Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Double Mersenne number

From Wikipedia, the free encyclopedia
Number of form 2^(2^p-1)-1 with prime exponent

Inmathematics, adouble Mersenne number is aMersenne number of the formMMp=22p11{\displaystyle M_{M_{p}}=2^{2^{p}-1}-1} wherep{\displaystyle p} isprime.

Examples

[edit]

The first four terms of thesequence of double Mersenne numbers are[1] (sequenceA077586 in theOEIS):

MM2=M3=7{\displaystyle M_{M_{2}}=M_{3}=7}
MM3=M7=127{\displaystyle M_{M_{3}}=M_{7}=127}
MM5=M31=2147483647{\displaystyle M_{M_{5}}=M_{31}=2147483647}
MM7=M127=170141183460469231731687303715884105727{\displaystyle M_{M_{7}}=M_{127}=170141183460469231731687303715884105727}

Double Mersenne primes

[edit]
Double Mersenne primes
No. of known terms4
Conjecturedno. of terms4
First terms7, 127, 2147483647
Largest known term170141183460469231731687303715884105727
OEIS index
  • A077586
  • a(n) = 2^(2^prime(n) − 1) − 1

A double Mersenne number that isprime is called adouble Mersenne prime. Since a Mersenne numberMp can be prime only ifp is prime, (seeMersenne prime for a proof), a double Mersenne numberMMp{\displaystyle M_{M_{p}}} can be prime only ifMp is itself a Mersenne prime. For the first values ofp for whichMp is prime,MMp{\displaystyle M_{M_{p}}} is known to be prime forp = 2, 3, 5, and 7 while explicit factors ofMMp{\displaystyle M_{M_{p}}} have been found forp = 13, 17, 19, and 31.

p{\displaystyle p}Mp=2p1{\displaystyle M_{p}=2^{p}-1}MMp=22p11{\displaystyle M_{M_{p}}=2^{2^{p}-1}-1}factorization ofMMp{\displaystyle M_{M_{p}}}
23prime7
37prime (triple)127
531prime2147483647
7127prime (quadruple)170141183460469231731687303715884105727
11not primenot prime47 × 131009 × 178481 × 724639 × 2529391927 × 70676429054711 × 618970019642690137449562111 × ...
138191not prime338193759479 × 210206826754181103207028761697008013415622289 × ...
17131071not prime231733529 × 64296354767 × ...
19524287not prime62914441 × 5746991873407 × 2106734551102073202633922471 × 824271579602877114508714150039 × 65997004087015989956123720407169 × 4565880376922810768406683467841114102689 × ...
23not primenot prime2351 × 4513 × 13264529 × 285212639 × 76899609737 × ...
29not primenot prime1399 × 2207 × 135607 × 622577 × 16673027617 × 52006801325877583 × 4126110275598714647074087 × ...
312147483647not prime (triple mersenne number)295257526626031 × 87054709261955177 × 242557615644693265201 × 178021379228511215367151 × ...
37not primenot prime
41not primenot prime
43not primenot prime
47not primenot prime
53not primenot prime
59not primenot prime
612305843009213693951unknown

Thus, the smallest candidate for the next double Mersenne prime isMM61{\displaystyle M_{M_{61}}}, or 22305843009213693951 − 1.Being approximately 1.695×10694127911065419641,this number is far too large for any currently knownprimality test. It has no prime factor below 1 × 1036.[2]There are probably no other double Mersenne primes than the four known.[1][3]

Smallest prime factor ofMMp{\displaystyle M_{M_{p}}} (wherep is thenth prime) are

7, 127, 2147483647, 170141183460469231731687303715884105727, 47, 338193759479, 231733529, 62914441, 2351, 1399, 295257526626031, 18287, 106937, 863, 4703, 138863, 22590223644617, ... (next term is > 1 × 1036) (sequenceA309130 in theOEIS)

Catalan–Mersenne number conjecture

[edit]

Therecursively defined sequence

c0=2{\displaystyle c_{0}=2}
cn+1=2cn1=Mcn{\displaystyle c_{n+1}=2^{c_{n}}-1=M_{c_{n}}}

is called the sequence ofCatalan–Mersenne numbers.[4] The first terms of the sequence (sequenceA007013 in theOEIS) are:

c0=2{\displaystyle c_{0}=2}
c1=221=3{\displaystyle c_{1}=2^{2}-1=3}
c2=231=7{\displaystyle c_{2}=2^{3}-1=7}
c3=271=127{\displaystyle c_{3}=2^{7}-1=127}
c4=21271=170141183460469231731687303715884105727{\displaystyle c_{4}=2^{127}-1=170141183460469231731687303715884105727}
c5=217014118346046923173168730371588410572715.45431×1051217599719369681875006054625051616349101037.70942{\displaystyle c_{5}=2^{170141183460469231731687303715884105727}-1\approx 5.45431\times 10^{51217599719369681875006054625051616349}\approx 10^{10^{37.70942}}}

Catalan discovered this sequence after the discovery of the primality ofM127=c4{\displaystyle M_{127}=c_{4}} byLucas in 1876.[1][5][6]p. 22 Catalanconjectured that they are prime "up to a certain limit". Although the first five terms are prime, no known methods can prove that any further terms are prime (in any reasonable time) simply because they are too huge. However, ifc5{\displaystyle c_{5}} is not prime, there is a chance to discover this by computingc5{\displaystyle c_{5}}modulo some small primep{\displaystyle p} (using recursivemodular exponentiation). If the resulting residue is zero,p{\displaystyle p} represents a factor ofc5{\displaystyle c_{5}} and thus would disprove its primality. Sincec5{\displaystyle c_{5}} is aMersenne number, such a prime factorp{\displaystyle p} would have to be of the form2kc4+1{\displaystyle 2kc_{4}+1}. Additionally, because2n1{\displaystyle 2^{n}-1} iscomposite whenn{\displaystyle n} is composite, the discovery of a composite term in the sequence would preclude the possibility of any further primes in the sequence.

Ifc5{\displaystyle c_{5}} were prime, it would also contradict theNew Mersenne conjecture. It is known that2c4+13{\displaystyle {\frac {2^{c_{4}}+1}{3}}} is composite, with factor886407410000361345663448535540258622490179142922169401=5209834514912200c4+1{\displaystyle 886407410000361345663448535540258622490179142922169401=5209834514912200c_{4}+1}.[7]

In popular culture

[edit]

In theFuturama movieThe Beast with a Billion Backs, the double Mersenne numberMM7{\displaystyle M_{M_{7}}} is briefly seen in "anelementary proof of theGoldbach conjecture". In the movie, this number is known as a "Martian prime".

See also

[edit]

References

[edit]
  1. ^abcChris Caldwell,Mersenne Primes: History, Theorems and Lists at thePrime Pages.
  2. ^"Double Mersenne 61 factoring status".www.doublemersennes.org. Retrieved31 March 2022.
  3. ^I. J. Good. Conjectures concerning the Mersenne numbers. Mathematics of Computation vol. 9 (1955) p. 120-121 [retrieved 2012-10-19]
  4. ^Weisstein, Eric W."Catalan-Mersenne Number".MathWorld.
  5. ^"Questions proposées".Nouvelle correspondance mathématique.2:94–96. 1876. (probably collected by the editor). Almost all of the questions are signed by Édouard Lucas as is number 92:

    Prouver que 261 − 1 et 2127 − 1 sont des nombres premiers. (É. L.) (*).

    The footnote (indicated by the star) written by the editor Eugène Catalan, is as follows:

    (*) Si l'on admet ces deux propositions, et si l'on observe que 22 − 1, 23 − 1, 27 − 1 sont aussi des nombres premiers, on a cethéorème empirique: Jusqu'à une certaine limite, si 2n − 1est un nombre premierp, 2p − 1est un nombre premierp', 2p' − 1est un nombre premier p", etc. Cette proposition a quelque analogie avec le théorème suivant, énoncé par Fermat, et dont Euler a montré l'inexactitude:Si n est une puissance de 2, 2n + 1 est un nombre premier. (E. C.)

  6. ^L. E. Dickson,History of the theory of numbers. Volume 1: Divisibility and primality (1919). Published by Washington, Carnegie Institution of Washington.
  7. ^New Mersenne Conjecture

Further reading

[edit]

External links

[edit]
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Double_Mersenne_number&oldid=1330715968"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp