Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Distribution (number theory)

From Wikipedia, the free encyclopedia
For other uses, seeDistribution (disambiguation) § Mathematics.

Inalgebra andnumber theory, adistribution is a function on a system of finite sets into anabelian group which is analogous to an integral: it is thus the algebraic analogue of adistribution in the sense ofgeneralised function.

The original examples of distributions occur, unnamed, as functions φ onQ/Z satisfying[1]

r=0N1ϕ(x+rN)=ϕ(Nx) .{\displaystyle \sum _{r=0}^{N-1}\phi \left(x+{\frac {r}{N}}\right)=\phi (Nx)\ .}

Such distributions are called ordinary distributions.[2] They also occur inp-adic integration theory inIwasawa theory.[3]

Let ... →Xn+1Xn → ... be aprojective system of finite sets with surjections, indexed by the natural numbers, and letX be theirprojective limit. We give eachXn thediscrete topology, so thatX iscompact. Let φ = (φn) be a family of functions onXn taking values in an abelian groupV and compatible with the projective system:

w(m,n)yxϕ(y)=ϕ(x){\displaystyle w(m,n)\sum _{y\mapsto x}\phi (y)=\phi (x)}

for someweight functionw. The family φ is then adistribution on the projective systemX.

A functionf onX is "locally constant", or a "step function" if it factors through someXn. We can define an integral of a step function against φ as

fdϕ=xXnf(x)ϕn(x) .{\displaystyle \int f\,d\phi =\sum _{x\in X_{n}}f(x)\phi _{n}(x)\ .}

The definition extends to more general projective systems, such as those indexed by the positive integers ordered by divisibility. As an important special case consider the projective systemZ/nZ indexed by positive integers ordered by divisibility. We identify this with the system (1/n)Z/Z with limitQ/Z.

Forx inR we let ⟨x⟩ denote the fractional part ofx normalised to 0 ≤ ⟨x⟩ < 1, and let {x} denote the fractional part normalised to 0 < {x} ≤ 1.

Examples

[edit]

Hurwitz zeta function

[edit]

Themultiplication theorem for theHurwitz zeta function

ζ(s,a)=n=0(n+a)s{\displaystyle \zeta (s,a)=\sum _{n=0}^{\infty }(n+a)^{-s}}

gives a distribution relation

p=0q1ζ(s,a+p/q)=qsζ(s,qa) .{\displaystyle \sum _{p=0}^{q-1}\zeta (s,a+p/q)=q^{s}\,\zeta (s,qa)\ .}

Hence for givens, the maptζ(s,{t}){\displaystyle t\mapsto \zeta (s,\{t\})} is a distribution onQ/Z.

Bernoulli distribution

[edit]

Recall that theBernoulli polynomialsBn are defined by

Bn(x)=k=0n(nnk)bkxnk ,{\displaystyle B_{n}(x)=\sum _{k=0}^{n}{n \choose n-k}b_{k}x^{n-k}\ ,}

forn ≥ 0, wherebk are theBernoulli numbers, withgenerating function

textet1=n=0Bn(x)tnn! .{\displaystyle {\frac {te^{xt}}{e^{t}-1}}=\sum _{n=0}^{\infty }B_{n}(x){\frac {t^{n}}{n!}}\ .}

They satisfy thedistribution relation

Bk(x)=nk1a=0n1bk(x+an) .{\displaystyle B_{k}(x)=n^{k-1}\sum _{a=0}^{n-1}b_{k}\left({\frac {x+a}{n}}\right)\ .}

Thus the map

ϕn:1nZ/ZQ{\displaystyle \phi _{n}:{\frac {1}{n}}\mathbb {Z} /\mathbb {Z} \rightarrow \mathbb {Q} }

defined by

ϕn:xnk1Bk(x){\displaystyle \phi _{n}:x\mapsto n^{k-1}B_{k}(\langle x\rangle )}

is a distribution.[4]

Cyclotomic units

[edit]

Thecyclotomic units satisfydistribution relations. Leta be an element ofQ/Z prime top and letga denote exp(2πia)−1. Then fora≠ 0 we have[5]

pb=agb=ga .{\displaystyle \prod _{pb=a}g_{b}=g_{a}\ .}

Universal distribution

[edit]

One considers the distributions onZ with values in some abelian groupV and seek the "universal" or most general distribution possible.

Stickelberger distributions

[edit]

Leth be an ordinary distribution onQ/Z taking values in a fieldF. LetG(N) denote the multiplicative group ofZ/NZ, and for any functionf onG(N) we extendf to a function onZ/NZ by takingf to be zero offG(N). Define an element of the group algebraF[G(N)] by

gN(r)=1|G(N)|aG(N)h(raN)σa1 .{\displaystyle g_{N}(r)={\frac {1}{|G(N)|}}\sum _{a\in G(N)}h\left({\left\langle {\frac {ra}{N}}\right\rangle }\right)\sigma _{a}^{-1}\ .}

The group algebras form a projective system with limitX. Then the functionsgN form a distribution onQ/Z with values inX, theStickelberger distribution associated withh.

p-adic measures

[edit]

Consider the special case when the value groupV of a distribution φ onX takes values in alocal fieldK, finite overQp, or more generally, in a finite-dimensionalp-adic Banach spaceW overK, with valuation |·|. We call φ ameasure if |φ| is bounded on compact open subsets ofX.[6] LetD be the ring of integers ofK andL a lattice inW, that is, a freeD-submodule ofW withKL =W. Up to scaling a measure may be taken to have values inL.

Hecke operators and measures

[edit]

LetD be a fixed integer prime top and considerZD, the limit of the systemZ/pnD. Consider anyeigenfunction of theHecke operatorTp with eigenvalueλp prime top. We describe a procedure for deriving a measure ofZD.

Fix an integerN prime top and toD. LetF be theD-module of all functions on rational numbers with denominator coprime toN. For any primel not dividingN we define theHecke operatorTl by

(Tlf)(ab)=f(lab)+k=0l1f(a+kblb)k=0l1f(kl) .{\displaystyle (T_{l}f)\left({\frac {a}{b}}\right)=f\left({\frac {la}{b}}\right)+\sum _{k=0}^{l-1}f\left({\frac {a+kb}{lb}}\right)-\sum _{k=0}^{l-1}f\left({\frac {k}{l}}\right)\ .}

Letf be an eigenfunction forTp with eigenvalue λp inD. The quadratic equationX2 − λpX + p = 0 has roots π1, π2 with π1 a unit and π2 divisible byp. Define a sequencea0 = 2,a1 = π12λp and

ak+2=λpak+1pak ,{\displaystyle a_{k+2}=\lambda _{p}a_{k+1}-pa_{k}\ ,}

so that

ak=π1k+π2k .{\displaystyle a_{k}=\pi _{1}^{k}+\pi _{2}^{k}\ .}

References

[edit]
  1. ^Kubert & Lang (1981) p.1
  2. ^Lang (1990) p.53
  3. ^Mazur & Swinnerton-Dyer (1972) p. 36
  4. ^Lang (1990) p.36
  5. ^Lang (1990) p.157
  6. ^Mazur & Swinnerton-Dyer (1974) p.37
Retrieved from "https://en.wikipedia.org/w/index.php?title=Distribution_(number_theory)&oldid=1316860668"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp