Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Applications of dual quaternions to 2D geometry

From Wikipedia, the free encyclopedia
(Redirected fromDual-complex number)
Four-dimensional algebra over the real numbers
Planar quaternion multiplication
×{\displaystyle \times }1{\displaystyle 1}i{\displaystyle i}εj{\displaystyle \varepsilon j}εk{\displaystyle \varepsilon k}
1{\displaystyle 1}1{\displaystyle 1}i{\displaystyle i}εj{\displaystyle \varepsilon j}εk{\displaystyle \varepsilon k}
i{\displaystyle i}i{\displaystyle i}1{\displaystyle -1}εk{\displaystyle \varepsilon k}εj{\displaystyle -\varepsilon j}
εj{\displaystyle \varepsilon j}εj{\displaystyle \varepsilon j}εk{\displaystyle -\varepsilon k}0{\displaystyle 0}0{\displaystyle 0}
εk{\displaystyle \varepsilon k}εk{\displaystyle \varepsilon k}εj{\displaystyle \varepsilon j}0{\displaystyle 0}0{\displaystyle 0}

Theplanar quaternions make up a four-dimensionalalgebra over thereal numbers.[1][2] Their primary application is in representingrigid body motions in 2D space. In this article, certain applications of thedual quaternion algebra to 2D geometry are discussed. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which will later be called theplanar quaternions.

Unlike multiplication ofdual numbers or ofcomplex numbers, that of planar quaternions isnon-commutative.

Definition

[edit]

In this article, the set of planar quaternions is denotedDC{\displaystyle \mathbb {DC} }. A general elementq{\displaystyle q} ofDC{\displaystyle \mathbb {DC} } has the formA+Bi+Cεj+Dεk{\textstyle A+Bi+C\varepsilon j+D\varepsilon k} whereA{\displaystyle A},B{\displaystyle B},C{\displaystyle C} andD{\displaystyle D} are real numbers;ε{\displaystyle \varepsilon } is adual number that squares to zero; andi{\displaystyle i},j{\displaystyle j}, andk{\displaystyle k} are the standard basis elements of thequaternions.

Multiplication is done in the same way as with the quaternions, but with the additional rule thatε{\textstyle \varepsilon } isnilpotent of index2{\displaystyle 2}, i.e.,ε2=0{\textstyle \varepsilon ^{2}=0}, which in some circumstances makesε{\textstyle \varepsilon } comparable to aninfinitesimal number. It follows that the multiplicative inverses of planar quaternions are given by(A+Bi+Cεj+Dεk)1=ABiCεjDεkA2+B2{\displaystyle (A+Bi+C\varepsilon j+D\varepsilon k)^{-1}={\frac {A-Bi-C\varepsilon j-D\varepsilon k}{A^{2}+B^{2}}}}

The set{1,i,εj,εk}{\displaystyle \{1,i,\varepsilon j,\varepsilon k\}} forms a basis of the vector space of planar quaternions, where the scalars are real numbers.

The magnitude of a planar quaternionq{\displaystyle q} is defined to be|q|=A2+B2.{\displaystyle |q|={\sqrt {A^{2}+B^{2}}}.}

For applications in computer graphics, the numberA+Bi+Cεj+Dεk{\displaystyle A+Bi+C\varepsilon j+D\varepsilon k} is commonly represented as the 4-tuple(A,B,C,D){\displaystyle (A,B,C,D)}.

Matrix representation

[edit]

A planar quaternionq=A+Bi+Cεj+Dεk{\displaystyle q=A+Bi+C\varepsilon j+D\varepsilon k} has the following representation as a 2x2 complex matrix:(A+BiC+Di0ABi).{\displaystyle {\begin{pmatrix}A+Bi&C+Di\\0&A-Bi\end{pmatrix}}.}

It can also be represented as a 2×2 dual number matrix:(A+CεB+DεB+DεACε).{\displaystyle {\begin{pmatrix}A+C\varepsilon &-B+D\varepsilon \\B+D\varepsilon &A-C\varepsilon \end{pmatrix}}.}The above two matrix representations are related to theMöbius transformations andLaguerre transformations respectively.

Terminology

[edit]

The algebra discussed in this article is sometimes called thedual complex numbers. This may be a misleading name because it suggests that the algebra should take the form of either:

  1. The dual numbers, but with complex-number entries
  2. The complex numbers, but with dual-number entries

An algebra meeting either description exists. And both descriptions are equivalent. (This is due to the fact that thetensor product of algebras is commutativeup to isomorphism). This algebra can be denoted asC[x]/(x2){\displaystyle \mathbb {C} [x]/(x^{2})} usingring quotienting. The resulting algebra has a commutative product and is not discussed any further.

Representing rigid body motions

[edit]

Letq=A+Bi+Cεj+Dεk{\displaystyle q=A+Bi+C\varepsilon j+D\varepsilon k} be a unit-length planar quaternion, i.e. we must have that|q|=A2+B2=1.{\displaystyle |q|={\sqrt {A^{2}+B^{2}}}=1.}

The Euclidean plane can be represented by the setΠ={i+xεj+yεkxR,yR}{\textstyle \Pi =\{i+x\varepsilon j+y\varepsilon k\mid x\in \mathbb {R} ,y\in \mathbb {R} \}}.

An elementv=i+xεj+yεk{\displaystyle v=i+x\varepsilon j+y\varepsilon k} onΠ{\displaystyle \Pi } represents the point on theEuclidean plane withCartesian coordinate(x,y){\displaystyle (x,y)}.

q{\displaystyle q} can be made toact onv{\displaystyle v} byqvq1,{\displaystyle qvq^{-1},} which mapsv{\displaystyle v} onto some other point onΠ{\displaystyle \Pi }.

We have the following (multiple)polar forms forq{\displaystyle q}:

  1. WhenB0{\displaystyle B\neq 0}, the elementq{\displaystyle q} can be written ascos(θ/2)+sin(θ/2)(i+xεj+yεk),{\displaystyle \cos(\theta /2)+\sin(\theta /2)(i+x\varepsilon j+y\varepsilon k),} which denotes a rotation of angleθ{\displaystyle \theta } around the point(x,y){\displaystyle (x,y)}.
  2. WhenB=0{\displaystyle B=0}, the elementq{\displaystyle q} can be written as1+i(Δx2εj+Δy2εk)=1Δy2εj+Δx2εk,{\displaystyle {\begin{aligned}&1+i\left({\frac {\Delta x}{2}}\varepsilon j+{\frac {\Delta y}{2}}\varepsilon k\right)\\={}&1-{\frac {\Delta y}{2}}\varepsilon j+{\frac {\Delta x}{2}}\varepsilon k,\end{aligned}}} which denotes a translation by vector(ΔxΔy).{\displaystyle {\begin{pmatrix}\Delta x\\\Delta y\end{pmatrix}}.}

Geometric construction

[edit]

A principled construction of the planar quaternions can be found by first noticing that they are a subset of thedual-quaternions.

There are two geometric interpretations of thedual-quaternions, both of which can be used to derive the action of the planar quaternions on the plane:

See also

[edit]

References

[edit]
  1. ^Matsuda, Genki; Kaji, Shizuo; Ochiai, Hiroyuki (2014), Anjyo, Ken (ed.), "Anti-commutative Dual Complex Numbers and 2D Rigid Transformation",Mathematical Progress in Expressive Image Synthesis I: Extended and Selected Results from the Symposium MEIS2013, Mathematics for Industry, Springer Japan, pp. 131–138,arXiv:1601.01754,doi:10.1007/978-4-431-55007-5_17,ISBN 9784431550075,S2CID 2173557
  2. ^Gunn C. (2011) On the Homogeneous Model of Euclidean Geometry. In: Dorst L.,Lasenby J. (eds) Guide to Geometric Algebra in Practice. Springer, London
  3. ^"Lines in the Euclidean group SE(2)".What's new. 2011-03-06. Retrieved2019-05-28.
  4. ^Study, E. (December 1891). "Von den Bewegungen und Umlegungen".Mathematische Annalen.39 (4):441–565.doi:10.1007/bf01199824.ISSN 0025-5831.S2CID 115457030.
  5. ^Sauer, R. (1939). "Dr. Wilhelm Blaschke, Prof. a. d. Universität Hamburg, Ebene Kinematik, eine Vorlesung (Hamburger Math. Einzelschriften, 25. Heft, 1938). 56 S. m. 19 Abb. Leipzig-Berlin 1938, Verlag B. G. Teubner. Preis br. 4 M.".ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik.19 (2): 127.Bibcode:1939ZaMM...19R.127S.doi:10.1002/zamm.19390190222.ISSN 0044-2267.
Number systems
Sets ofdefinable numbers
Composition algebras
Split
types
Otherhypercomplex
Infinities andinfinitesimals
Other types
Retrieved from "https://en.wikipedia.org/w/index.php?title=Applications_of_dual_quaternions_to_2D_geometry&oldid=1304832596"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp