Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dual graviton

From Wikipedia, the free encyclopedia
Hypothetical particle found in supergravity
Dual graviton
CompositionElementary particle
FamilyGauge boson
InteractionsGravitation
StatusHypothetical
AntiparticleSelf
Theorized2000s[1][2]
Electric chargee
Spin2
String theory
Fundamental objects
Perturbative theory
Non-perturbative results
Phenomenology
Mathematics
Beyond the Standard Model
SimulatedLarge Hadron ColliderCMS particle detector data depicting aHiggs boson produced by colliding protons decaying into hadron jets and electrons
Standard Model

Intheoretical physics, thedual graviton is a hypotheticalelementary particle that is a dual of thegraviton underelectric-magnetic duality, as anS-duality, predicted by some formulations ofeleven-dimensional supergravity.[3]

The dual graviton was firsthypothesized in 1980.[4] It was theoretically modeled in 2000s,[1][2] which was then predicted in eleven-dimensional mathematics of SO(8)supergravity in the framework of electric-magnetic duality.[3] It again emerged in theE11 generalized geometry in eleven dimensions,[5] and theE7 generalized vielbein-geometry in eleven dimensions.[6] While there is no local coupling between graviton and dual graviton, the field introduced by dual graviton may be coupled to aBF model as non-local gravitational fields in extra dimensions.[7]

Amassive dual gravity of Ogievetsky–Polubarinov model[8] can be obtained by coupling the dual graviton field to the curl of its own energy-momentum tensor.[9][10]

The previously mentioned theories of dual graviton are in flat space. Inde Sitter andanti-de Sitter spaces (A)dS, the massless dual graviton exhibits less gauge symmetries dynamics compared with those ofCurtright field in flat space, hence the mixed-symmetry field propagates in more degrees of freedom.[11] However, the dual graviton in (A)dS transforms under GL(D) representation, which is identical to that of massive dual graviton in flat space.[12] This apparent paradox can be resolved using the unfolding technique in Brink, Metsaev, and Vasiliev conjecture.[13][14] For the massive dual graviton in (A)dS, the flat limit is clarified after expressing dual field in terms of theStueckelberg coupling of a massless spin-2 field with aProca field.[11]

Dual linearized gravity

[edit]

The dual formulations of linearized gravity are described by a mixed Young symmetry tensorTλ1λ2λD3μ{\displaystyle T_{\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu }}, the so-called dual graviton, in any spacetime dimensionD > 4 with the following characters:[2][15]

Tλ1λ2λD3μ=T[λ1λ2λD3]μ,{\displaystyle T_{\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu }=T_{[\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}]\mu },}
T[λ1λ2λD3μ]=0.{\displaystyle T_{[\lambda _{1}\lambda _{2}\cdots \lambda _{D-3}\mu ]}=0.}

where square brackets show antisymmetrization.

For 5-D spacetime, the spin-2 dual graviton is described by theCurtright fieldTαβγ{\displaystyle T_{\alpha \beta \gamma }}. The symmetry properties imply that

Tαβγ=T[αβ]γ,{\displaystyle T_{\alpha \beta \gamma }=T_{[\alpha \beta ]\gamma },}
T[αβ]γ+T[βγ]α+T[γα]β=0.{\displaystyle T_{[\alpha \beta ]\gamma }+T_{[\beta \gamma ]\alpha }+T_{[\gamma \alpha ]\beta }=0.}

The Lagrangian action for the spin-2 dual gravitonTλ1λ2μ{\displaystyle T_{\lambda _{1}\lambda _{2}\mu }} in 5-D spacetime, theCurtright field, becomes[2][15]

Ldual=112(F[αβγ]δF[αβγ]δ3F[αβξ]ξF[αβλ]λ),{\displaystyle {\cal {L}}_{\rm {dual}}=-{\frac {1}{12}}\left(F_{[\alpha \beta \gamma ]\delta }F^{[\alpha \beta \gamma ]\delta }-3F_{[\alpha \beta \xi ]}{}^{\xi }F^{[\alpha \beta \lambda ]}{}_{\lambda }\right),}

whereFαβγδ{\displaystyle F_{\alpha \beta \gamma \delta }} is defined as

F[αβγ]δ=αT[βγ]δ+βT[γα]δ+γT[αβ]δ,{\displaystyle F_{[\alpha \beta \gamma ]\delta }=\partial _{\alpha }T_{[\beta \gamma ]\delta }+\partial _{\beta }T_{[\gamma \alpha ]\delta }+\partial _{\gamma }T_{[\alpha \beta ]\delta },}

and the gauge symmetry of theCurtright field is

δσ,αT[αβ]γ=2([ασβ]γ+[ααβ]γγααβ).{\displaystyle \delta _{\sigma ,\alpha }T_{[\alpha \beta ]\gamma }=2(\partial _{[\alpha }\sigma _{\beta ]\gamma }+\partial _{[\alpha }\alpha _{\beta ]\gamma }-\partial _{\gamma }\alpha _{\alpha \beta }).}

The dualRiemann curvature tensor of the dual graviton is defined as follows:[2]

E[αβδ][εγ]12(εF[αβδ]γγF[αβδ]ε),{\displaystyle E_{[\alpha \beta \delta ][\varepsilon \gamma ]}\equiv {\frac {1}{2}}(\partial _{\varepsilon }F_{[\alpha \beta \delta ]\gamma }-\partial _{\gamma }F_{[\alpha \beta \delta ]\varepsilon }),}

and the dualRicci curvature tensor andscalar curvature of the dual graviton become, respectively

E[αβ]γ=gεδE[αβδ][εγ],{\displaystyle E_{[\alpha \beta ]\gamma }=g^{\varepsilon \delta }E_{[\alpha \beta \delta ][\varepsilon \gamma ]},}
Eα=gβγE[αβ]γ.{\displaystyle E_{\alpha }=g^{\beta \gamma }E_{[\alpha \beta ]\gamma }.}

They fulfill the following Bianchi identities

α(E[αβ]γ+gγ[αEβ])=0,{\displaystyle \partial _{\alpha }(E^{[\alpha \beta ]\gamma }+g^{\gamma [\alpha }E^{\beta ]})=0,}

wheregαβ{\displaystyle g^{\alpha \beta }} is the 5-D spacetime metric.

Massive dual gravity

[edit]

In 4-D, the Lagrangian of thespinlessmassive version of the dual gravity is

Ldual,massivespinless=12u+12(vgu)2+13g(vgu)3F3F2(1,12,32;2,52;4g2(vgu)2),{\displaystyle {\mathcal {L_{\rm {dual,massive}}^{\rm {spinless}}}}=-{\frac {1}{2}}u+{\frac {1}{2}}(v-gu)^{2}+{\frac {1}{3}}g(v-gu)^{3}\sideset {_{3}}{_{2}}F(1,{\frac {1}{2}},{\frac {3}{2}};2,{\frac {5}{2}};-4g^{2}(v-gu)^{2}),}

whereVμ=16ϵμαβγVαβγ ,v=VμVμand u=μVμ.{\displaystyle V^{\mu }={\frac {1}{6}}\epsilon ^{\mu \alpha \beta \gamma }V_{\alpha \beta \gamma }~,v=V_{\mu }V^{\mu }{\text{and}}~u=\partial _{\mu }V^{\mu }.}[16] The coupling constantg/m{\displaystyle g/m} appears in the equation of motion to couple the trace of the conformally improved energy momentum tensorθ{\displaystyle \theta } to the field as in the following equation

(+m2)Vμ=gmμθ.{\displaystyle \left(\Box +m^{2}\right)V_{\mu }={\frac {g}{m}}\partial _{\mu }\theta .}

And for the spin-2 massive dual gravity in 4-D,[10] the Lagrangian is formulated in terms of theHessian matrix that also constitutesHorndeski theory (Galileons/massive gravity) through

det(δνμ+gmKνμ)=112(g/m)2KαβKβα+13(g/m)3KαβKβγKγα+18(g/m)4[(KαβKβα)22KαβKβγKγδKδα],{\displaystyle {\text{det}}(\delta _{\nu }^{\mu }+{\frac {g}{m}}K_{\nu }^{\mu })=1-{\frac {1}{2}}(g/m)^{2}K_{\alpha }^{\beta }K_{\beta }^{\alpha }+{\frac {1}{3}}(g/m)^{3}K_{\alpha }^{\beta }K_{\beta }^{\gamma }K_{\gamma }^{\alpha }+{\frac {1}{8}}(g/m)^{4}\left[(K_{\alpha }^{\beta }K_{\beta }^{\alpha })^{2}-2K_{\alpha }^{\beta }K_{\beta }^{\gamma }K_{\gamma }^{\delta }K_{\delta }^{\alpha }\right],}

whereKμν=3αT[βγ]μϵαβγν{\displaystyle K_{\mu }^{\nu }=3\partial _{\alpha }T_{[\beta \gamma ]\mu }\epsilon ^{\alpha \beta \gamma \nu }}.

So the zeroth interaction part, i.e., the third term in the Lagrangian, can be read asKαβθβα{\displaystyle K_{\alpha }^{\beta }\theta _{\beta }^{\alpha }} so the equation of motion becomes

(+m2)T[αβ]γ=gmPαβγ,λμνλθμν,{\displaystyle \left(\Box +m^{2}\right)T_{[\alpha \beta ]\gamma }={\frac {g}{m}}P_{\alpha \beta \gamma ,\lambda \mu \nu }\partial ^{\lambda }\theta ^{\mu \nu },}

where thePαβγ,λμν=2ϵαβλμηγν+ϵαγλμηβνϵβγλμηαν{\displaystyle P_{\alpha \beta \gamma ,\lambda \mu \nu }=2\epsilon _{\alpha \beta \lambda \mu }\eta _{\gamma \nu }+\epsilon _{\alpha \gamma \lambda \mu }\eta _{\beta \nu }-\epsilon _{\beta \gamma \lambda \mu }\eta _{\alpha \nu }} isYoung symmetrizer of such SO(2) theory.

For solutions of the massive theory in arbitrary N-D, i.e., Curtright fieldT[λ1λ2...λN3]μ{\displaystyle T_{[\lambda _{1}\lambda _{2}...\lambda _{N-3}]\mu }}, the symmetrizer becomes that of SO(N-2).[9]

Dual graviton coupling with BF theory

[edit]

Dual gravitons have interaction with topologicalBF model inD = 5 through the following Lagrangian action[7]

SL=d5x(Ldual+LBF).{\displaystyle S_{\rm {L}}=\int d^{5}x({\cal {L}}_{\rm {dual}}+{\cal {L}}_{\rm {BF}}).}

where

LBF=Tr[BF]{\displaystyle {\cal {L}}_{\rm {BF}}=Tr[\mathbf {B} \wedge \mathbf {F} ]}

Here,FdARab{\displaystyle \mathbf {F} \equiv d\mathbf {A} \sim R_{ab}} is thecurvature form, andBeaeb{\displaystyle \mathbf {B} \equiv e^{a}\wedge e^{b}} is the background field.

In principle, it should similarly be coupled to a BF model of gravity as the linearized Einstein–Hilbert action inD > 4:

SBF=d5xLBFSEH=12d5xRg.{\displaystyle S_{\rm {BF}}=\int d^{5}x{\cal {L}}_{\rm {BF}}\sim S_{\rm {EH}}={1 \over 2}\int \mathrm {d} ^{5}xR{\sqrt {-g}}.}

whereg=det(gμν){\displaystyle g=\det(g_{\mu \nu })} is the determinant of themetric tensor matrix, andR{\displaystyle R} is theRicci scalar.

Dual gravitoelectromagnetism

[edit]

In similar manner while we definegravitoelectromagnetism for the graviton, we can define electric and magnetic fields for the dual graviton.[17] There are the following relation between the gravitoelectric fieldEab[hab]{\displaystyle E_{ab}[h_{ab}]} and gravitomagnetic fieldBab[hab]{\displaystyle B_{ab}[h_{ab}]} of the gravitonhab{\displaystyle h_{ab}} and the gravitoelectric fieldEab[Tabc]{\displaystyle E_{ab}[T_{abc}]} and gravitomagnetic fieldBab[Tabc]{\displaystyle B_{ab}[T_{abc}]} of the dual gravitonTabc{\displaystyle T_{abc}}:[18][15]

Bab[Tabc]=Eab[hab]{\displaystyle B_{ab}[T_{abc}]=E_{ab}[h_{ab}]}
Eab[Tabc]=Bab[hab]{\displaystyle E_{ab}[T_{abc}]=-B_{ab}[h_{ab}]}

andscalar curvatureR{\displaystyle R} with dual scalar curvatureE{\displaystyle E}:[18]

E=R{\displaystyle E=\star R}
R=E{\displaystyle R=-\star E}

where{\displaystyle \star } denotes theHodge dual.

Dual graviton in conformal gravity

[edit]

The free (4,0)conformal gravity inD = 6 is defined as

S=d6xgCABCDCABCD,{\displaystyle {\mathcal {S}}=\int \mathrm {d} ^{6}x{\sqrt {-g}}C_{ABCD}C^{ABCD},}

whereCABCD{\displaystyle C_{ABCD}} is theWeyl tensor inD = 6. The free (4,0) conformal gravity can be reduced to the graviton in the ordinary space, and the dual graviton in the dual space inD = 4.[19]

It is easy to notice the similarity between theLanczos tensor, that generates the Weyl tensor in geometric theories of gravity, and Curtright tensor, particularly their shared symmetry properties of the linearized spin connection in Einstein's theory. However, Lanczos tensor is a tensor of geometry in D=4,[20] meanwhile Curtright tensor is a field tensor in arbitrary dimensions.

See also

[edit]

References

[edit]
  1. ^abHull, C. M. (2001)."Duality in Gravity and Higher Spin Gauge Fields".Journal of High Energy Physics.2001 (9): 27.arXiv:hep-th/0107149.Bibcode:2001JHEP...09..027H.doi:10.1088/1126-6708/2001/09/027.
  2. ^abcdeBekaert, X.; Boulanger, N.; Henneaux, M. (2003). "Consistent deformations of dual formulations of linearized gravity: A no-go result".Physical Review D.67 (4): 044010.arXiv:hep-th/0210278.Bibcode:2003PhRvD..67d4010B.doi:10.1103/PhysRevD.67.044010.S2CID 14739195.
  3. ^abde Wit, B.; Nicolai, H. (2013). "Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions".Journal of High Energy Physics.2013 (5): 77.arXiv:1302.6219.Bibcode:2013JHEP...05..077D.doi:10.1007/JHEP05(2013)077.S2CID 119201330.
  4. ^Curtright, T. (1985). "Generalised Gauge Fields".Physics Letters B.165 (4–6): 304.Bibcode:1985PhLB..165..304C.doi:10.1016/0370-2693(85)91235-3.
  5. ^West, P. (2012). "Generalised geometry, eleven dimensions andE11".Journal of High Energy Physics.2012 (2): 18.arXiv:1111.1642.Bibcode:2012JHEP...02..018W.doi:10.1007/JHEP02(2012)018.S2CID 119240022.
  6. ^Godazgar, H.; Godazgar, M.; Nicolai, H. (2014)."Generalised geometry from the ground up".Journal of High Energy Physics.2014 (2): 75.arXiv:1307.8295.Bibcode:2014JHEP...02..075G.doi:10.1007/JHEP02(2014)075.
  7. ^abBizdadea, C.; Cioroianu, E. M.; Danehkar, A.; Iordache, M.; Saliu, S. O.; Sararu, S. C. (2009). "Consistent interactions of dual linearized gravity inD = 5: couplings with a topological BF model".European Physical Journal C.63 (3):491–519.arXiv:0908.2169.Bibcode:2009EPJC...63..491B.doi:10.1140/epjc/s10052-009-1105-0.S2CID 15873396.
  8. ^Ogievetsky, V. I; Polubarinov, I. V (1965-11-01). "Interacting field of spin 2 and the einstein equations".Annals of Physics.35 (2):167–208.Bibcode:1965AnPhy..35..167O.doi:10.1016/0003-4916(65)90077-1.ISSN 0003-4916.
  9. ^abAlshal, H.; Curtright, T. L. (2019-09-10). "Massive dual gravity in N spacetime dimensions".Journal of High Energy Physics.2019 (9): 63.arXiv:1907.11537.Bibcode:2019JHEP...09..063A.doi:10.1007/JHEP09(2019)063.ISSN 1029-8479.S2CID 198953238.
  10. ^abCurtright, T. L.; Alshal, H. (2019-10-01). "Massive dual spin 2 revisited".Nuclear Physics B.948: 114777.arXiv:1907.11532.Bibcode:2019NuPhB.94814777C.doi:10.1016/j.nuclphysb.2019.114777.ISSN 0550-3213.S2CID 198953158.
  11. ^abBoulanger, N.; Campoleoni, A.; Cortese, I. (July 2018). "Dual actions for massless, partially-massless and massive gravitons in (A)dS".Physics Letters B.782:285–290.arXiv:1804.05588.Bibcode:2018PhLB..782..285B.doi:10.1016/j.physletb.2018.05.046.S2CID 54826796.
  12. ^Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (2016-06-21). "Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS".Physical Review D.93 (12): 124047.arXiv:1512.09060.Bibcode:2016PhRvD..93l4047B.doi:10.1103/PhysRevD.93.124047.ISSN 2470-0010.S2CID 55583084.
  13. ^Brink, L.; Metsaev, R.R.; Vasiliev, M.A. (October 2000). "How massless are massless fields in AdS".Nuclear Physics B.586 (1–2):183–205.arXiv:hep-th/0005136.Bibcode:2000NuPhB.586..183B.doi:10.1016/S0550-3213(00)00402-8.S2CID 119512854.
  14. ^Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas (May 2017). "Mixed-symmetry fields in de Sitter space: a group theoretical glance".Journal of High Energy Physics.2017 (5): 81.arXiv:1612.08166.Bibcode:2017JHEP...05..081B.doi:10.1007/JHEP05(2017)081.ISSN 1029-8479.S2CID 119185373.
  15. ^abcDanehkar, A. (2019)."Electric-magnetic duality in gravity and higher-spin fields".Frontiers in Physics.6: 146.Bibcode:2019FrP.....6..146D.doi:10.3389/fphy.2018.00146.
  16. ^Curtright, Thomas L. (2019-10-01). "Massive dual spinless fields revisited".Nuclear Physics B.948: 114784.arXiv:1907.11530.Bibcode:2019NuPhB.94814784C.doi:10.1016/j.nuclphysb.2019.114784.ISSN 0550-3213.S2CID 198953144.
  17. ^Henneaux, M.; Teitelboim, C. (2005). "Duality in linearized gravity".Physical Review D.71 (2): 024018.arXiv:gr-qc/0408101.Bibcode:2005PhRvD..71b4018H.doi:10.1103/PhysRevD.71.024018.S2CID 119022015.
  18. ^abHenneaux, M., "E10 and gravitational duality"https://www.theorie.physik.uni-muenchen.de/activities/workshops/archive_workshops_conferences/jointerc_2014/henneaux.pdf
  19. ^Hull, C. M. (2000). "Symmetries and Compactifications of (4,0) Conformal Gravity".Journal of High Energy Physics.2000 (12): 007.arXiv:hep-th/0011215.Bibcode:2000JHEP...12..007H.doi:10.1088/1126-6708/2000/12/007.S2CID 18326976.
  20. ^Bampi, Franco; Caviglia, Giacomo (April 1983). "Third-order tensor potentials for the Riemann and Weyl tensors".General Relativity and Gravitation.15 (4):375–386.Bibcode:1983GReGr..15..375B.doi:10.1007/BF00759166.ISSN 0001-7701.S2CID 122782358.
Elementary
Fermions
Quarks
Leptons
Bosons
Gauge
Scalar
Ghost fields
Hypothetical
Superpartners
Gauginos
Others
Others
Composite
Hadrons
Baryons
Mesons
Exotic hadrons
Others
Hypothetical
Baryons
Mesons
Others
Quasiparticles
Lists
Related
Central concepts
Toy models
Quantum field theory
in curved spacetime
Black holes
Approaches
String theory
Canonical quantum gravity
Euclidean quantum gravity
Others
Applications
Background
Theory
String duality
Particles and fields
Branes
Conformal field theory
Gauge theory
Geometry
Supersymmetry
Holography
M-theory
String theorists
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dual_graviton&oldid=1271083720"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp