Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Detached object

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
Dynamical class of minor planets
Trans-Neptunian objects plotted by their distance andinclination. Objects beyond a distance of 100 AU display theirdesignation.  Resonant TNO &Plutino
  Cubewanos (classical KBO)
  Scattered disc object
  Detached object

Detached objects are adynamical class ofminor planets in the outer reaches of theSolar System and belong to the broader family oftrans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun (perihelion) are sufficiently distant from thegravitational influence ofNeptune that they are only moderately affected by Neptune and the other known planets: This makes them appear to be "detached" from the rest of the Solar System, except for their attraction to the Sun.[1][2]

In this way, detached objects differ substantially from most other known TNOs, which form a loosely defined set of populations that have beenperturbed to varying degrees onto their current orbit by gravitational encounters with thegiant planets, predominantly Neptune. Detached objects have larger perihelia than these other TNO populations, including the objects inorbital resonance with Neptune, such asPluto, theclassical Kuiper belt objects in non-resonant orbits such asMakemake, and thescattered disk objects likeEris.

Detached objects have also been referred to in the scientific literature asextended scattered disc objects (E-SDO),[3]distant detached objects (DDO),[4] orscattered–extended, as in the formal classification by theDeep Ecliptic Survey.[5] This reflects the dynamical gradation that can exist between the orbital parameters of the scattered disk and the detached population.

At least nine such bodies have been securely identified,[6] of which the largest, most distant, and best known isSedna. Those with large semi-major axes and high perihelion orbits similar to that of Sedna are termedsednoids. As of 2025, there are four known sednoids, including2012 VP113,Leleākūhonua, and2023 KQ14.[7] These objects exhibit a highly statistically significant asymmetry between the distributions of object pairs with small ascending and descending nodal distances that might be indicative of a response to external perturbations; asymmetries such as this one are sometimes attributed to perturbations induced by unseen planets.[8][9]

Orbits

[edit]

Detached objects have perihelia much larger than Neptune's aphelion. They often have highlyelliptical, very large orbits withsemi-major axes of up to a few hundredastronomical units (AU, the radius of Earth's orbit). Such orbits cannot have been created by gravitationalscattering by thegiant planets, not even Neptune. Instead, a number of explanations have been put forward, including anencounter with a passing star[10] or adistant planet-sized object,[4] orNeptune migration (which may once have had a much more eccentric orbit, from which it could have tugged the objects to their current orbit)[11][12][13][14][15] orejected rogue planets (present in the early Solar System that were ejected).[16][17][18]

The classification suggested by theDeep Ecliptic Survey team introduces a formal distinction betweenscattered-near objects (which could be scattered by Neptune) andscattered-extended objects (e.g.90377 Sedna) using aTisserand's parameter value of 3.[5]

ThePlanet Nine hypothesis suggests that the orbits of several detached objects can be explained by the gravitational influence of a large, unobserved planet between 200 AU and 1200 AU from the Sun and/or the influence of Neptune.[19]

Classification

[edit]
Types ofdistant minor planets

Detached objects are one of four distinct dynamical classes of TNO; the other three classes areclassical Kuiper-belt objects,resonant objects, andscattered-disc objects (SDO).[20]Sednoids also belong to detached objects. Detached objects generally have a perihelion distance greater than 40 AU, deterring strong interactions with Neptune, which has an approximately circular orbit about 30 AU from the Sun. The boundary between the scattered and detached regions can be defined using an analytical resonance overlap criterion.[21][22]

The discovery of90377 Sedna in 2003, together with a few other objects discovered around that time such as(148209) 2000 CR105 and(612911) 2004 XR190, has motivated discussion of a category of distant objects that may also be innerOort cloud objects or (more likely) transitional objects between the scattered disc and the inner Oort cloud.[2]

Although Sedna is officially considered a scattered-disc object by the MPC, its discovererMichael E. Brown has suggested that because itsperihelion distance of 76 AU is too distant to be affected by the gravitational attraction of the outer planets it should be considered an inner-Oort-cloud object rather than a member of the scattered disc.[23] This classification of Sedna as a detached object is accepted in recent publications.[24]

This line of thinking suggests that the lack of a significant gravitationalinteraction with the outer planets creates an extended–outer group starting somewhere between Sedna (perihelion 76 AU) and more conventional SDOs like1996 TL66 (perihelion 35 AU), which is listed as a scattered–near object by the Deep Ecliptic Survey.[25]

Influence of Neptune

[edit]

One of the problems with defining this extended category is that weak resonances may exist and would be difficult to prove due to chaotic planetary perturbations and the current lack of knowledge of the orbits of these distant objects. They haveorbital periods of more than 300 years but most have only been observed over an observationarc of less than a decade. Due to their great distance and slow movement against background stars, it may be decades before most of these distant orbits can be determined well enough to confidently confirm orrule out a resonance. Further improvement in the orbit and potential resonance of these objects will help to understand themigration of the giant planets and the formation of the Solar System. For example, simulations by Emelʹyanenko and Kiseleva in 2007 show that many distant objects could be inresonance with Neptune. They show a 10% likelihood that 2000 CR105 is in a 20:1 resonance, a 38% likelihood that 2003 QK91 is in a 10:3 resonance, and an 84% likelihood that(82075) 2000 YW134 is in an 8:3 resonance.[26](145480) 2005 TB190 appears to have less than a 1% likelihood of being in a 4:1 resonance.[26]

Influence of hypothetical planet(s) beyond Neptune

[edit]

Mike Brown—who made thePlanet Nine hypothesis—makes an observation that "all of the known distant objects which are pulled even a little bit away from the Kuiper seem to be clustered under the influence of this hypothetical planet (specifically, objects with semimajor axis > 100 AU and perihelion > 42 AU)".[27]Carlos de la Fuente Marcos and Ralph de la Fuente Marcos have calculated that some of the statistically significantcommensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects[a] which are calledextreme trans-Neptunian object (ETNOs)[29] may be trapped in the 5:3 and 3:1 mean-motion resonances with a putative Planet Nine with a semimajor axis ~700 AU.[30]

Possible detached objects

[edit]
See also:Sednoid andExtreme trans-Neptunian object
This section needs to beupdated. Please help update this section to reflect recent events or newly available information. Relevant discussion may be found on the talk page.(October 2023)

This is a list of known objects by discovery date that could not be easily scattered by Neptune's current orbit and therefore are likely to be detached objects, but that lie inside the perihelion gap of ≈50–75 AU that defines thesednoids.[31][32][33][34][35][36]

Objects listed below have a perihelion of more than 40 AU, and asemi-major axis of more than 47.7 AU (the 1:2 resonance with Neptune, and the approximate outer limit of the Kuiper Belt):[37]

DesignationDiameter[38]
(km)
Hq
(AU)
a
(AU)
Q
(AU)
ω (°)Discovery
Year
DiscovererNotes & Refs
2000 CR1052436.344.252221.2398316.932000M. W. Buie[39]
2000 YW1342164.741.20757.79574.383316.4812000Spacewatch≈3:8 Neptune resonance
2001 FL193818.740.2950.2660.23108.62001R. L. Allen,G. Bernstein,R. Malhotraorbit extremely poor, might not be a TNO
2001 KA776345.043.4147.7452.07120.32001M. W. Buieborderlineclassical KBO
2002 CP1542226.5425262502002M. W. Buieorbit fairly poor, but definitely a detached object
2003 UY2911477.441.1948.9556.7215.62003M. W. Buieborderlineclassical KBO
Sedna9951.576.072483.3890311.612003M. E. Brown,C. A. Trujillo,D. L. RabinowitzSednoid
2004 PD1122676.1407090402004M. W. Buieorbit very poor, might not be a detached object
Alicanto2226.547.308315584326.9252004Cerro Tololo (unspecified)[40][41][42]
2004 XR1906124.151.08557.33663.586284.932004R. L. Allen,B. J. Gladman,J. J. Kavelaars
J.-M. Petit,J. W. Parker,P. Nicholson
very high inclination; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination of 2004 XR190 to obtain a very high perihelion[39][43][44]
2005 CG812676.141.0354.1067.1857.122005CFEPS
2005 EO2971617.241.21562.9884.75349.862005M. W. Buie
2005 TB1903724.546.19775.546104.896171.0232005A. C. Becker,A. W. Puckett,J. M. KubicaNeptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion[44]
2006 AO1011687.12006Mauna Kea (unspecified)orbit extremely poor, might not be a TNO
2007 JJ435584.540.38348.39056.3976.5362007Palomar (unspecified)borderlineclassical KBO
2007 LE381767.041.79854.5667.3253.962007Mauna Kea (unspecified)
2008 ST2916404.242.2799.3156.4324.372008M. E. Schwamb,M. E. Brown,D. L. Rabinowitz≈1:6 Neptune resonance
2009 KX361118.01001002009Mauna Kea (unspecified)orbit extremely poor, might not be a TNO
2010 DN934864.745.10255.50165.9033.012010Pan-STARRS≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion[44]
2010 ER654045.040.03599.71159.39324.192010D. L. Rabinowitz,S. W. Tourtellotte
2010 GB1742226.548.8360670347.72010Mauna Kea (unspecified)
2012 FH841617.2425670102012Las Campanas (unspecified)
2012 VP1137024.080.47256431293.82012S. S. Sheppard,C. A. TrujilloSednoid
2013 FQ282806.045.963.180.32302013S. S. Sheppard,C. A. Trujillo≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion[44]
2013 FT282026.743.531058040.32013S. S. Sheppard
2013 GP1362126.641.061155.1269.142.382013OSSOS
2013 GQ1362226.540.7949.0657.33155.32013OSSOSborderlineclassical KBO
2013 GG1382126.646.6447.79248.9461282013OSSOSborderlineclassical KBO
2013 JD641118.042.60373.12103.63178.02013OSSOS
2013 JJ641477.444.0448.15852.272179.82013OSSOSborderlineclassical KBO
2013 SY992026.750.02694133832.12013OSSOS
2013 SK1001347.645.46861.6177.7611.52013OSSOS
2013 UT152556.343.89195.7348252.332013OSSOS
2013 UB171767.044.4962.3180.13308.932013OSSOS
2013 VD241287.84050701972013Dark Energy Surveyorbit very poor, might not be a detached object
2013 YJ1513365.440.86672.35103.83141.832013Pan-STARRS
2014 EZ517703.740.7052.4964.28329.842014Pan-STARRS
2014 FC695334.640.2873.06105.8190.572014S. S. Sheppard,C. A. Trujillo
2014 FZ711856.955.976.296.52452014S. S. Sheppard,C. A. Trujillo≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion[44]
2014 FC725094.551.67076.329100.9932.852014Pan-STARRS≈1:4 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion[44]
2014 JM803525.546.0063.0080.0196.12014Pan-STARRS≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion[44]
2014 JS803065.540.01348.29156.569174.52014Pan-STARRSborderlineclassical KBO
2014 OJ3944235.040.8052.9765.14271.602014Pan-STARRSin 3:7 Neptune resonance
2014 QR4411936.842.667.893.02832014Dark Energy Survey
2014 SR3492026.647.6300540341.12014S. S. Sheppard,C. A. Trujillo
2014 SS3491347.6451402401482014S. S. Sheppard,C. A. Trujillo≈2:10 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a high perihelion[45]
2014 ST3733305.550.13104.0157.8297.522014Dark Energy Survey
2014 UT2281547.343.9748.59353.21649.92014OSSOSborderlineclassical KBO
2014 UA2302226.542.2755.0567.84132.82014OSSOS
2014 UO231978.342.2555.1167.98234.562014OSSOS
2014 WK5095844.040.0850.7961.50135.42014Pan-STARRS
2014 WB5561477.442.62805202342014Dark Energy Survey
2015 AL2812936.14248541202015Pan-STARRSborderlineclassical KBO
orbit very poor, might not be a detached object
2015 AM2814864.841.38055.37269.364157.722015Pan-STARRS
2015 BE5193525.544.8247.86650.909293.22015Pan-STARRSborderlineclassical KBO
2015 FJ3451177.95163.075.2782015S. S. Sheppard,C. A. Trujillo≈1:3 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion[44]
2015 GP502226.540.455.270.01302015S. S. Sheppard,C. A. Trujillo
2015 KH1626713.941.6362.2982.95296.8052015S. S. Sheppard,D. J. Tholen,C. A. Trujillo
2015 KG1631018.340.502826161032.062015OSSOS
2015 KH1631177.940.06157.2274230.292015OSSOS≈1:12 Neptune resonance
2015 KE1721068.144.137133.12222.115.432015OSSOS1:9 Neptune resonance
2015 KG1722806.0425569352015R. L. Allen
D. James
D. Herrera
orbit fairly poor, might not be a detached object
2015 KQ1741547.349.3155.4061.48294.02015Mauna Kea (unspecified)≈2:5 Neptune resonance; Neptune Mean Motion Resonance (MMR) along with the Kozai Resonance (KR) modified the eccentricity and inclination to obtain a very high perihelion[44]
2015 RX2452556.245.541078065.32015OSSOS
Leleākūhonua3005.565.0210422019118.02015S. S. Sheppard,C. A. Trujillo,D. J. TholenSednoid
2017 DP1211617.240.5250.4860.45217.92017
2017 FP1611687.140.8847.9955.12182017borderline classical KBO
2017 SN132975.840.94979.868118.786148.7692017S. S. Sheppard,C. A. Trujillo,D. J. Tholen
2018 VM351347.645.289240.575435.861302.0082018Mauna Kea (unspecified)

The following objects can also be generally thought to be detached objects, although with slightly lower perihelion distances of 38–40 AU.

DesignationDiameter[38]
(km)
Hq
(AU)
a
(AU)
Q
(AU)
ω (°)Discovery
Year
DiscovererNotes & Refs
2003 HB571477.438.116166.229411.0822003Mauna Kea (unspecified)
2003 SS4221687.0439.574198.181356.788206.8242003Cerro Tololo (unspecified)
2005 RH521287.838.957152.6266.332.2852005CFEPS
2007 TC4341687.039.577128.41217.23351.0102007Las Campanas (unspecified)1:9 Neptune resonance
2012 FL842126.638.607106.25173.89141.8662012Pan-STARRS
2014 FL721936.838.1104170259.492014Cerro Tololo (unspecified)
2014 JW803525.538.161142.62247.1131.612014Pan-STARRS
2014 YK502935.638.972120.52202.1169.312014Pan-STARRS
2015 DM3198.7839.491272.302505.11343.2272015OSSOS
2015 GT50888.638.46333627129.32015OSSOS

See also

[edit]

Notes

[edit]
  1. ^60 minor planets with a semi-major axis greater than 150 AU andperihelion greater than 30 AU are known.[28]

References

[edit]
  1. ^Lykawka, P.S.; Mukai, T. (2008). "An outer planet beyond Pluto and the origin of the trans-Neptunian belt architecture".Astronomical Journal.135 (4):1161–1200.arXiv:0712.2198.Bibcode:2008AJ....135.1161L.doi:10.1088/0004-6256/135/4/1161.S2CID 118414447.
  2. ^abJewitt, D.; Delsanti, A. (2006). "The Solar System Beyond the Planets".Solar System Update: Topical and Timely Reviews in Solar System Sciences(PDF) (Springer-Praxis ed.). Springer.ISBN 3-540-26056-0. Archived fromthe original(PDF) on 29 January 2007.
  3. ^Gladman, B.; et al. (2002). "Evidence for an extended scattered disk".Icarus.157 (2):269–279.arXiv:astro-ph/0103435.Bibcode:2002Icar..157..269G.doi:10.1006/icar.2002.6860.S2CID 16465390.
  4. ^abGomes, Rodney S.; Matese, J.; Lissauer, Jack (2006). "A distant planetary-mass solar companion may have produced distant detached objects".Icarus.184 (2). Elsevier:589–601.Bibcode:2006Icar..184..589G.doi:10.1016/j.icarus.2006.05.026.
  5. ^abElliot, J.L.; Kern, S.D.; Clancy, K.B.; Gulbis, A.A.S.; Millis, R.L.; Buie, M.W.; Wasserman, L.H.; Chiang, E.I.; Jordan, A.B.; Trilling, D.E.; Meech, K.J. (2006)."The Deep Ecliptic Survey: A search for Kuiper belt objects and centaurs. II. Dynamical classification, the Kuiper belt plane, and the core population"(PDF).The Astronomical Journal.129 (2):1117–1162.Bibcode:2005AJ....129.1117E.doi:10.1086/427395.
  6. ^Lykawka, Patryk Sofia; Mukai, Tadashi (July 2007). "Dynamical classification of trans-neptunian objects: Probing their origin, evolution, and interrelation".Icarus.189 (1):213–232.Bibcode:2007Icar..189..213L.doi:10.1016/j.icarus.2007.01.001.
  7. ^Huang 黄, Yukun 宇坤; Gladman, Brett (2024-02-01)."Primordial Orbital Alignment of Sednoids".The Astrophysical Journal Letters.962 (2): L33.arXiv:2310.20614.Bibcode:2024ApJ...962L..33H.doi:10.3847/2041-8213/ad2686.ISSN 2041-8205.
  8. ^de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (1 September 2021)."Peculiar orbits and asymmetries in extreme trans-Neptunian space".Monthly Notices of the Royal Astronomical Society.506 (1):633–649.arXiv:2106.08369.Bibcode:2021MNRAS.506..633D.doi:10.1093/mnras/stab1756.
  9. ^de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (1 May 2022)."Twisted extreme trans-Neptunian orbital parameter space: statistically significant asymmetries confirmed".Monthly Notices of the Royal Astronomical Society Letters.512 (1):L6 –L10.arXiv:2202.01693.Bibcode:2022MNRAS.512L...6D.doi:10.1093/mnrasl/slac012.
  10. ^Morbidelli, Alessandro; Levison, Harold F. (November 2004). "Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects2000 CR105 and2003 VB12".The Astronomical Journal.128 (5):2564–2576.arXiv:astro-ph/0403358.Bibcode:2004AJ....128.2564M.doi:10.1086/424617.S2CID 119486916.
  11. ^Gladman, B.; Holman, M.; Grav, T.; Kavelaars, J.; Nicholson, P.; Aksnes, K.; Petit, J.-M. (2002). "Evidence for an extended scattered disk".Icarus.157 (2):269–279.arXiv:astro-ph/0103435.Bibcode:2002Icar..157..269G.doi:10.1006/icar.2002.6860.S2CID 16465390.
  12. ^"Mankind's Explanation: 12th Planet".
  13. ^"A comet's odd orbit hints at hidden planet". 4 April 2001.
  14. ^"Is There a Large Planet Orbiting Beyond Neptune?".[permanent dead link]
  15. ^"Signs of a Hidden Planet?".
  16. ^Gladman, Brett; Chan, Collin (2006). "Production of the Extended Scattered Disk by Rogue Planets".The Astrophysical Journal.643 (2):L135 –L138.Bibcode:2006ApJ...643L.135G.CiteSeerX 10.1.1.386.5256.doi:10.1086/505214.S2CID 2453782.
  17. ^"The long and winding history of Planet X". Archived fromthe original on 2016-02-15. Retrieved2016-02-09.
  18. ^Huang, Yukun; Gladman, Brett; Beaudoin, Matthew; Zhang, Kevin (October 2022)."A Rogue Planet Helps to Populate the Distant Kuiper Belt".The Astrophysical Journal Letters.938 (2): L23.arXiv:2209.09399.Bibcode:2022ApJ...938L..23H.doi:10.3847/2041-8213/ac9480.ISSN 2041-8205.
  19. ^Batygin, Konstantin; Brown, Michael E. (20 January 2016)."Evidence for a distant giant planet in the Solar system".The Astronomical Journal.151 (2): 22.arXiv:1601.05438.Bibcode:2016AJ....151...22B.doi:10.3847/0004-6256/151/2/22.S2CID 2701020.
  20. ^Gladman, B.; Marsden, B. G.; Vanlaerhoven, C. (2008-01-01).Nomenclature in the Outer Solar System.Bibcode:2008ssbn.book...43G.
  21. ^Batygin, Konstantin; Mardling, Rosemary A.; Nesvorný, David (2021-10-01)."The Stability Boundary of the Distant Scattered Disk".The Astrophysical Journal.920 (2): 148.arXiv:2111.00305.Bibcode:2021ApJ...920..148B.doi:10.3847/1538-4357/ac19a4.ISSN 0004-637X.
  22. ^Hadden, Sam; Tremaine, Scott (2023-11-09)."Scattered disc dynamics: the mapping approach".Monthly Notices of the Royal Astronomical Society.527 (2):3054–3075.doi:10.1093/mnras/stad3478.ISSN 0035-8711.
  23. ^Brown, Michael E."Sedna (The coldest most distant place known in the solar system; possibly the first object in the long-hypothesized Oort cloud)". California Institute of Technology, Department of Geological Sciences. Retrieved2 July 2008.
  24. ^Jewitt, D.; Moro-Martın, A.; Lacerda, P. (2009). "The Kuiper belt and other debris disks".Astrophysics in the Next Decade(PDF). Springer Verlag.
  25. ^Buie, Marc W. (28 December 2007)."Orbit fit and astrometric record for 15874". Space Science Department. SwRI. Retrieved12 November 2011.
  26. ^abEmelʹyanenko, V.V. (2008). "Resonant motion of trans-Neptunian objects in high-eccentricity orbits".Astronomy Letters.34 (4):271–279.Bibcode:2008AstL...34..271E.doi:10.1134/S1063773708040075.S2CID 122634598.(subscription required)
  27. ^Mike Brown."Why I believe in Planet Nine".
  28. ^"Minor Planets with semi-major axis greater than 150 AU and perihelion greater than 30 AU".
  29. ^C. de la Fuente Marcos; R. de la Fuente Marcos (1 September 2014)."Extreme trans-Neptunian objects and the Kozai mechanism: Signalling the presence of trans-Plutonian planets".Monthly Notices of the Royal Astronomical Society.443 (1):L59 –L63.arXiv:1406.0715.Bibcode:2014MNRAS.443L..59D.doi:10.1093/mnrasl/slu084.S2CID 118622180.
  30. ^de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl (21 July 2016)."Commensurabilities between ETNOs: a Monte Carlo survey".Monthly Notices of the Royal Astronomical Society: Letters.460 (1):L64 –L68.arXiv:1604.05881.Bibcode:2016MNRAS.460L..64D.doi:10.1093/mnrasl/slw077.S2CID 119110892.
  31. ^Michael E. Brown (10 September 2013)."How many dwarf planets are there in the outer solar system? (updates daily)". California Institute of Technology. Archived fromthe original on 18 October 2011. Retrieved27 May 2013.Diameter: 242km
  32. ^"objects with perihelia between 40–55 AU and aphelion more than 60 AU".
  33. ^"objects with perihelia between 40–55 AU and aphelion more than 100 AU".
  34. ^"objects with perihelia between 40–55 AU and semi-major axis more than 50 AU".
  35. ^"objects with perihelia between 40–55 AU and eccentricity more than 0.5".
  36. ^"objects with perihelia between 37–40 AU and eccentricity more than 0.5".
  37. ^"MPC list ofq > 40 anda > 47.7".Minor Planet Center. Retrieved7 May 2018.
  38. ^ab"List of Known Trans-Neptunian Objects". Johnston's Archive. 7 October 2018. Retrieved23 October 2018.
  39. ^abE. L. Schaller; M. E. Brown (2007)."Volatile loss and retention on Kuiper belt objects"(PDF).Astrophysical Journal.659 (1):I.61 –I.64.Bibcode:2007ApJ...659L..61S.doi:10.1086/516709.S2CID 10782167. Retrieved2008-04-02.
  40. ^Buie, Marc W. (8 November 2007)."Orbit Fit and Astrometric record for 04VN112". SwRI (Space Science Department). Archived fromthe original on 18 August 2010. Retrieved17 July 2008.
  41. ^"JPL Small-Body Database Browser: (2004 VN112)". Retrieved2015-02-24.
  42. ^"List Of Centaurs and Scattered-Disk Objects". Retrieved5 July 2011.Discoverer: CTIO
  43. ^R. L. Allen; B. Gladman (2006). "Discovery of a low-eccentricity, high-inclination Kuiper Belt object at 58 AU".The Astrophysical Journal.640 (1):L83 –L86.arXiv:astro-ph/0512430.Bibcode:2006ApJ...640L..83A.doi:10.1086/503098.S2CID 15588453.
  44. ^abcdefghiSheppard, Scott S.; Trujillo, Chadwick; Tholen, David J. (July 2016)."Beyond the Kuiper Belt Edge: New High Perihelion Trans-Neptunian Objects with Moderate Semimajor Axes and Eccentricities".The Astrophysical Journal Letters.825 (1): L13.arXiv:1606.02294.Bibcode:2016ApJ...825L..13S.doi:10.3847/2041-8205/825/1/L13.S2CID 118630570.
  45. ^Sheppard, Scott S.; Trujillo, Chad (August 2016)."New Extreme Trans-Neptunian Objects: Towards a Super-Earth in the Outer Solar System".Astrophysical Journal.152 (6): 221.arXiv:1608.08772.Bibcode:2016AJ....152..221S.doi:10.3847/1538-3881/152/6/221.S2CID 119187392.


Consensus

Candidate
(for TNOs,
D+1σ ≥ 700 km
or H ≤ 4.0)
Asteroids
Plutinos
Classical
Other
resonances
Scattered disc
objects
Sednoids
Minor planets
Asteroid
Distant minor planet
Comets
Other
Planets,
dwarfs,
minors
Moons
Exploration
(outline)
Hypothetical
objects
Lists
Rings
Formation,
evolution
,
contents,
and
History
Small
Solar
System
bodies
Related
Portals:

Retrieved from "https://en.wikipedia.org/w/index.php?title=Detached_object&oldid=1316207249"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp