Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Davydov soliton

From Wikipedia, the free encyclopedia
Quasiparticle used to model vibrations within proteins
Quantum dynamics of a Davydov soliton withχ=35{\displaystyle \chi =35} pN generated by an initial Gaussian step distribution of amide I energy over 3 peptide groups at the N-end of a single α-helix spine composed of 40 peptide groups (extending along thex-axis) during a period of 125 picoseconds. Quantum probabilities|an|2{\displaystyle |a_{n}|^{2}} of amide I excitation are plotted in blue along thez-axis. Phonon lattice displacement differencesbnbn1{\displaystyle b_{n}-b_{n-1}} (measured in picometers) are plotted in red along they-axis. The soliton is formed by self-trapping of the amide I energy by the induced lattice distortion.[1][2]

Inquantum biology, theDavydov soliton (after the Soviet Ukrainian physicistAlexander Davydov) is aquasiparticle representing anexcitation propagating along the self-trappedamide I groups within theα-helices ofproteins. It is a solution of the DavydovHamiltonian.

The Davydov model describes the interaction of the amide Ivibrations with thehydrogen bonds that stabilize the α-helices of proteins. The elementary excitations within the α-helix are given by thephonons which correspond to the deformational oscillations of the lattice, and theexcitons which describe the internal amide I excitations of thepeptide groups. Referring to the atomic structure of an α-helix region of protein the mechanism that creates the Davydov soliton (polaron, exciton) can be described as follows:vibrational energy of theC=O stretching (or amide I)oscillators that is localized on the α-helix acts through a phonon coupling effect to distort the structure of the α-helix, while the helical distortion reacts again through phonon coupling to trap the amide I oscillation energy and prevent its dispersion. This effect is calledself-localization orself-trapping.[3][4][5]Solitons in which theenergy is distributed in a fashion preserving thehelicalsymmetry are dynamically unstable, and suchsymmetrical solitons once formed decay rapidly when they propagate. On the other hand, anasymmetric soliton whichspontaneously breaks the local translational and helical symmetries possesses the lowest energy and is a robust localized entity.[6]

Davydov Hamiltonian

[edit]

DavydovHamiltonian is formally similar to theFröhlich-Holstein Hamiltonian for the interaction of electrons with a polarizable lattice. Thus theHamiltonian of theenergy operatorH^{\displaystyle {\hat {H}}} is

H^=H^ex+H^ph+H^int{\displaystyle {\hat {H}}={\hat {H}}_{\text{ex}}+{\hat {H}}_{\text{ph}}+{\hat {H}}_{\text{int}}}

whereH^ex{\displaystyle {\hat {H}}_{\text{ex}}} is theexcitonHamiltonian, which describes the motion of the amide I excitations between adjacent sites;H^ph{\displaystyle {\hat {H}}_{\text{ph}}} is thephononHamiltonian, which describesthevibrations of thelattice; andH^int{\displaystyle {\hat {H}}_{\text{int}}} is theinteractionHamiltonian, which describes the interaction of the amide I excitation with the lattice.[3][4][5]

TheexcitonHamiltonianH^ex{\displaystyle {\hat {H}}_{\text{ex}}} is

H^ex=n,αE0A^n,αA^n,αJ1n,α(A^n,αA^n+1,α+A^n,αA^n1,α)+J2n,α(A^n,αA^n,α+1+A^n,αA^n,α1){\displaystyle {\begin{aligned}{\hat {H}}_{\text{ex}}=&\sum _{n,\alpha }E_{0}{\hat {A}}_{n,\alpha }^{\dagger }{\hat {A}}_{n,\alpha }\\&-J_{1}\sum _{n,\alpha }\left({\hat {A}}_{n,\alpha }^{\dagger }{\hat {A}}_{n+1,\alpha }+{\hat {A}}_{n,\alpha }^{\dagger }{\hat {A}}_{n-1,\alpha }\right)\\&+J_{2}\sum _{n,\alpha }\left({\hat {A}}_{n,\alpha }^{\dagger }{\hat {A}}_{n,\alpha +1}+{\hat {A}}_{n,\alpha }^{\dagger }{\hat {A}}_{n,\alpha -1}\right)\end{aligned}}}

where the indexn=1,2,,N{\displaystyle n=1,2,\cdots ,N} counts the peptide groups along the α-helix spine, the indexα=1,2,3{\displaystyle \alpha =1,2,3} counts each α-helix spine,E0=32.8{\displaystyle E_{0}=32.8}zJ is the energy of the amide Ivibration (CO stretching),J1=0.155{\displaystyle J_{1}=0.155}zJ is thedipole-dipole coupling energy between a particular amide I bond and those ahead and behind along the same spine,[7]J2=0.246{\displaystyle J_{2}=0.246}zJ is thedipole-dipole coupling energy between a particular amide I bond and those on adjacent spines in the same unit cell of theproteinα-helix,[7]A^n,α{\displaystyle {\hat {A}}_{n,\alpha }^{\dagger }} andA^n,α{\displaystyle {\hat {A}}_{n,\alpha }} are respectivelythebosoncreation and annihilation operator for an amide I exciton at thepeptide group(n,α){\displaystyle (n,\alpha )}.[8][9][10]

ThephononHamiltonianH^ph{\displaystyle {\hat {H}}_{\text{ph}}} is[11][12][13][14]

H^ph=12n,α[w1(u^n+1,αu^n,α)2+w2(u^n,α+1u^n,α)2+p^n,α2Mn,α]{\displaystyle {\hat {H}}_{\text{ph}}={\frac {1}{2}}\sum _{n,\alpha }\left[w_{1}({\hat {u}}_{n+1,\alpha }-{\hat {u}}_{n,\alpha })^{2}+w_{2}({\hat {u}}_{n,\alpha +1}-{\hat {u}}_{n,\alpha })^{2}+{\frac {{\hat {p}}_{n,\alpha }^{2}}{M_{n,\alpha }}}\right]}

whereu^n,α{\displaystyle {\hat {u}}_{n,\alpha }} is thedisplacement operator from the equilibrium position of thepeptide group(n,α){\displaystyle (n,\alpha )},p^n,α{\displaystyle {\hat {p}}_{n,\alpha }} is themomentum operator of the peptide group(n,α){\displaystyle (n,\alpha )},Mn,α{\displaystyle M_{n,\alpha }} is themass of the peptide group(n,α){\displaystyle (n,\alpha )},w1=1319.5{\displaystyle w_{1}=13-19.5}N/m is aneffective elasticity coefficient of the lattice (thespring constant of ahydrogen bond)[9] andw2=30.5{\displaystyle w_{2}=30.5}N/m is the lateral coupling between the spines.[12][15]

Finally, theinteractionHamiltonianH^int{\displaystyle {\hat {H}}_{\text{int}}} is

H^int=χn,α[(u^n+1,αu^n,α)A^n,αA^n,α]{\displaystyle {\hat {H}}_{\text{int}}=\chi \sum _{n,\alpha }\left[({\hat {u}}_{n+1,\alpha }-{\hat {u}}_{n,\alpha }){\hat {A}}_{n,\alpha }^{\dagger }{\hat {A}}_{n,\alpha }\right]}

whereχ=3562{\displaystyle \chi =35-62}pN is an anharmonic parameter arising from the coupling between the exciton and the lattice displacements (phonon) and parameterizes the strength of theexciton-phononinteraction.[9] The value of this parameter forα-helix has been determined via comparison of the theoretically calculated absorption line shapes with the experimentally measured ones.

Davydov soliton properties

[edit]

There are three possible fundamental approaches for deriving equations of motion from Davydov Hamiltonian:

  • quantum approach, in which both the amide I vibration (excitons) and the lattice site motion (phonons) are treated quantum mechanically;[16]
  • mixed quantum-classical approach, in which the amide I vibration is treated quantum mechanically but the lattice is classical;[10]
  • classical approach, in which both the amide I and the lattice motions are treated classically.[17]

The mathematical techniques that are used to analyze the Davydov soliton are similar to some that have been developed in polaron theory.[18] In this context, the Davydov soliton corresponds to apolaron that is:

  • large so the continuum limit approximation is justified,[9]
  • acoustic because the self-localization arises from interactions with acoustic modes of the lattice,[9]
  • weakly coupled because the anharmonic energy is small compared with the phonon bandwidth.[9]

The Davydov soliton is aquantum quasiparticle and it obeysHeisenberg's uncertainty principle. Thus any model that does not impose translational invariance is flawed by construction.[9] Supposing that the Davydov soliton is localized to 5 turns of theα-helix results in significant uncertainty in thevelocity of thesolitonΔv=133{\displaystyle \Delta v=133} m/s, a fact that is obscured if one models the Davydov soliton as a classical object.

References

[edit]
  1. ^Georgiev, Danko D.; Glazebrook, James F. (2019). "On the quantum dynamics of Davydov solitons in protein α-helices".Physica A: Statistical Mechanics and Its Applications.517:257–269.arXiv:1811.05886.Bibcode:2019PhyA..517..257G.doi:10.1016/j.physa.2018.11.026.MR 3880179.S2CID 53688720.
  2. ^Georgiev, Danko D.; Glazebrook, James F. (2019). "Quantum tunneling of Davydov solitons through massive barriers".Chaos, Solitons and Fractals.123:275–293.arXiv:1904.09822.Bibcode:2019CSF...123..275G.doi:10.1016/j.chaos.2019.04.013.MR 3941070.S2CID 128306516.
  3. ^abDavydov, Alexander S. (1973). "The theory of contraction of proteins under their excitation".Journal of Theoretical Biology.38 (3):559–569.Bibcode:1973JThBi..38..559D.doi:10.1016/0022-5193(73)90256-7.PMID 4266326.
  4. ^abDavydov, Alexander S. (1977). "Solitons and energy transfer along protein molecules".Journal of Theoretical Biology.66 (2):379–387.Bibcode:1977JThBi..66..379D.doi:10.1016/0022-5193(77)90178-3.PMID 886872.
  5. ^abDavydov, Alexander S. (1979). "Solitons, bioenergetics, and the mechanism of muscle contraction".International Journal of Quantum Chemistry.16 (1):5–17.doi:10.1002/qua.560160104.
  6. ^Brizhik, Larissa; Eremko, Alexander; Piette, Bernard; Zakrzewski, Wojtek (2004). "Solitons in α-helical proteins".Physical Review E.70 (3 Pt 1): 031914.arXiv:cond-mat/0402644.Bibcode:2004PhRvE..70a1914K.doi:10.1103/PhysRevE.70.011914.PMID 15524556.
  7. ^abNevskaya, N. A.; Chirgadze, Yuriy Nikolaevich (1976). "Infrared spectra and resonance interactions of amide-I and II vibrations of α-helix".Biopolymers.15 (4):637–648.doi:10.1002/bip.1976.360150404.PMID 1252599.S2CID 98650911.
  8. ^Hyman, James M.; McLaughlin, David W.; Scott, Alwyn C. (1981). "On Davydov's alpha-helix solitons".Physica D: Nonlinear Phenomena.3 (1):23–44.Bibcode:1981PhyD....3...23H.doi:10.1016/0167-2789(81)90117-2.
  9. ^abcdefgScott, Alwyn C. (1992). "Davydov's soliton".Physics Reports.217 (1):1–67.Bibcode:1992PhR...217....1S.doi:10.1016/0370-1573(92)90093-F.
  10. ^abCruzeiro-Hansson, Leonor; Takeno, Shozo (1997). "Davydov model: the quantum, mixed quantum-classical, and full classical systems".Physical Review E.56 (1):894–906.Bibcode:1997PhRvE..56..894C.doi:10.1103/PhysRevE.56.894.
  11. ^Davydov, Alexander S. (1982). "Solitons in quasi-one-dimensional molecular structures".Soviet Physics Uspekhi.25 (12):898–918.doi:10.1070/pu1982v025n12abeh005012.
  12. ^abGeorgiev, Danko D.; Glazebrook, James F. (2022). "Thermal stability of solitons in protein α-helices".Chaos, Solitons and Fractals.155: 111644.arXiv:2202.00525.Bibcode:2022CSF...15511644G.doi:10.1016/j.chaos.2021.111644.MR 4372713.S2CID 244693789.
  13. ^Zolotaryuk, Alexander V.; Christiansen, P. L.; Nordеn, B.; Savin, Alexander V. (1999)."Soliton and ratchet motions in helices".Condensed Matter Physics.2 (2):293–302.Bibcode:1999CMPh....2..293Z.doi:10.5488/cmp.2.2.293.
  14. ^Brizhik, Larissa S.; Luo, Jingxi; Piette, Bernard M. A. G.; Zakrzewski, Wojtek J. (2019). "Long-range donor-acceptor electron transport mediated by alpha-helices".Physical Review E.100 (6): 062205.arXiv:1909.08266.Bibcode:2019PhRvE.100f2205B.doi:10.1103/PhysRevE.100.062205.PMID 31962511.S2CID 202660869.
  15. ^Savin, Alexander V.; Zolotaryuk, Alexander V. (1993). "Dynamics of the amide-I excitation in a molecular chain with thermalized acoustic and optical modes".Physica D: Nonlinear Phenomena.68 (1):59–64.Bibcode:1993PhyD...68...59S.doi:10.1016/0167-2789(93)90029-Z.
  16. ^Kerr, William C.; Lomdahl, Peter S. (1987). "Quantum-mechanical derivation of the equations of motion for Davydov solitons".Physical Review B.35 (7):3629–3632.Bibcode:1987PhRvB..35.3629K.doi:10.1103/PhysRevB.35.3629.hdl:10339/15922.PMID 9941870.
  17. ^Škrinjar, M. J.; Kapor, D. V.; Stojanović, S. D. (1988). "Classical and quantum approach to Davydov's soliton theory".Physical Review A.38 (12):6402–6408.Bibcode:1988PhRvA..38.6402S.doi:10.1103/PhysRevA.38.6402.PMID 9900400.
  18. ^Sun, Jin; Luo, Bin; Zhao, Yang (2010). "Dynamics of a one-dimensional Holstein polaron with the Davydov ansätze".Physical Review B.82 (1): 014305.arXiv:1001.3198.Bibcode:2010PhRvB..82a4305S.doi:10.1103/PhysRevB.82.014305.S2CID 118564115.
Elementary
Fermions
Quarks
Leptons
Bosons
Gauge
Scalar
Ghost fields
Hypothetical
Superpartners
Gauginos
Others
Others
Composite
Hadrons
Baryons
Mesons
Exotic hadrons
Others
Hypothetical
Baryons
Mesons
Others
Quasiparticles
Lists
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Davydov_soliton&oldid=1145664017"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp