Inmathematics, thedimension of avector spaceV is thecardinality (i.e., the number of vectors) of abasis ofV over its basefield.[1][2] It is sometimes calledHamel dimension (afterGeorg Hamel) oralgebraic dimension to distinguish it from other types ofdimension.
For every vector space there exists a basis,[a] and all bases of a vector space have equal cardinality;[b] as a result, the dimension of a vector space is uniquely defined. We say isfinite-dimensional if the dimension of isfinite, andinfinite-dimensional if its dimension isinfinite.
The dimension of the vector space over the field can be written as or as read "dimension of over". When can be inferred from context, is typically written.
The vector space hasas astandard basis, and therefore More generally, and even more generally, for anyfield
Thecomplex numbers are both a real and complex vector space; we have and So the dimension depends on the base field.
The only vector space with dimension is the vector space consisting only of its zero element.
If is alinear subspace of then
To show that two finite-dimensional vector spaces are equal, the following criterion can be used: if is a finite-dimensional vector space and is a linear subspace of with then
The space has the standard basis where is the-th column of the correspondingidentity matrix. Therefore, has dimension
Any two finite dimensional vector spaces over with the same dimension areisomorphic. Anybijective map between their bases can be uniquely extended to a bijective linear map between the vector spaces. If is some set, a vector space with dimension over can be constructed as follows: take the set of all functions such that for all but finitely many in These functions can be added and multiplied with elements of to obtain the desired-vector space.
An important result about dimensions is given by therank–nullity theorem forlinear maps.
If is afield extension, then is in particular a vector space over Furthermore, every-vector space is also a-vector space. The dimensions are related by the formulaIn particular, every complex vector space of dimension is a real vector space of dimension
Some formulae relate the dimension of a vector space with thecardinality of the base field and the cardinality of the space itself.If is a vector space over a field and if the dimension of is denoted by then:
A vector space can be seen as a particular case of amatroid, and in the latter there is a well-defined notion of dimension. Thelength of a module and therank of an abelian group both have several properties similar to the dimension of vector spaces.
TheKrull dimension of a commutativering, named afterWolfgang Krull (1899–1971), is defined to be the maximal number of strict inclusions in an increasing chain ofprime ideals in the ring.
The dimension of a vector space may alternatively be characterized as thetrace of theidentity operator. For instance, This appears to be acircular definition, but it allows useful generalizations.
Firstly, it allows for a definition of a notion of dimension when one has a trace but no natural sense of basis. For example, one may have analgebra with maps (the inclusion of scalars, called theunit) and a map (corresponding to trace, called thecounit). The composition is a scalar (being a linear operator on a 1-dimensional space) corresponds to "trace of identity", and gives a notion of dimension for an abstract algebra. In practice, inbialgebras, this map is required to be the identity, which can be obtained by normalizing the counit by dividing by dimension (), so in these cases the normalizing constant corresponds to dimension.
Alternatively, it may be possible to take the trace of operators on an infinite-dimensional space; in this case a (finite) trace is defined, even though no (finite) dimension exists, and gives a notion of "dimension of the operator". These fall under the rubric of "trace class operators" on aHilbert space, or more generallynuclear operators on aBanach space.
A subtler generalization is to consider the trace of afamily of operators as a kind of "twisted" dimension. This occurs significantly inrepresentation theory, where thecharacter of a representation is the trace of the representation, hence a scalar-valued function on agroup whose value on the identity is the dimension of the representation, as a representation sends the identity in the group to the identity matrix: The other values of the character can be viewed as "twisted" dimensions, and find analogs or generalizations of statements about dimensions to statements about characters or representations. A sophisticated example of this occurs in the theory ofmonstrous moonshine: the-invariant is thegraded dimension of an infinite-dimensional graded representation of themonster group, and replacing the dimension with the character gives theMcKay–Thompson series for each element of the Monster group.[3]