Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dimensional regularization

From Wikipedia, the free encyclopedia
Method in evaluating divergent integrals
Renormalization and regularization

Intheoretical physics,dimensional regularization is a method introduced byJuan José Giambiagi andCarlos Guido Bollini [es][1] as well as – independently and more comprehensively[2] – byGerard 't Hooft andMartinus J. G. Veltman[3] forregularizingintegrals in the evaluation ofFeynman diagrams; in other words, assigning values to them that aremeromorphic functions of a complex parameterd, the analytic continuation of the number of spacetime dimensions.

Dimensional regularization writes aFeynman integral as an integral depending on the spacetime dimensiond and the squared distances (xixj)2 of the spacetime pointsxi, ... appearing in it. InEuclidean space, the integral often converges for −Re(d) sufficiently large, and can beanalytically continued from this region to a meromorphic function defined for all complexd. In general, there will be a pole at the physical value (usually 4) ofd, which needs to be canceled byrenormalization to obtain physical quantities.Pavel Etingof showed that dimensional regularization is mathematically well defined, at least in the case of massive Euclidean fields, by using theBernstein–Sato polynomial to carry out the analytic continuation.[4]

Although the method is most well understood when poles are subtracted andd is once again replaced by 4, it has also led to some successes whend is taken to approach another integer value where the theory appears to be strongly coupled as in the case of theWilson–Fisher fixed point. A further leap is to take the interpolation through fractional dimensions seriously. This has led some authors to suggest that dimensional regularization can be used to study the physics of crystals that macroscopically appear to befractals.[5]

It has been argued thatzeta function regularization and dimensional regularization are equivalent since they use the same principle of using analytic continuation in order for a series or integral to converge.[6]

Example: potential of an infinite charged line

[edit]

Consider an infinite charged line with charge densitys{\displaystyle s}, and we calculate the potential of a point distancex{\displaystyle x} away from the line.[7] The integral diverges:V(x)=Adyx2+y2{\displaystyle V(x)=A\int _{-\infty }^{\infty }{\frac {dy}{\sqrt {x^{2}+y^{2}}}}}whereA=s/(4πϵ0).{\displaystyle A=s/(4\pi \epsilon _{0}).}

Since the charged line has 1-dimensional "spherical symmetry" (which in 1-dimension is just mirror symmetry), we can rewrite the integral to exploit the spherical symmetry:dyx2+y2=dt(x/x0)2+t2=0vol(S1)dr(x/x0)2+r2{\displaystyle \int _{-\infty }^{\infty }{\frac {dy}{\sqrt {x^{2}+y^{2}}}}=\int _{-\infty }^{\infty }{\frac {dt}{\sqrt {(x/x_{0})^{2}+t^{2}}}}=\int _{0}^{\infty }{\frac {\mathrm {vol} (S^{1})dr}{\sqrt {(x/x_{0})^{2}+r^{2}}}}}where we first removed the dependence on length by dividing with a unit-lengthx0{\displaystyle x_{0}}, then converted the integral overR1{\displaystyle \mathbb {R} ^{1}} into an integral over the 1-sphereS1{\displaystyle S^{1}}, followed by an integral over all radii of the 1-sphere.

Now we generalize this into dimensiond{\displaystyle d}. The volume of a d-sphere is2πd/2Γ(d/2){\displaystyle {\frac {2\pi ^{d/2}}{\Gamma (d/2)}}}, whereΓ{\displaystyle \Gamma } is thegamma function. Now the integral becomes2πd/2Γ(d/2)0rd1dr(x/x0)2+r2{\displaystyle {\frac {2\pi ^{d/2}}{\Gamma (d/2)}}\int _{0}^{\infty }{\frac {r^{d-1}dr}{\sqrt {(x/x_{0})^{2}+r^{2}}}}}Whend=1ϵ{\displaystyle d=1-\epsilon }, the integral is dominated by its tail, that is,0rd1dr(x/x0)2+r2crd2dr=1d1cd1=ϵ1cϵ,{\displaystyle \int _{0}^{\infty }{\frac {r^{d-1}dr}{\sqrt {(x/x_{0})^{2}+r^{2}}}}\sim \int _{c}^{\infty }r^{d-2}dr={\frac {1}{d-1}}c^{d-1}=\epsilon ^{-1}c^{-\epsilon },} wherec=Θ(x/x0){\displaystyle c=\Theta (x/x_{0})} (inbig Theta notation). ThusV(x)(x0/x)ϵ/ϵ{\displaystyle V(x)\sim (x_{0}/x)^{\epsilon }/\epsilon }, and so the electric field isV(x)x1{\displaystyle V'(x)\sim x^{-1}}, as it should.

Example

[edit]

Suppose one wishes to dimensionally regularize a loop integral which is logarithmically divergent in four dimensions, like

I=d4p(2π)41(p2+m2)2.{\displaystyle I=\int {\frac {d^{4}p}{(2\pi )^{4}}}{\frac {1}{\left(p^{2}+m^{2}\right)^{2}}}.}

First, write the integral in a general non-integer number of dimensionsd=4ε{\displaystyle d=4-\varepsilon }, whereε{\displaystyle \varepsilon } will later be taken to be small,I=ddp(2π)d1(p2+m2)2.{\displaystyle I=\int {\frac {d^{d}p}{(2\pi )^{d}}}{\frac {1}{\left(p^{2}+m^{2}\right)^{2}}}.} If the integrand only depends onp2{\displaystyle p^{2}}, we can apply the formula[8]ddpf(p2)=2πd/2Γ(d/2)0dppd1f(p2).{\displaystyle \int d^{d}p\,f(p^{2})={\frac {2\pi ^{d/2}}{\Gamma (d/2)}}\int _{0}^{\infty }dp\,p^{d-1}f(p^{2}).} For integer dimensions liked=3{\displaystyle d=3}, this formula reduces to familiar integrals over thin shells like0dp4πp2f(p2){\textstyle \int _{0}^{\infty }dp\,4\pi p^{2}f(p^{2})}. For non-integer dimensions, wedefine the value of the integral in this way by analytic continuation. This givesI=0dp(2π)4ε2π(4ε)/2Γ(4ε2)p3ε(p2+m2)2=2ε4πε21sin(πε2)Γ(1ε2)mε=18π2ε116π2(lnm24π+γ)+O(ε).{\displaystyle I=\int _{0}^{\infty }{\frac {dp}{(2\pi )^{4-\varepsilon }}}{\frac {2\pi ^{(4-\varepsilon )/2}}{\Gamma \left({\frac {4-\varepsilon }{2}}\right)}}{\frac {p^{3-\varepsilon }}{\left(p^{2}+m^{2}\right)^{2}}}={\frac {2^{\varepsilon -4}\pi ^{{\frac {\varepsilon }{2}}-1}}{\sin \left({\frac {\pi \varepsilon }{2}}\right)\Gamma \left(1-{\frac {\varepsilon }{2}}\right)}}m^{-\varepsilon }={\frac {1}{8\pi ^{2}\varepsilon }}-{\frac {1}{16\pi ^{2}}}\left(\ln {\frac {m^{2}}{4\pi }}+\gamma \right)+{\mathcal {O}}(\varepsilon ).} Note that the integral again diverges asε0{\displaystyle \varepsilon \rightarrow 0}, but is finite for arbitrary small valuesε0{\displaystyle \varepsilon \neq 0}.

References

[edit]
  1. ^Bollini & Giambiagi (1972), p. 20.
  2. ^Bietenholz, Wolfgang; Prado, Lilian (2014-02-01)."Revolutionary physics in reactionary Argentina".Physics Today.67 (2):38–43.Bibcode:2014PhT....67b..38B.doi:10.1063/PT.3.2277.ISSN 0031-9228.
  3. ^Hooft, G. 't; Veltman, M. (1972),"Regularization and renormalization of gauge fields",Nuclear Physics B,44 (1):189–213,Bibcode:1972NuPhB..44..189T,doi:10.1016/0550-3213(72)90279-9,hdl:1874/4845,ISSN 0550-3213
  4. ^Etingof (1999)
  5. ^Le Guillou, J.C.; Zinn-Justin, J. (1987)."Accurate critical exponents for Ising-like systems in non-integer dimensions".Journal de Physique.48.
  6. ^A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini,Analytic Aspects of Quantum Field, World Scientific Publishing, 2003,ISBN 981-238-364-6
  7. ^Olness, Fredrick; Scalise, Randall (March 2011)."Regularization, renormalization, and dimensional analysis: Dimensional regularization meets freshman E&M".American Journal of Physics.79 (3):306–312.arXiv:0812.3578.doi:10.1119/1.3535586.ISSN 0002-9505.S2CID 13148774.
  8. ^Peskin, Michael Edward (2019).An introduction to quantum field theory. Daniel V. Schroeder. Boca Raton.ISBN 978-0-201-50397-5.OCLC 1101381398.{{cite book}}: CS1 maint: location missing publisher (link)

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dimensional_regularization&oldid=1312283938"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp