Theplanar quaternions make up a four-dimensionalalgebra over thereal numbers.[1][2] Their primary application is in representingrigid body motions in 2D space. In this article, certain applications of thedual quaternion algebra to 2D geometry are discussed. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which will later be called theplanar quaternions.
In this article, the set of planar quaternions is denoted. A general element of has the form where,, and are real numbers; is adual number that squares to zero; and,, and are the standard basis elements of thequaternions.
Multiplication is done in the same way as with the quaternions, but with the additional rule that isnilpotent of index, i.e.,, which in some circumstances makes comparable to aninfinitesimal number. It follows that the multiplicative inverses of planar quaternions are given by
The set forms a basis of the vector space of planar quaternions, where the scalars are real numbers.
The magnitude of a planar quaternion is defined to be
For applications in computer graphics, the number is commonly represented as the 4-tuple.
The algebra discussed in this article is sometimes called thedual complex numbers. This may be a misleading name because it suggests that the algebra should take the form of either:
The dual numbers, but with complex-number entries
The complex numbers, but with dual-number entries
An algebra meeting either description exists. And both descriptions are equivalent. (This is due to the fact that thetensor product of algebras is commutativeup to isomorphism). This algebra can be denoted as usingring quotienting. The resulting algebra has a commutative product and is not discussed any further.
A principled construction of the planar quaternions can be found by first noticing that they are a subset of thedual-quaternions.
There are two geometric interpretations of thedual-quaternions, both of which can be used to derive the action of the planar quaternions on the plane:
As a way to representrigid body motions in 3D space. The planar quaternions can then be seen to represent a subset of those rigid-body motions. This requires some familiarity with the way the dual quaternions act on Euclidean space. We will not describe this approach here as it isadequately done elsewhere.
The dual quaternions can be understood as an "infinitesimal thickening" of the quaternions.[3][4][5] Recall that the quaternions can be used to represent3D spatial rotations, while the dual numbers can be used to represent "infinitesimals". Combining those features together allows for rotations to be varied infinitesimally. Let denote an infinitesimal plane lying on the unit sphere, equal to. Observe that is a subset of the sphere, in spite of being flat (this is thanks to the behaviour of dual number infinitesimals). Observe then that as a subset of the dual quaternions, the planar quaternions rotate the plane back onto itself. The effect this has on depends on the value of in:
When, the axis of rotation points towards some point on, so that the points on experience a rotation around.
When, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on experience a translation.
^Matsuda, Genki; Kaji, Shizuo; Ochiai, Hiroyuki (2014), Anjyo, Ken (ed.), "Anti-commutative Dual Complex Numbers and 2D Rigid Transformation",Mathematical Progress in Expressive Image Synthesis I: Extended and Selected Results from the Symposium MEIS2013, Mathematics for Industry, Springer Japan, pp. 131–138,arXiv:1601.01754,doi:10.1007/978-4-431-55007-5_17,ISBN9784431550075,S2CID2173557
^Gunn C. (2011) On the Homogeneous Model of Euclidean Geometry. In: Dorst L.,Lasenby J. (eds) Guide to Geometric Algebra in Practice. Springer, London
^Sauer, R. (1939). "Dr. Wilhelm Blaschke, Prof. a. d. Universität Hamburg, Ebene Kinematik, eine Vorlesung (Hamburger Math. Einzelschriften, 25. Heft, 1938). 56 S. m. 19 Abb. Leipzig-Berlin 1938, Verlag B. G. Teubner. Preis br. 4 M.".ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik.19 (2): 127.Bibcode:1939ZaMM...19R.127S.doi:10.1002/zamm.19390190222.ISSN0044-2267.