ij}\right|^{2}}}={\sqrt {\operatorname {trace} (A^{*}A)}}={\sqrt {\sum _{i=1}^{\min\{m,n\}}\sigma _{i}^{2}}}}is self-dual, i.e., its dual norm isF=F.{\displaystyle \|\cdot \|'_{\text{F}}=\|\cdot \|_{\text{F}}.}

Thespectral norm, a special case of theinduced norm whenp=2{\displaystyle p=2}, is defined by the maximumsingular values of a matrix, that is,A2=σmax(A),{\displaystyle \|A\|_{2}=\sigma _{\max }(A),}has the nuclear norm as its dual norm, which is defined byB2=iσi(B),{\displaystyle \|B\|'_{2}=\sum _{i}\sigma _{i}(B),} for any matrixB{\displaystyle B} whereσi(B){\displaystyle \sigma _{i}(B)} denote the singular values[citation needed].

Ifp,q[1,]{\displaystyle p,q\in [1,\infty ]} theSchattenp{\displaystyle \ell ^{p}}-norm on matrices is dual to the Schattenq{\displaystyle \ell ^{q}}-norm.

Finite-dimensional spaces

[edit]

Let{\displaystyle \|\cdot \|} be a norm onRn.{\displaystyle \mathbb {R} ^{n}.} The associateddual norm, denoted,{\displaystyle \|\cdot \|_{*},} is defined asz=sup{zx:x1}.{\displaystyle \|z\|_{*}=\sup\{z^{\intercal }x:\|x\|\leq 1\}.}

(This can be shown to be a norm.) The dual norm can be interpreted as theoperator norm ofz,{\displaystyle z^{\intercal },} interpreted as a1×n{\displaystyle 1\times n} matrix, with the norm{\displaystyle \|\cdot \|} onRn{\displaystyle \mathbb {R} ^{n}}, and the absolute value onR{\displaystyle \mathbb {R} }:z=sup{|zx|:x1}.{\displaystyle \|z\|_{*}=\sup\{|z^{\intercal }x|:\|x\|\leq 1\}.}

From the definition of dual norm we have the inequalityzx=x(zxx)xz{\displaystyle z^{\intercal }x=\|x\|\left(z^{\intercal }{\frac {x}{\|x\|}}\right)\leq \|x\|\|z\|_{*}}which holds for allx{\displaystyle x} andz.{\displaystyle z.}[7][8] The dual of the dual norm is the original norm: we havex=x{\displaystyle \|x\|_{**}=\|x\|} for allx.{\displaystyle x.} (This need not hold in infinite-dimensional vector spaces.)

The dual of theEuclidean norm is the Euclidean norm, sincesup{zx:x21}=z2.{\displaystyle \sup\{z^{\intercal }x:\|x\|_{2}\leq 1\}=\|z\|_{2}.}

(This follows from theCauchy–Schwarz inequality; for nonzeroz,{\displaystyle z,} the value ofx{\displaystyle x} that maximiseszx{\displaystyle z^{\intercal }x} overx21{\displaystyle \|x\|_{2}\leq 1} iszz2.{\displaystyle {\tfrac {z}{\|z\|_{2}}}.})

The dual of the{\displaystyle \ell ^{\infty }}-norm is the1{\displaystyle \ell ^{1}}-norm:sup{zx:x1}=i=1n|zi|=z1,{\displaystyle \sup\{z^{\intercal }x:\|x\|_{\infty }\leq 1\}=\sum _{i=1}^{n}|z_{i}|=\|z\|_{1},}and the dual of the1{\displaystyle \ell ^{1}}-norm is the{\displaystyle \ell ^{\infty }}-norm.

More generally,Hölder's inequality shows that the dual of thep{\displaystyle \ell ^{p}}-norm is theq{\displaystyle \ell ^{q}}-norm, whereq{\displaystyle q} satisfies1p+1q=1,{\displaystyle {\tfrac {1}{p}}+{\tfrac {1}{q}}=1,} that is,q=pp1.{\displaystyle q={\tfrac {p}{p-1}}.}

As another example, consider the2{\displaystyle \ell ^{2}}- or spectral norm onRm×n{\displaystyle \mathbb {R} ^{m\times n}}. The associated dual norm isZ2=sup{tr(ZX):X21},{\displaystyle \|Z\|_{2*}=\sup\{\mathbf {tr} (Z^{\intercal }X):\|X\|_{2}\leq 1\},}which turns out to be the sum of the singular values,Z2=σ1(Z)++σr(Z)=tr(ZZ),{\displaystyle \|Z\|_{2*}=\sigma _{1}(Z)+\cdots +\sigma _{r}(Z)=\mathbf {tr} ({\sqrt {Z^{\intercal }Z}}),}wherer=rankZ.{\displaystyle r=\mathbf {rank} Z.} This norm is sometimes called thenuclear norm.[9]

Lp and ℓp spaces

[edit]
See also:Lp space andRiesz representation theorem

Forp[1,],{\displaystyle p\in [1,\infty ],}p-norm (also calledp{\displaystyle \ell _{p}}-norm) of vectorx=(xn)n{\displaystyle \mathbf {x} =(x_{n})_{n}} isxp := (i=1n|xi|p)1/p.{\displaystyle \|\mathbf {x} \|_{p}~:=~\left(\sum _{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1/p}.}

Ifp,q[1,]{\displaystyle p,q\in [1,\infty ]} satisfy1/p+1/q=1{\displaystyle 1/p+1/q=1} then thep{\displaystyle \ell ^{p}} andq{\displaystyle \ell ^{q}} norms are dual to each other and the same is true of theLp{\displaystyle L^{p}} andLq{\displaystyle L^{q}} norms, where(X,Σ,μ),{\displaystyle (X,\Sigma ,\mu ),} is somemeasure space. In particular theEuclidean norm is self-dual sincep=q=2.{\displaystyle p=q=2.} ForxTQx{\displaystyle {\sqrt {x^{\mathrm {T} }Qx}}}, the dual norm isyTQ1y{\displaystyle {\sqrt {y^{\mathrm {T} }Q^{-1}y}}} withQ{\displaystyle Q} positive definite.

Forp=2,{\displaystyle p=2,} the2{\displaystyle \|\,\cdot \,\|_{2}}-norm is even induced by a canonicalinner product,,{\displaystyle \langle \,\cdot ,\,\cdot \rangle ,} meaning thatx2=x,x{\displaystyle \|\mathbf {x} \|_{2}={\sqrt {\langle \mathbf {x} ,\mathbf {x} \rangle }}} for all vectorsx.{\displaystyle \mathbf {x} .} This inner product can expressed in terms of the norm by using thepolarization identity. On2,{\displaystyle \ell ^{2},} this is theEuclidean inner product defined by(xn)n,(yn)n2 = nxnyn¯{\displaystyle \langle \left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\rangle _{\ell ^{2}}~=~\sum _{n}x_{n}{\overline {y_{n}}}}while for the spaceL2(X,μ){\displaystyle L^{2}(X,\mu )} associated with ameasure space(X,Σ,μ),{\displaystyle (X,\Sigma ,\mu ),} which consists of allsquare-integrable functions, this inner product isf,gL2=Xf(x)g(x)¯dx.{\displaystyle \langle f,g\rangle _{L^{2}}=\int _{X}f(x){\overline {g(x)}}\,\mathrm {d} x.}The norms of the continuous dual spaces of2{\displaystyle \ell ^{2}} and2{\displaystyle \ell ^{2}} satisfy thepolarization identity, and so these dual norms can be used to define inner products. With this inner product, this dual space is also aHilbert space.

Properties

[edit]

Given normed vector spacesX{\displaystyle X} andY,{\displaystyle Y,} letL(X,Y){\displaystyle L(X,Y)}[10] be the collection of allbounded linear mappings (oroperators) ofX{\displaystyle X} intoY.{\displaystyle Y.} ThenL(X,Y){\displaystyle L(X,Y)} can be given a canonical norm.

Theorem 1LetX{\displaystyle X} andY{\displaystyle Y} be normed spaces. Assigning to each continuous linear operatorfL(X,Y){\displaystyle f\in L(X,Y)} the scalarf=sup{f(x):xX,x1}{\displaystyle \|f\|=\sup\{\|f(x)\|:x\in X,\|x\|\leq 1\}}defines a norm : L(X,Y)R{\displaystyle \|\cdot \|~:~L(X,Y)\to \mathbb {R} } onL(X,Y){\displaystyle L(X,Y)} that makesL(X,Y){\displaystyle L(X,Y)} into a normed space. Moreover, ifY{\displaystyle Y} is a Banach space then so isL(X,Y).{\displaystyle L(X,Y).}[11]

Proof

A subset of a normed space is boundedif and only if it lies in some multiple of theunit sphere; thusf<{\displaystyle \|f\|<\infty } for everyfL(X,Y){\displaystyle f\in L(X,Y)} ifα{\displaystyle \alpha } is a scalar, then(αf)(x)=αfx{\displaystyle (\alpha f)(x)=\alpha \cdot fx} so thatαf=|α|f.{\displaystyle \|\alpha f\|=|\alpha |\|f\|.}

Thetriangle inequality inY{\displaystyle Y} shows that(f1+f2)x = f1x+f2x f1x+f2x (f1+f2)x f1+f2{\displaystyle {\begin{aligned}\|\left(f_{1}+f_{2}\right)x\|~&=~\|f_{1}x+f_{2}x\|\\&\leq ~\|f_{1}x\|+\|f_{2}x\|\\&\leq ~\left(\|f_{1}\|+\|f_{2}\|\right)\|x\|\\&\leq ~\|f_{1}\|+\|f_{2}\|\end{aligned}}}

for everyxX{\displaystyle x\in X} satisfyingx1.{\displaystyle \|x\|\leq 1.} This fact together with the definition of : L(X,Y)R{\displaystyle \|\cdot \|~:~L(X,Y)\to \mathbb {R} } implies the triangle inequality:f+gf+g.{\displaystyle \|f+g\|\leq \|f\|+\|g\|.}

Since{|f(x)|:xX,x1}{\displaystyle \{|f(x)|:x\in X,\|x\|\leq 1\}} is a non-empty set of non-negative real numbers,f=sup{|f(x)|:xX,x1}{\displaystyle \|f\|=\sup \left\{|f(x)|:x\in X,\|x\|\leq 1\right\}} is a non-negative real number. Iff0{\displaystyle f\neq 0} thenfx00{\displaystyle fx_{0}\neq 0} for somex0X,{\displaystyle x_{0}\in X,} which implies thatfx0>0{\displaystyle \left\|fx_{0}\right\|>0} and consequentlyf>0.{\displaystyle \|f\|>0.} This shows that(L(X,Y),){\displaystyle \left(L(X,Y),\|\cdot \|\right)} is a normed space.[12]

Assume now thatY{\displaystyle Y} is complete and we will show that(L(X,Y),){\displaystyle (L(X,Y),\|\cdot \|)} is complete. Letf=(fn)n=1{\displaystyle f_{\bullet }=\left(f_{n}\right)_{n=1}^{\infty }} be aCauchy sequence inL(X,Y),{\displaystyle L(X,Y),} so by definitionfnfm0{\displaystyle \left\|f_{n}-f_{m}\right\|\to 0} asn,m.{\displaystyle n,m\to \infty .} This fact together with the relationfnxfmx=(fnfm)xfnfmx{\displaystyle \left\|f_{n}x-f_{m}x\right\|=\left\|\left(f_{n}-f_{m}\right)x\right\|\leq \left\|f_{n}-f_{m}\right\|\|x\|}

implies that(fnx)n=1{\displaystyle \left(f_{n}x\right)_{n=1}^{\infty }} is a Cauchy sequence inY{\displaystyle Y} for everyxX.{\displaystyle x\in X.} It follows that for everyxX,{\displaystyle x\in X,} the limitlimnfnx{\displaystyle \lim _{n\to \infty }f_{n}x} exists inY{\displaystyle Y} and so we will denote this (necessarily unique) limit byfx,{\displaystyle fx,} that is:fx = limnfnx.{\displaystyle fx~=~\lim _{n\to \infty }f_{n}x.}

It can be shown thatf:XY{\displaystyle f:X\to Y} is linear. Ifε>0{\displaystyle \varepsilon >0}, thenfnfmx  εx{\displaystyle \left\|f_{n}-f_{m}\right\|\|x\|~\leq ~\varepsilon \|x\|} for all sufficiently large integersn andm. It follows thatfxfmx  εx{\displaystyle \left\|fx-f_{m}x\right\|~\leq ~\varepsilon \|x\|}for sufficiently all largem.{\displaystyle m.} Hencefx(fm+ε)x,{\displaystyle \|fx\|\leq \left(\left\|f_{m}\right\|+\varepsilon \right)\|x\|,} so thatfL(X,Y){\displaystyle f\in L(X,Y)} andffmε.{\displaystyle \left\|f-f_{m}\right\|\leq \varepsilon .} This shows thatfmf{\displaystyle f_{m}\to f} in the norm topology ofL(X,Y).{\displaystyle L(X,Y).} This establishes the completeness ofL(X,Y).{\displaystyle L(X,Y).}[13]

WhenY{\displaystyle Y} is ascalar field (i.e.Y=C{\displaystyle Y=\mathbb {C} } orY=R{\displaystyle Y=\mathbb {R} }) so thatL(X,Y){\displaystyle L(X,Y)} is thedual spaceX{\displaystyle X^{*}} ofX.{\displaystyle X.}

Theorem 2LetX{\displaystyle X} be a normed space and for everyxX{\displaystyle x^{*}\in X^{*}} letx := sup{|x,x| : xX with x1}{\displaystyle \left\|x^{*}\right\|~:=~\sup \left\{|\langle x,x^{*}\rangle |~:~x\in X{\text{ with }}\|x\|\leq 1\right\}}where by definitionx,x := x(x){\displaystyle \langle x,x^{*}\rangle ~:=~x^{*}(x)} is a scalar. Then

  1. :XR{\displaystyle \|\,\cdot \,\|:X^{*}\to \mathbb {R} } is anorm that makesX{\displaystyle X^{*}} a Banach space.[14]
  2. IfB{\displaystyle B^{*}} is the closed unit ball ofX{\displaystyle X^{*}} then for everyxX,{\displaystyle x\in X,}x = sup{|x,x| : xB}= sup{|x(x)| : x1 with xX}.{\displaystyle {\begin{alignedat}{4}\|x\|~&=~\sup \left\{|\langle x,x^{*}\rangle |~:~x^{*}\in B^{*}\right\}\\&=~\sup \left\{\left|x^{*}(x)\right|~:~\left\|x^{*}\right\|\leq 1{\text{ with }}x^{*}\in X^{*}\right\}.\\\end{alignedat}}}Consequently,xx,x{\displaystyle x^{*}\mapsto \langle x,x^{*}\rangle } is a boundedlinear functional onX{\displaystyle X^{*}} with normx = x.{\displaystyle \|x^{*}\|~=~\|x\|.}
  3. B{\displaystyle B^{*}} is weak*-compact.
Proof

LetB = sup{xX : x1}{\displaystyle B~=~\sup\{x\in X~:~\|x\|\leq 1\}}denote the closed unit ball of a normed spaceX.{\displaystyle X.} WhenY{\displaystyle Y} is thescalar field thenL(X,Y)=X{\displaystyle L(X,Y)=X^{*}} so part (a) is a corollary of Theorem 1. FixxX.{\displaystyle x\in X.} There exists[15]yB{\displaystyle y^{*}\in B^{*}} such thatx,y=x.{\displaystyle \langle {x,y^{*}}\rangle =\|x\|.}but,|x,x|xxx{\displaystyle |\langle {x,x^{*}}\rangle |\leq \|x\|\|x^{*}\|\leq \|x\|}for everyxB{\displaystyle x^{*}\in B^{*}}. (b) follows from the above. Since the open unit ballU{\displaystyle U} ofX{\displaystyle X} is dense inB{\displaystyle B}, the definition ofx{\displaystyle \|x^{*}\|} shows thatxB{\displaystyle x^{*}\in B^{*}}if and only if|x,x|1{\displaystyle |\langle {x,x^{*}}\rangle |\leq 1} for everyxU{\displaystyle x\in U}. The proof for (c)[16] now follows directly.[17]

As usual, letd(x,y):=xy{\displaystyle d(x,y):=\|x-y\|} denote the canonicalmetric induced by the norm onX,{\displaystyle X,} and denote the distance from a pointx{\displaystyle x} to the subsetSX{\displaystyle S\subseteq X} byd(x,S) := infsSd(x,s) = infsSxs.{\displaystyle d(x,S)~:=~\inf _{s\in S}d(x,s)~=~\inf _{s\in S}\|x-s\|.}Iff{\displaystyle f} is a bounded linear functional on a normed spaceX,{\displaystyle X,} then for every vectorxX,{\displaystyle x\in X,}[18]|f(x)|=fd(x,kerf),{\displaystyle |f(x)|=\|f\|\,d(x,\ker f),}wherekerf={kX:f(k)=0}{\displaystyle \ker f=\{k\in X:f(k)=0\}} denotes thekernel off.{\displaystyle f.}

See also

[edit]

Notes

[edit]
  1. ^Rudin 1991, p. 87
  2. ^Diestel 1984, p. 6.
  3. ^Bishop, Errett;Phelps, R. R. (1961)."A proof that every Banach space is subreflexive".Bulletin of the American Mathematical Society.67:97–98.doi:10.1090/s0002-9904-1961-10514-4.MR 0123174.
  4. ^Lomonosov, Victor (2000). "A counterexample to the Bishop-Phelps theorem in complex spaces".Israel Journal of Mathematics.115:25–28.doi:10.1007/bf02810578.MR 1749671.S2CID 53646715.
  5. ^Rudin 1991, section 4.5, p. 95
  6. ^Rudin 1991, p. 95
  7. ^Boyd & Vandenberghe 2004,p. 637
  8. ^This inequality is tight, in the following sense: for anyx{\displaystyle x} there is az{\displaystyle z} for which the inequality holds with equality. (Similarly, for anyz{\displaystyle z} there is anx{\displaystyle x} that gives equality.)
  9. ^Boyd & Vandenberghe 2004,p. 637
  10. ^EachL(X,Y){\displaystyle L(X,Y)} is avector space, with the usual definitions of addition and scalar multiplication of functions; this only depends on the vector space structure ofY{\displaystyle Y}, notX{\displaystyle X}.
  11. ^Rudin 1991, p. 92
  12. ^Rudin 1991, p. 93
  13. ^Rudin 1991, p. 93
  14. ^Aliprantis & Border 2006, p. 230
  15. ^Rudin 1991, Theorem 3.3 Corollary, p. 59
  16. ^Rudin 1991, Theorem 3.15 TheBanach–Alaoglu theorem algorithm, p. 68
  17. ^Rudin 1991, p. 94
  18. ^Hashimoto, Nakamura & Oharu 1986, p. 281.

References

[edit]

External links

[edit]
Types of Banach spaces
Banach spaces are:
Function space Topologies
Linear operators
Operator theory
Theorems
Analysis
Types of sets
Subsets / set operations
Examples
Applications
Duality and spaces oflinear maps
Basic concepts
Topologies
Main results
Maps
Subsets
Other concepts
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dual_norm&oldid=1276380123"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp