Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dimethylheptylpyran

From Wikipedia, the free encyclopedia
Chemical compound

Pharmaceutical compound
Dimethylheptylpyran
Clinical data
Other names3-(1,2-dimethylheptyl)-Δ6a(10a)-THC, 1,2-dimethylheptyl-Δ3-THC, A-40824, EA-2233
Drug classCannabinoid
ATC code
  • none
Legal status
Legal status
Pharmacokinetic data
Eliminationhalf-life20–39 hours
Identifiers
  • 6,6,9-Trimethyl-3-(3-methyl-2-octanyl)-7,8,9,10-tetrahydro-6H-benzo[c]chromen-1-ol
CAS Number
PubChemCID
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard(EPA)
Chemical and physical data
FormulaC25H38O2
Molar mass370.577 g·mol−1
3D model (JSmol)
  • CCCCCC(C)C(C)c1cc(c2c(c1)OC(C3=C2CC(CC3)C)(C)C)O
  • InChI=1S/C25H38O2/c1-7-8-9-10-17(3)18(4)19-14-22(26)24-20-13-16(2)11-12-21(20)25(5,6)27-23(24)15-19/h14-18,26H,7-13H2,1-6H3 ☒N
  • Key:QBEFIFWEOSUTKV-UHFFFAOYSA-N ☒N
 ☒NcheckY (what is this?)  (verify)

Dimethylheptylpyran (DMHP) is asynthetic cannabinoid andanalogue oftetrahydrocannabinol (THC). It was invented in 1949 during attempts to elucidate the structure of Δ9-THC, one of the active components ofcannabis.[2] DMHP is a pale yellow, viscous oil which is insoluble in water but dissolves in alcohol or non-polar solvents.

DMHP is similar in structure to THC, differing only in the position of one double bond, and the replacement of the 3-pentyl chain with a 3-(1,2-dimethylheptyl) chain.[3]

Effects

[edit]

DMHP produces similar activity to THC, such assedative effects, but is considerably more potent,[4] especially having much strongeranalgesic andanticonvulsant effects than THC, although comparatively weaker psychological effects.

Mechanism of action

[edit]

It is thought to act as aCB1 receptoragonist, in a similar manner to othercannabinoid derivatives.[5][6] While DMHP itself has been subject to relatively little study since the characterization of the cannabinoid receptors, the structural isomer 1,2-dimethylheptyl-Δ8-THC has been shown to be a highly potent cannabinoid agonist, and the activity of its enantiomers has been studied separately.[7]

Chemistry

[edit]

Isomerism

[edit]
Dibenzopyran and monoterpenoid numbering of tetrahydrocannabinol derivatives
Dibenzopyran and monoterpenoid numbering of tetrahydrocannabinol derivatives
7 double bond isomers of dimethylheptylpyran and their 120 stereoisomers
Dibenzopyran numberingMonoterpenoid numberingAdditional chiral centers on side chainNumber of stereoisomersNatural occurrenceConvention on Psychotropic Substances Schedule
Short nameChiral centers in dibenzopyran backboneFull nameShort nameChiral centers in dibenzopyran backbone1,2-dimethylheptyl numbering3-methyloctan-2-yl numbering
Δ6a(7)-DMHP9 and 10a3-(1,2-dimethylheptyl)-8,9,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-1-olΔ4-DMHP1 and 31 and 22 and 316Nounscheduled
Δ7-DMHP6a, 9 and 10a3-(1,2-dimethylheptyl)-6a,9,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-1-olΔ5-DMHP1, 3 and 41 and 22 and 332Nounscheduled
Δ8-DMHP6a and 10a3-(1,2-dimethylheptyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-1-olΔ6-DMHP3 and 41 and 22 and 316Nounscheduled
Δ9,11-DMHP6a and 10a3-(1,2-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran-1-olΔ1(7)-DMHP3 and 41 and 22 and 316Nounscheduled
Δ9-DMHP6a and 10a3-(1,2-dimethylheptyl)-6a,7,8,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-1-olΔ1-DMHP3 and 41 and 22 and 316Nounscheduled
Δ10-DMHP6a and 93-(1,2-dimethylheptyl)-6a,7,8,9-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-1-olΔ2-DMHP1 and 41 and 22 and 316Nounscheduled
Δ6a(10a)-DMHP93-(1,2-dimethylheptyl)-7,8,9,10-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-1-olΔ3-DMHP11 and 22 and 38NoSchedule I

Note that 6H-dibenzo[b,d]pyran-1-ol is the same as 6H-benzo[c]chromen-1-ol.

History

[edit]

Edgewood Arsenal and EA-2233

[edit]

The fiscal budgeting and planning for Edgewood Arsenal (established in 1948) considered it to be primarily a defensive research facility. The US military, at the time, knew that theUSSR was spending 10 times more than the USA on chemical weapons development. Edgewood initially enjoyed a mandate[clarification needed] and lack of oversight. Edgewood Arsenal Chemical Corps was tasked with ensuring that America was prepared with adequate counter-tactics if needed and that it could mount its own psychochemical retaliatory strike against the USSR if necessary. Edgewood performed analysis and submitted data to military commanders who could then choose to incorporate that into their strategy. In practice, however, it was mostly to make the strategists aware of special weapons and tactics that the enemy could instead deploy.

The Edgewood Laboratory was originally founded in 1948. The originalcannabinoid distillate (the precursor to EA-2233, called EA-1476 or "Red oil"), known today asdelta-9-THC, was first created in 1949, and laboratory study of EA-1476 occurred in the mid-1950s. A single batch of EA-2233 was prepared by chemist Harry Pars of A.D. Little Labs in 1962 under a top-secret government contract. It was administered to groups of consenting & informed[citation needed] enlisted servicemen by Dr.James Ketchum in 1962. The Edgewood laboratory was shut down in 1975. Government funding for continued military development of synthetic cannabis was lacking and the cannabinoid research program was indefinitely suspended along with the rest of the Edgewood Arsenal experiments in the late 1970s for a variety of reasons. There was growing public distrust of the military and government, and there was little useful purpose for the further development of chemical incapacitating agents during and after the Vietnam era.[8]

Multiple newspapers criticized the EA-2233 experiments. Since the 1930s, cannabis and cannabinoids had consistently been seen by the public as dangerous and addictive drugs. DMHP was compared to BZ, a non-cannabis chemical that was cited to be useless among military planners, and was only tested once in a hastily constructed operation called "Project Dork" (part ofProject 112).[9]

Research

[edit]

Investigation as non-lethal incapacitating agent

[edit]

DMHP and itsO-acetateester were extensively investigated by theUS military chemical weapons program in theEdgewood Arsenal experiments, as possible non-lethal incapacitating agents.[10]

DMHP has threestereocenters and consequently has eight possiblestereoisomers, which differ considerably in potency. The mixture of all eight isomers of theO-acetyl ester was given the code number EA-2233, with the eight individual isomers numbered EA-2233-1 through EA-2233-8. The most potent isomer is EA-2233-2, with an active dose range in humans of 0.5–2.8 μg/kg (i.e. ~35–200 μg for a 70 kg adult). Active doses varied markedly between individuals, but when the dose of EA-2233 was taken up to 1–2 mg, all volunteers were considered to be incapable of performing military duties, with the effects lasting as long as 2–3 days.

DMHP is metabolized in a similar manner to THC, producing the active metabolite 11-hydroxy-DMHP, but thelipophilicity of DMHP is even higher than that of THC itself, giving it a long duration of action and an extended half-life in the body of between 20 and 39 hours, with the half-life of the 11-hydroxy-DMHP metabolite being longer than 48 hours.

DMHP and its esters producesedation and mildhallucinogenic effects similar to large doses ofTHC. However, they also cause pronouncedhypotension (low blood pressure), occurring at doses well below the hallucinogenic dose, which can lead to severedizziness,fainting,ataxia andmuscle weakness, sufficient to make it difficult to stand upright or carry out any kind of vigorous physical activity.[8]

The acute toxicity of DMHP was found to be low in both human and animal studies, with thetherapeutic index measured as a ratio ofED50 toLD50 in animals being around 2000 times. There have been no recorded deaths caused by any DMHP EA-2233 stereoisomers 1–8, only symptoms that are entirely consistent with the highest-known levels of THC intoxication.[8] DMHP has an intravenous LD50 of 63 mg/kg in mice and an intravenous minimal lethal dose of 10 mg/kg in dogs.[11]

Military application

[edit]

The combination of strong incapacitating effects and a favorable safety margin led the Edgewood Arsenal team to conclude that DMHP and its derivatives, especially the O-acetyl ester of the most active isomer, EA-2233-2, were among the more promising non-lethal incapacitating agents to come out of their research program.

However, DMHP had the disadvantage of sometimes producing severehypotension at pre-incapacitating doses, which did not occur with the more widely studied and publicized belladonnoidanticholinergic agents, such as3-Quinuclidinyl benzilate (BZ), which was discovered and subsequently weaponized.[12] Military applications of synthetic cannabinoids were limited because the drug was both illegal and politically toxic to study via laboratory administration to enlisted servicemen. Both EA-2233-2 and the red-oil THC distillate predecessor, EA-1476, received limited budget and resources compared to the study of other incapacitating agents of BZ derivatives andLSD, (which was widely believed at the time to be a viable mind-control andtruth serum useful in a variety of Cold War applications).[8] Initially, the 8 stereoisomers of EA-2233 could not be separated; later, two of the individual isomers of EA-2233 were isolated and tested, but were found to cause bothorthostatic hypotension and minimal effects on performance at the very low doses used. EA-2233 did not seem to have sufficient potency to be of military interest, since an oral dose of 60mcg/kg caused a maximum decline of only 40% (at most) in performance at language and number processing tasks.

See also

[edit]

References

[edit]
  1. ^Anvisa (2023-07-24)."RDC Nº 804 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 804 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese).Diário Oficial da União (published 2023-07-25).Archived from the original on 2023-08-27. Retrieved2023-08-27.
  2. ^Adams R, Harfenist M, Loewe S (1949). "New Analogs of Tetrahydrocannabinol. XIX".Journal of the American Chemical Society.71 (5):1624–1628.Bibcode:1949JAChS..71.1624A.doi:10.1021/ja01173a023.
  3. ^Razdan RK (1980). "The Total Synthesis of Cannabinoids".Total Synthesis of Natural Products. Vol. 4. Wiley-Interscience. pp. 185–262.doi:10.1002/9780470129678.ch2.ISBN 978-0-471-05460-3.
  4. ^Wilkison DM, Pontzer N, Hosko MJ (July 1982). "Slowing of cortical somatosensory evoked activity by delta 9-tetrahydrocannabinol and dimethylheptylpyran in alpha-chloralose-anesthetized cats".Neuropharmacology.21 (7):705–9.doi:10.1016/0028-3908(82)90014-4.PMID 6289158.S2CID 35663464.
  5. ^Winn M, Arendsen D, Dodge P, Dren A, Dunnigan D, Hallas R, Hwang K, Kyncl J, Lee YH, Plotnikoff N, Young P, Zaugg H (April 1976). "Drugs derived from cannabinoids. 5. delta6a,10a-Tetrahydrocannabinol and heterocyclic analogs containing aromatic side chains".Journal of Medicinal Chemistry.19 (4):461–71.doi:10.1021/jm00226a003.PMID 817021.
  6. ^Parker LA, Mechoulam R (2003). "Cannabinoid agonists and antagonists modulate lithium-induced conditioned gaping in rats".Integrative Physiological and Behavioral Science.38 (2):133–45.doi:10.1007/BF02688831.PMID 14527182.S2CID 38974868.
  7. ^Huffman JW, Duncan Jr SG, Wiley JL, Martin BR (1997). "Synthesis and pharmacology of the 1′,2′-dimethylheptyl-Δ8-THC isomers: exceptionally potent cannabinoids".Bioorganic & Medicinal Chemistry Letters.7 (21):2799–2804.doi:10.1016/S0960-894X(97)10086-5.
  8. ^abcdKetchum JS (2006). "Chapter 5".Chemical Warfare: Secrets Almost Forgotten. Santa Rosa, CA: ChemBooks Inc. p. 38.ISBN 978-1-4243-0080-8.
  9. ^Khatchadourian R (12 December 2012)."War of the Mind".The New Yorker. Retrieved2021-05-08.
  10. ^"Possible Long-Term Health Effects of Short-Term Exposure To Chemical Agents".Cholinesterase Reactivators, Psychochemicals and Irritants and Vesicants. Vol. 2. Commission on Life Sciences. The National Academies Press. 1984. pp. 79–99.doi:10.17226/9136.ISBN 978-0-309-07772-9.
  11. ^Possible Long-Term Health Effects of Short-Term Exposure to Chemical Agents, Volume 2. 1984.doi:10.17226/9136.ISBN 978-0-309-07772-9.
  12. ^Ketchum JS (2006).Chemical Warfare Secrets Almost Forgotten. ChemBooks Inc.ISBN 978-1-4243-0080-8.
Phytocannabinoids
(comparison)
Cannabibutols
Cannabichromenes
Cannabicyclols
Cannabidiols
Cannabielsoins
Cannabigerols
Cannabiphorols
Cannabinols
Cannabitriols
Cannabivarins
Delta-3-tetrahydrocannabinols
Delta-4-tetrahydrocannabinols
Delta-7-tetrahydrocannabinols
Delta-8-tetrahydrocannabinols
Delta-9-tetrahydrocannabinols
Delta-10-Tetrahydrocannabinols
Delta-11-Tetrahydrocannabinols
Miscellaneous cannabinoids
Active metabolites
Endocannabinoids
Synthetic
cannabinoid
receptor
agonists /
neocannabinoids
Classical cannabinoids
(dibenzopyrans)
Non-classical
cannabinoids
Adamantoylindoles
Benzimidazoles
Benzoylindoles
Cyclohexylphenols
Eicosanoids
Indazole-3-
carboxamides
Indole-3-carboxamides
Indole-3-carboxylates
Naphthoylindazoles
Naphthoylindoles
Naphthoylpyrroles
Naphthylmethylindenes
Naphthylmethylindoles
Phenylacetylindoles
Pyrazolecarboxamides
Tetramethylcyclo-
propanoylindazoles
Tetramethylcyclo-
propanoylindoles
Others
AllostericCBRTooltip Cannabinoid receptorligands
Endocannabinoid
enhancers

(inactivation inhibitors)
Anticannabinoids
(antagonists/inverse
agonists/antibodies)
Blood agents
Blister agents
Arsenicals
Sulfur mustards
Nitrogen mustards
Nettle agents
Other
Nerve agents
G-agents
V-agents
GV agents
Novichok agents
Carbamates
Other
Precursors
Neurotoxins
Pulmonary/
choking agents
Vomiting agents
Incapacitating
agents
Lachrymatory
agents
Malodorant agents
Cornea-clouding agents
Biological toxins
Tumor promoting agents
Other
Psychedelics
(5-HT2AR agonists)
  • For a full list of serotonergic psychedelics, see the navboxhere and the listhere instead.
Dissociatives
(NMDARantagonists)
Arylcyclo‐
hexylamines
Adamantanes
Diarylethylamines
Morphinans
Others
Deliriants
(mAChRantagonists)
Cannabinoids
(CB1R agonists)
Natural
Synthetic
AM-x
CPx
HU-x
JWH-x
Misc.
  •  For a full list of cannabinoids, see the navboxhere and the listhere instead.
κORagonists
GABAARagonists
Inhalants
(mixedMoATooltip mechanism of action)
Others
Receptor
(ligands)
CB1Tooltip Cannabinoid receptor type 1
Agonists
(abridged,
full list)
Inverse agonists
Antagonists
CB2Tooltip Cannabinoid receptor type 2
Agonists
Antagonists
NAGly
(
GPR18)
Agonists
Antagonists
GPR55
Agonists
Antagonists
GPR119
Agonists
Transporter
(modulators)
eCBTsTooltip Endocannabinoid transporter
Enzyme
(modulators)
FAAHTooltip Fatty acid amide hydrolase
MAGL
ABHD6
ABHD12
Others
  • Others:2-PG(directly potentiates activity of 2-AG at CB1 receptor)
  • ARN-272(FAAH-like anandamide transporter inhibitor)
See also
Receptor/signaling modulators
Cannabinoids (cannabinoids by structure)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dimethylheptylpyran&oldid=1314294773"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp