Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Detritivore

From Wikipedia, the free encyclopedia
(Redirected fromDetritivory)
Animal that feeds on decomposing plant and animal parts as well as faeces
Earthworms are soil-dwelling detritivores.

Detritivores (also known asdetrivores,detritophages,detritus feeders ordetritus eaters) areheterotrophs that obtainnutrients by consumingdetritus (decomposing plant and animal parts as well asfeces).[1] There are many kinds ofinvertebrates,vertebrates, andplants that eat detritus or carry outcoprophagy. By doing so, all these detritivores contribute todecomposition and thenutrient cycles. Detritivores should be distinguished from otherdecomposers, such as many species ofbacteria,fungi andprotists, which are unable to ingest discrete lumps of matter. Instead, these other decomposers live by absorbing and metabolizing on a molecular scale (saprotrophic nutrition). The termsdetritivore anddecomposer are often used interchangeably, but they describe different organisms. Detritivores are usuallyarthropods and help in the process ofremineralization. Detritivores perform the first stage of remineralization, by fragmenting the dead plant matter, allowing decomposers to perform the second stage of remineralization.[2]

Plant tissues are made up of resilient molecules (e.g.cellulose,lignin,xylan) that decay at a much lower rate than other organic molecules. The activity of detritivores is the reason why there is not an accumulation of plant litter in nature.[2][3]

TwoAdonis blue butterflies lap at a small lump of feces lying on a rock.

Detritivores are an important aspect of manyecosystems. They can live on any type of soil with an organic component, includingmarine ecosystems, where they are termed interchangeably withbottom feeders.

Typical detritivorous animals includemillipedes,springtails,woodlice,dung flies,slugs, manyterrestrialworms,sea stars,sea cucumbers,fiddler crabs, and some sedentary marinePolychaetes such as worms of the familyTerebellidae.

Detritivores can be classified into more specific groups based on their size and biomes. Macrodetritivores are larger organisms such as millipedes, springtails, and woodlouse, while microdetritivores are smaller organisms such as bacteria.[4][5]

Scavengers are not typically thought to be detritivores, as they generally eat large quantities of organic matter, but both detritivores and scavengers are the same type of cases ofconsumer-resource systems.[6] The consumption of wood, whether alive or dead, is known asxylophagy. The activity of animals feeding only on dead wood is calledsapro-xylophagy and those animals, sapro-xylophagous.

Ecology

[edit]
Fungi are the secondarydecomposers in most environments, illustrated hereMycena interrupta. Only fungi produce the enzymes necessary to decomposelignin, a chemically complex substance found in wood.
A decaying tree trunk in Canada'sboreal forest. Decaying wood fills an important ecological niche, providing habitat and shelter, and returning important nutrients to the soil after undergoing decomposition.
Detritivore nutrient cycling model

Detritivores play an (important) role as recyclers in the ecosystem'senergy flow andbiogeochemical cycles.[7] Alongside decomposers, they reintroduce vital elements such as carbon, nitrogen, phosphorus, calcium, and potassium back into the soil, allowing plants to take in these elements and use them for growth.[2] They shred the dead plant matter which releases the trapped nutrients in the plant tissues. An abundance of detritivores in the soil allows the ecosystem to efficiently recycle nutrients.[7]

Many detritivores live in maturewoodland, though the term can be applied to certainbottom-feeders inwet environments. These organisms play a crucial role inbenthic ecosystems, forming essentialfood chains and participating in thenitrogen cycle.[8] Detritivores and decomposers that reside in the desert live in burrows underground to avoid the hot surface since underground conditions provide favorable living conditions for them. Detritivores are the main organisms in clearing plant litter and recycling nutrients in the desert. Due to the limited vegetation available in the desert, desert detritivores adapted and evolved ways to feed in the extreme conditions of the desert.[3] Detritivore feeding behaviour is affected by rainfall; moist soil increases detritivore feeding and excretion.[7]

Fungi, acting as decomposers, are important in today's terrestrial environment. During theCarboniferous period, fungi and bacteria had yet to evolve the capacity to digestlignin, and so large deposits of dead plant tissue accumulated during this period, later becoming thefossil fuels.[9]

Byfeeding on sediments directly to extract the organic component, some detritivores incidentally concentratetoxicpollutants.[10]

See also

[edit]

References

[edit]
  1. ^Wetzel RG (2001).Limnology: Lake and River Ecosystems (3rd. ed.). Academic Press. p. 700.ISBN 978-0-12-744760-5.
  2. ^abcKeddy P (2017).Plant Ecology, Origins, Processes, Consequences 2nd Ed. New York:Cambridge University Press. pp. 92–93.ISBN 978-1-107-11423-4.
  3. ^abSagi N, Grünzweig JM, Hawlena D (November 2019)."Burrowing detritivores regulate nutrient cycling in a desert ecosystem".Proceedings. Biological Sciences.286 (1914) 20191647.doi:10.1098/rspb.2019.1647.PMC 6842856.PMID 31662076.
  4. ^Schmitz, Oswald J; Buchkowski, Robert W; Burghardt, Karin T; Donihue, Colin M. (2015-01-01), Pawar, Samraat; Woodward, Guy; Dell, Anthony I (eds.),"Chapter Ten – Functional Traits and Trait-Mediated Interactions: Connecting Community-Level Interactions with Ecosystem Functioning",Advances in Ecological Research, Trait-Based Ecology – From Structure to Function, vol. 52, Academic Press, pp. 319–343,doi:10.1016/bs.aecr.2015.01.003,archived from the original on 2021-05-30, retrieved2021-02-20
  5. ^De Smedt, Pallieter; Wasof, Safaa; Van de Weghe, Tom; Hermy, Martin; Bonte, Dries; Verheyen, Kris (2018-10-01)."Macro-detritivore identity and biomass along with moisture availability control forest leaf litter breakdown in a field experiment".Applied Soil Ecology.131:47–54.Bibcode:2018AppSE.131...47D.doi:10.1016/j.apsoil.2018.07.010.ISSN 0929-1393.S2CID 92379245.
  6. ^Getz WM (February 2011)."Biomass transformation webs provide a unified approach to consumer-resource modelling".Ecology Letters.14 (2):113–24.Bibcode:2011EcolL..14..113G.doi:10.1111/j.1461-0248.2010.01566.x.PMC 3032891.PMID 21199247.
  7. ^abcLindsey-Robbins J, Vázquez-Ortega A, McCluney K, Pelini S (December 2019)."Effects of Detritivores on Nutrient Dynamics and Corn Biomass in Mesocosms".Insects.10 (12): 453.doi:10.3390/insects10120453.PMC 6955738.PMID 31847249.
  8. ^Tenore KR, et al. (SCOPE) (March 1988)."Nitrogen in benthic food chains."(PDF). In Blackbrun TH, Sorensen J (eds.).Nitrogen cycling in coastal marine environments. Vol. 21. pp. 191–206. Archived fromthe original(PDF) on 2007-06-10.
  9. ^Biello D (28 June 2012)."White Rot Fungi Slowed Coal Formation".Scientific American.Archived from the original on 24 December 2020. Retrieved9 August 2020.
  10. ^Yang, H.; Chen, G.; Wang, J. (2024-02-02)."Microplastics in the Marine Environment: Sources, Fates, Impacts and Microbial Degradation - PMC".Toxics.9 (2): 41.doi:10.3390/toxics9020041.PMC 7927104.PMID 33671786.
Carnivores
adult
reproductive
cannibalistic
Herbivores
Cellular
Others
Methods
General
Producers
Consumers
Decomposers
Microorganisms
Food webs
Example webs
Processes
Defense,
counter
Ecology:Modelling ecosystems: Other components
Population
ecology
Species
Species
interaction
Spatial
ecology
Niche
Other
networks
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Detritivore&oldid=1319847228"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp