Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dedekind sum

From Wikipedia, the free encyclopedia

Inmathematics,Dedekind sums are certain sums of products of asawtooth function, and are given by afunctionD of threeinteger variables.Dedekind introduced them to express thefunctional equation of theDedekind eta function. They have subsequently been much studied innumber theory, and have occurred in some problems oftopology. Dedekind sums have a large number of functional equations; this article lists only a small fraction of these.

Dedekind sums were introduced byRichard Dedekind in a commentary on fragment XXVIII ofBernhard Riemann's collected papers.

Definition

[edit]

Define thesawtooth function(()):RR{\displaystyle (\!(\,)\!):\mathbb {R} \rightarrow \mathbb {R} } as

((x))={xx1/2,if xRZ;0,if xZ.{\displaystyle (\!(x)\!)={\begin{cases}x-\lfloor x\rfloor -1/2,&{\mbox{if }}x\in \mathbb {R} \setminus \mathbb {Z} ;\\0,&{\mbox{if }}x\in \mathbb {Z} .\end{cases}}}

We then let

D:Z2×(Z{0})R{\displaystyle D:\mathbb {Z} ^{2}\times (\mathbb {Z} -\{0\})\to \mathbb {R} }

be defined by

D(a,b;c)=n=1c1((anc))((bnc)),{\displaystyle D(a,b;c)=\sum _{n=1}^{c-1}\left(\!\!\left({\frac {an}{c}}\right)\!\!\right)\!\left(\!\!\left({\frac {bn}{c}}\right)\!\!\right),}

the terms on the right being theDedekind sums. For the casea = 1, one often writes

s(b,c) =D(1,b;c).

Simple formulae

[edit]

Note thatD is symmetric ina andb, and hence

D(a,b;c)=D(b,a;c),{\displaystyle D(a,b;c)=D(b,a;c),}

and that, by the oddness of (( )),

D(−a,b;c) = −D(a,b;c),
D(a,b; −c) =D(a,b;c).

By the periodicity ofD in its first two arguments, the third argument being the length of the period for both,

D(a,b;c) =D(a+kc,b+lc;c), for all integersk,l.

Ifd is a positive integer, then

D(ad,bd;cd) =dD(a,b;c),
D(ad,bd;c) =D(a,b;c), if (d,c) = 1,
D(ad,b;cd) =D(a,b;c), if (d,b) = 1.

There is a proof for the last equality making use of

n=1c1((n+xc))=((x)),xR.{\displaystyle \sum _{n=1}^{c-1}\left(\!\!\left({\frac {n+x}{c}}\right)\!\!\right)=(\!(x)\!),\qquad \forall x\in \mathbb {R} .}

Furthermore,az = 1 (modc) impliesD(a,b;c) =D(1,bz;c).

Alternative forms

[edit]

Ifb andc arecoprime, we may writes(b,c) as

s(b,c)=1cω1(1ωb)(1ω)+1414c,{\displaystyle s(b,c)={\frac {-1}{c}}\sum _{\omega }{\frac {1}{(1-\omega ^{b})(1-\omega )}}+{\frac {1}{4}}-{\frac {1}{4c}},}

where the sum extends over thec-throots of unity other than 1, i.e. over allω{\displaystyle \omega } such thatωc=1{\displaystyle \omega ^{c}=1} andω1{\displaystyle \omega \not =1}.

Ifb, c > 0 are coprime, then

s(b,c)=14cn=1c1cot(πnc)cot(πnbc).{\displaystyle s(b,c)={\frac {1}{4c}}\sum _{n=1}^{c-1}\cot \left({\frac {\pi n}{c}}\right)\cot \left({\frac {\pi nb}{c}}\right).}

Reciprocity law

[edit]

Ifb andc are coprime positive integers then

s(b,c)+s(c,b)=112(bc+1bc+cb)14.{\displaystyle s(b,c)+s(c,b)={\frac {1}{12}}\left({\frac {b}{c}}+{\frac {1}{bc}}+{\frac {c}{b}}\right)-{\frac {1}{4}}.}

Rewriting this as

12bc(s(b,c)+s(c,b))=b2+c23bc+1,{\displaystyle 12bc\left(s(b,c)+s(c,b)\right)=b^{2}+c^{2}-3bc+1,}

it follows that the number 6c s(b,c) is an integer.

Ifk = (3,c) then

12bcs(c,b)=0modkc{\displaystyle 12bc\,s(c,b)=0\mod kc}

and

12bcs(b,c)=b2+1modkc.{\displaystyle 12bc\,s(b,c)=b^{2}+1\mod kc.}

A relation that is prominent in the theory of theDedekind eta function is the following. Letq = 3, 5, 7 or 13 and letn = 24/(q − 1). Then given integersa,b,c,d withad − bc = 1 (thus belonging to themodular group), withc chosen so thatc = kq for some integerk > 0, define

δ=s(a,c)a+d12cs(a,k)+a+d12k{\displaystyle \delta =s(a,c)-{\frac {a+d}{12c}}-s(a,k)+{\frac {a+d}{12k}}}

Thennδ is aneven integer.

Rademacher's generalization of the reciprocity law

[edit]

Hans Rademacher found the following generalization of the reciprocity law for Dedekind sums:[1] Ifa,b, andc are pairwise coprime positive integers, then

D(a,b;c)+D(b,c;a)+D(c,a;b)=112a2+b2+c2abc14.{\displaystyle D(a,b;c)+D(b,c;a)+D(c,a;b)={\frac {1}{12}}{\frac {a^{2}+b^{2}+c^{2}}{abc}}-{\frac {1}{4}}.}

Hence, the above triple sum vanishesif and only if (a,b,c) is a Markov triple, i.e. a solution of theMarkov equation

a2+b2+c2=3abc.{\displaystyle a^{2}+b^{2}+c^{2}=3abc.}

References

[edit]
  1. ^Rademacher, Hans (1954). "Generalization of the reciprocity formula for Dedekind sums".Duke Mathematical Journal.21:391–397.doi:10.1215/s0012-7094-54-02140-7.Zbl 0057.03801.

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dedekind_sum&oldid=1272223954"
Categories:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp